101
|
Bianchi A, Lanzuolo C. Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
102
|
The ubiquitin ligases RNF8 and RNF168 display rapid but distinct dynamics at DNA repair foci in living cells. Int J Biochem Cell Biol 2014; 57:27-34. [PMID: 25304081 DOI: 10.1016/j.biocel.2014.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023]
Abstract
Rapid assembly of DNA damage response (DDR) proteins at nuclear "repair" foci is a hallmark response of ionizing radiation (IR)-treated cells. The ubiquitin E3 ligases RNF8 and RNF168 are critical for foci formation, and here we aim to determine their dynamic mobility and abundance at individual foci in living cells. To this end, YFP-tagged RNF8 and RNF168 were expressed at physiological levels in MCF-7 cells, then analyzed by fluorescence recovery after photobleaching (FRAP) assays, nuclear retention measurement, and virus-like particles (VLPs)-based quantification. The results showed that RNF8 and RNF168 were both highly dynamic at IR-induced foci. Intriguingly, RNF8 displayed remarkably faster in vivo association/dissociation rates than RNF168, and RNF8-positive IR-foci were less resistant to detergent extraction. In addition, copy number assay revealed that RNF168 was two-fold more abundant than RNF8 at foci. Collectively, we show for the first time that RNF8 moves on-and-off nuclear DNA repair foci more than six-fold as quickly as RNF168. The faster kinetics of RNF8 recruitment explains why RNF8 is generally observed at DNA-breaks prior to RNF168. Moreover, our finding that RNF8 is less abundant than RNF168 identifies RNF8 as a rate-limiting determinant of focal repair complex assembly.
Collapse
|
103
|
The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 2014; 19:1389-98. [DOI: 10.1007/s10495-014-1010-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
104
|
Lu L, Zhu C, Xia B, Yi C. Oxidative Demethylation of DNA and RNA Mediated by Non-Heme Iron-Dependent Dioxygenases. Chem Asian J 2014; 9:2018-29. [DOI: 10.1002/asia.201402148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/10/2022]
|
105
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Ye Fu
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Chuan He
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
106
|
Li X, Song J, Yi C. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:72-8. [PMID: 24747191 PMCID: PMC4411377 DOI: 10.1016/j.gpb.2014.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
Abstract
RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains one of the most fundamental and important challenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we compare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audience and also urge for the development of new methods to study RNA-RBP interactions.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
107
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|
108
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
109
|
Li D, Fedeles BI, Shrivastav N, Delaney JC, Yang X, Wong C, Drennan CL, Essigmann JM. Removal of N-alkyl modifications from N(2)-alkylguanine and N(4)-alkylcytosine in DNA by the adaptive response protein AlkB. Chem Res Toxicol 2013; 26:1182-7. [PMID: 23773213 PMCID: PMC3748507 DOI: 10.1021/tx400096m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
AlkB enzyme is an Fe(II)- and α-ketoglutarate-dependent
dioxygenase that repairs DNA alkyl lesions by a direct reversal of
damage mechanism as part of the adaptive response in E. coli. The reported substrate scope of AlkB includes simple DNA alkyl
adducts, such as 1-methyladenine, 3-methylcytosine, 3-ethylcytosine,
1-methylguanine, 3-methylthymine, and N6-methyladenine, as well as more complex DNA adducts, such as 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 1,N6-ethanoadenine.
Previous studies have revealed, in a piecemeal way, that AlkB has
an impressive repertoire of substrates. The present study makes two
additions to this list, showing that alkyl adducts on the N2 position of guanine and N4 position of cytosine are also substrates for AlkB. Using
high resolution ESI-TOF mass spectrometry, we show that AlkB has the
biochemical capability to repair in vitroN2-methylguanine, N2-ethylguanine, N2-furan-2-yl-methylguanine, N2-tetrahydrofuran-2-yl-methylguanine, and N4-methylcytosine in ssDNA but not in dsDNA.
When viewed together with previous work, the experimental data herein
demonstrate that AlkB is able to repair all simple N-alkyl adducts occurring at the Watson–Crick base
pairing interface of the four DNA bases, confirming AlkB as a versatile
gatekeeper of genomic integrity under alkylation stress.
Collapse
Affiliation(s)
- Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Fu D, Jordan JJ, Samson LD. Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis. Genes Dev 2013; 27:1089-100. [PMID: 23666923 DOI: 10.1101/gad.215533.113] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Programmed necrosis has emerged as a crucial modulator of cell death in response to several forms of cellular stress. In one form of programmed necrotic cell death, induced by cytotoxic alkylating agents, hyperactivation of poly-ADP-ribose polymerase (PARP) leads to cellular NAD and ATP depletion, mitochondrial dysfunction, reactive oxygen species formation, and ensuing cell death. Here, we show that the protein encoded by the human AlkB homolog 7 (ALKBH7) gene plays a pivotal role in DNA-damaging agent-induced programmed necrosis by triggering the collapse of mitochondrial membrane potential and large-scale loss of mitochondrial function that lead to energy depletion and cellular demise. Depletion of ALKBH7 suppresses necrotic cell death induced by numerous alkylating and oxidizing agents while having no effect on apoptotic cell death. Like wild-type cells, ALKBH7-depleted cells undergo PARP hyperactivation and NAD depletion after severe DNA damage but, unlike wild-type cells, exhibit rapid recovery of intracellular NAD and ATP levels. Consistent with the recovery of cellular bioenergetics, ALKBH7-depleted cells maintain their mitochondrial membrane potential, plasma membrane integrity, and viability. Our results uncover a novel role for a mammalian AlkB homolog in programmed necrosis, presenting a new target for therapeutic intervention in cancer cells that are resistant to apoptotic cell death.
Collapse
Affiliation(s)
- Dragony Fu
- Department of Biological Engineering, Department of Biology, Center for Environmental Health Sciences, David H. Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
111
|
Mitkus RJ, Hess MA, Schwartz SL. Pharmacokinetic modeling as an approach to assessing the safety of residual formaldehyde in infant vaccines. Vaccine 2013; 31:2738-43. [PMID: 23583892 DOI: 10.1016/j.vaccine.2013.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 03/05/2013] [Accepted: 03/31/2013] [Indexed: 02/08/2023]
Abstract
Formaldehyde is a one-carbon, highly water-soluble aldehyde that is used in certain vaccines to inactivate viruses and to detoxify bacterial toxins. As part of the manufacturing process, some residual formaldehyde can remain behind in vaccines at levels less than or equal to 0.02%. Environmental and occupational exposure, principally by inhalation, is a continuing risk assessment focus for formaldehyde. However, exposure to formaldehyde via vaccine administration is qualitatively and quantitatively different from environmental or occupational settings and calls for a different perspective and approach to risk assessment. As part of a rigorous and ongoing process of evaluating the safety of biological products throughout their lifecycle at the FDA, we performed an assessment of formaldehyde in infant vaccines, in which estimates of the concentrations of formaldehyde in blood and total body water following exposure to formaldehyde-containing vaccines at a single medical visit were compared with endogenous background levels of formaldehyde in a model 2-month-old infant. Formaldehyde levels were estimated using a physiologically-based pharmacokinetic (PBPK) model of formaldehyde disposition following intramuscular (IM) injection. Model results indicated that following a single dose of 200 μg, formaldehyde is essentially completely removed from the site of injection within 30 min. Assuming metabolism at the site of injection only, peak concentrations of formaldehyde in blood/total body water were estimated to be 22 μg/L, which is equivalent to a body burden of 66 μg or <1% of the endogenous level of formaldehyde. Predicted levels in the lymphatics were even lower. Assuming no adverse effects from endogenous formaldehyde, which exists in blood and extravascular water at background concentrations of 0.1 mM, we conclude that residual, exogenously applied formaldehyde continues to be safe following incidental exposures from infant vaccines.
Collapse
Affiliation(s)
- Robert J Mitkus
- Office of Biostatistics and Epidemiology, USFDA Center for Biologics Evaluation and Research, 1401 Rockville Pike, HFM-210, Rockville, MD 20852, USA.
| | | | | |
Collapse
|