Li D, Fedeles BI, Shrivastav N, Delaney JC, Yang X, Wong C, Drennan CL, Essigmann JM. Removal of N-alkyl modifications from N(2)-alkylguanine and N(4)-alkylcytosine in DNA by the adaptive response protein AlkB.
Chem Res Toxicol 2013;
26:1182-7. [PMID:
23773213 PMCID:
PMC3748507 DOI:
10.1021/tx400096m]
[Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
AlkB enzyme is an Fe(II)- and α-ketoglutarate-dependent
dioxygenase that repairs DNA alkyl lesions by a direct reversal of
damage mechanism as part of the adaptive response in E. coli. The reported substrate scope of AlkB includes simple DNA alkyl
adducts, such as 1-methyladenine, 3-methylcytosine, 3-ethylcytosine,
1-methylguanine, 3-methylthymine, and N6-methyladenine, as well as more complex DNA adducts, such as 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 1,N6-ethanoadenine.
Previous studies have revealed, in a piecemeal way, that AlkB has
an impressive repertoire of substrates. The present study makes two
additions to this list, showing that alkyl adducts on the N2 position of guanine and N4 position of cytosine are also substrates for AlkB. Using
high resolution ESI-TOF mass spectrometry, we show that AlkB has the
biochemical capability to repair in vitroN2-methylguanine, N2-ethylguanine, N2-furan-2-yl-methylguanine, N2-tetrahydrofuran-2-yl-methylguanine, and N4-methylcytosine in ssDNA but not in dsDNA.
When viewed together with previous work, the experimental data herein
demonstrate that AlkB is able to repair all simple N-alkyl adducts occurring at the Watson–Crick base
pairing interface of the four DNA bases, confirming AlkB as a versatile
gatekeeper of genomic integrity under alkylation stress.
Collapse