101
|
Juven-Gershon T, Kadonaga JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 2009; 339:225-9. [PMID: 19682982 DOI: 10.1016/j.ydbio.2009.08.009] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/04/2009] [Indexed: 01/16/2023]
Abstract
The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional regulatory element. There are two main strategies for transcription initiation - focused and dispersed initiation. In focused initiation, transcription starts from a single nucleotide or within a cluster of several nucleotides, whereas in dispersed initiation, there are several weak transcription start sites over a broad region of about 50 to 100 nucleotides. Focused initiation is the predominant means of transcription in simpler organisms, whereas dispersed initiation is observed in approximately two-thirds of vertebrate genes. Regulated genes tend to have focused promoters, and constitutive genes typically have dispersed promoters. Hence, in vertebrates, focused promoters are used in a small but biologically important fraction of genes. The properties of focused core promoters are dependent upon the presence or absence of sequence motifs such as the TATA box and DPE. For example, Caudal, a key regulator of the homeotic gene network, preferentially activates transcription from DPE- versus TATA-dependent promoters. The basal transcription factors, which act in conjunction with the core promoter, are another important component in the regulation of gene expression. For instance, upon differentiation of myoblasts to myotubes, the cells undergo a switch from a TFIID-based transcription system to a TRF3-TAF3-based system. These findings suggest that the core promoter and basal transcription factors are important yet mostly unexplored components in the regulation of gene expression.
Collapse
Affiliation(s)
- Tamar Juven-Gershon
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | |
Collapse
|
102
|
Ho DS, Rea AJ, Abraham LJ. Functional aspects of the CD30 gene in Hodgkin’s lymphoma and anaplastic large cell lymphoma. Oncol Rev 2009. [DOI: 10.1007/s12156-009-0012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
103
|
Anish R, Hossain MB, Jacobson RH, Takada S. Characterization of transcription from TATA-less promoters: identification of a new core promoter element XCPE2 and analysis of factor requirements. PLoS One 2009; 4:e5103. [PMID: 19337366 PMCID: PMC2659449 DOI: 10.1371/journal.pone.0005103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. METHODOLOGY/PRINCIPAL FINDINGS Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A(+1)-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. CONCLUSIONS/SIGNIFICANCE We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single "focused" TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters.
Collapse
Affiliation(s)
- Ramakrishnan Anish
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mohammad B. Hossain
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Raymond H. Jacobson
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
104
|
Distinct modes of gene regulation by a cell-specific transcriptional activator. Proc Natl Acad Sci U S A 2009; 106:4213-8. [PMID: 19251649 DOI: 10.1073/pnas.0808347106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.
Collapse
|
105
|
Zhou Z, Lin IJ, Darst RP, Bungert J. Maneuver at the transcription start site: Mot1p and NC2 navigate TFIID/TBP to specific core promoter elements. Epigenetics 2009; 4:1-4. [PMID: 19077548 DOI: 10.4161/epi.4.1.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
106
|
Juven-Gershon T, Hsu JY, Kadonaga JT. Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. Genes Dev 2008; 22:2823-30. [PMID: 18923080 DOI: 10.1101/gad.1698108] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regulation of gene transcription is critical for the proper development and growth of an organism. The transcription of protein-coding genes initiates at the RNA polymerase II core promoter, which is a diverse module that can be controlled by many different elements such as the TATA box and downstream core promoter element (DPE). To understand the basis for core promoter diversity, we explored potential biological functions of the DPE. We found that nearly all of the Drosophila homeotic (Hox) gene promoters, which lack TATA-box elements, contain functionally important DPE motifs that are conserved from Drosophila melanogaster to Drosophila virilis. We then discovered that Caudal, a sequence-specific transcription factor and key regulator of the Hox gene network, activates transcription with a distinct preference for the DPE relative to the TATA box. The specificity of Caudal activation for the DPE is particularly striking when a BRE(u) core promoter motif is associated with the TATA box. These findings show that Caudal is a DPE-specific activator and exemplify how core promoter diversity can be used to establish complex regulatory networks.
Collapse
Affiliation(s)
- Tamar Juven-Gershon
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
107
|
Fundamentals of Structure–Function Analysis of Eukaryotic Protein-Coding Genes. Genomics 2008. [DOI: 10.3109/9781420067064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
108
|
Hsu JY, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT. TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes Dev 2008; 22:2353-8. [PMID: 18703680 DOI: 10.1101/gad.1681808] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.
Collapse
Affiliation(s)
- Jer-Yuan Hsu
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
109
|
Abrahem A, Pelchat M. Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome. Nucleic Acids Res 2008; 36:5201-11. [PMID: 18682525 PMCID: PMC2532721 DOI: 10.1093/nar/gkn501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although RNA polymerases (RNAPs) are able to use RNA as template, it is unknown how they recognize RNA promoters. In this study, we used an RNA fragment derived from the hepatitis delta virus (HDV) genome as a model to investigate the recognition of RNA promoters by RNAP II. Inhibition of the transcription reaction using an antibody specific to the largest subunit of RNAP II and the direct binding of purified RNAP II to the RNA promoter confirmed the involvement of RNAP II in the reaction. RNA affinity chromatography established that an active RNAP II preinitiation complex forms on the RNA promoter and indicated that this complex contains the core RNAP II subunit and the general transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TFIIS. Binding assays demonstrated the direct binding of the TATA-binding protein and suggested that this protein is required to nucleate the RNAP II complex on the RNA promoter. Our findings provide a better understanding of the events leading to RNA promoter recognition by RNAP II.
Collapse
Affiliation(s)
- Abrahem Abrahem
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
110
|
Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc Natl Acad Sci U S A 2008; 105:7762-7. [PMID: 18505835 DOI: 10.1073/pnas.0802406105] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA Polymerase II (Pol II) is bound to the promoter regions of many or most developmental control genes before their activation during Drosophila embryogenesis. It has been suggested that Pol II stalling is used to produce dynamic and rapid responses of developmental patterning genes to transient cues such as extracellular signaling molecules. Here, we present a combined computational and experimental analysis of stalled promoters to determine how they come to bind Pol II in the early Drosophila embryo. At least one-fourth of the stalled promoters contain a shared sequence motif, the "pause button" (PB): KCGRWCG. The PB motif is sometimes located in the position of the DPE, and over one-fifth of the stalled promoters contain the following arrangement of core elements: GAGA, Inr, PB, and/or DPE. This arrangement was used to identify additional stalled promoters in the Drosophila genome, and permanganate footprint assays were used to confirm that the segmentation gene engrailed contains paused Pol II as seen for heat-shock genes. We discuss different models for Pol II binding and gene activation in the early embryo.
Collapse
|
111
|
Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT. The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol 2008; 20:253-9. [PMID: 18436437 DOI: 10.1016/j.ceb.2008.03.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
The RNA polymerase II core promoter is generally defined to be the sequence that directs the initiation of transcription. This simple definition belies a diverse and complex transcriptional module. There are two major types of core promoters - focused and dispersed. Focused promoters contain either a single transcription start site or a distinct cluster of start sites over several nucleotides, whereas dispersed promoters contain several start sites over 50-100 nucleotides and are typically found in CpG islands in vertebrates. Focused promoters are more ancient and widespread throughout nature than dispersed promoters; however, in vertebrates, dispersed promoters are more common than focused promoters. In addition, core promoters may contain many different sequence motifs, such as the TATA box, BRE, Inr, MTE, DPE, DCE, and XCPE1, that specify different mechanisms of transcription and responses to enhancers. Thus, the core promoter is a sophisticated gateway to transcription that determines which signals will lead to transcription initiation.
Collapse
Affiliation(s)
- Tamar Juven-Gershon
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, USA
| | | | | | | |
Collapse
|
112
|
NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 2008; 28:3290-300. [PMID: 18332113 DOI: 10.1128/mcb.02224-07] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent analyses of RNA polymerase II (Pol II) revealed that Pol II is concentrated at the promoters of many active and inactive genes. NELF causes Pol II to pause in the promoter-proximal region of the hsp70 gene in Drosophila melanogaster. In this study, genome-wide location analysis (chromatin immunoprecipitation-microarray chip [ChIP-chip] analysis) revealed that NELF is concentrated at the 5' ends of 2,111 genes in Drosophila cells. Permanganate genomic footprinting was used to determine if paused Pol II colocalized with NELF. Forty-six of 56 genes with NELF were found to have paused Pol II. Pol II pauses 30 to 50 nucleotides downstream from transcription start sites. Analysis of DNA sequences in the vicinity of paused Pol II identified a conserved DNA sequence that probably associates with TFIID but detected no evidence of RNA secondary structures or other conserved sequences that might directly control elongation. ChIP-chip experiments indicate that GAGA factor associates with 39% of the genes that have NELF. Surprisingly, NELF associates with almost one-half of the most highly expressed genes, indicating that NELF is not necessarily a repressor of gene expression. NELF-associated pausing of Pol II might be an obligatory but sometimes transient checkpoint during the transcription cycle.
Collapse
|
113
|
Zhang N, Chen JL. Purification of recombinant proteins and study of protein interaction by epitope tagging. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.15. [PMID: 18265055 DOI: 10.1002/0471142727.mb1015s41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A protein molecule can be engineered to include a short stretch of residues corresponding to an epitope to facilitate its subsequent biochemical and immunological analysis; a technique often referred to as "epitope tagging." This unit presents a protocol for small-scale immunoprecipitation of epitope-tagged recombinant proteins expressed in transiently transfected mammalian cells. The immunoprecipitant can then be analyzed by SDS-PAGE. An immunoprecipitation protocol is also provided that has been optimized for use with a baculovirus overexpression system. An Alternate Protocol describes how multisubunit complexes can be assembled by starting with a core protein affixed to beads via an epitope tag, and adding the other members of the complex in a stepwise manner.
Collapse
Affiliation(s)
- N Zhang
- Tularik, Inc., South San Francisco, California, USA
| | | |
Collapse
|
114
|
Bendjennat M, Weil PA. The transcriptional repressor activator protein Rap1p is a direct regulator of TATA-binding protein. J Biol Chem 2008; 283:8699-710. [PMID: 18195009 DOI: 10.1074/jbc.m709436200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Essentially all nuclear eukaryotic gene transcription depends upon the function of the transcription factor TATA-binding protein (TBP). Here we show that the abundant, multifunctional DNA binding transcription factor repressor activator protein Rap1p interacts directly with TBP. TBP-Rap1p binding occurs efficiently in vivo at physiological expression levels, and in vitro analyses confirm that this is a direct interaction. The DNA binding domains of the two proteins mediate interaction between TBP and Rap1p. TBP-Rap1p complex formation inhibits TBP binding to TATA promoter DNA. Alterations in either Rap1p or TBP levels modulate mRNA gene transcription in vivo. We propose that Rap1p represents a heretofore unrecognized regulator of TBP.
Collapse
Affiliation(s)
- Mourad Bendjennat
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
115
|
Xi H, Yu Y, Fu Y, Foley J, Halees A, Weng Z. Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1. Genome Res 2007; 17:798-806. [PMID: 17567998 PMCID: PMC1891339 DOI: 10.1101/gr.5754707] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A set of 723 high-quality human core promoter sequences were compiled and analyzed for overrepresented motifs. Beside the two well-characterized core promoter motifs (TATA and Inr), several known motifs (YY1, Sp1, NRF-1, NRF-2, CAAT, and CREB) and one potentially new motif (motif8) were found. Interestingly, YY1 and motif8 mostly reside immediately downstream from the TSS. In particular, the YY1 motif occurs primarily in genes with 5'-UTRs shorter than 40 base pairs (bp) and its locations coincide with the translation start site. We verified that the YY1 motif is bound by YY1 in vitro. We then performed detailed analysis on YY1 chromatin immunoprecipitation data with a whole-genome human promoter microarray (ChIP-chip) and revealed that the thus identified promoters in HeLa cells were highly enriched with the YY1 motif. Moreover, the motif overlapped with the translation start sites on the plus strand of a group of genes, many with short 5'-UTRs, and with the transcription start sites on the minus strand of another distinct group of genes; together, the two groups of genes accounted for the majority of the YY1-bound promoters in the ChIP-chip data. Furthermore, the first group of genes was highly enriched in the functional categories of ribosomal proteins and nuclear-encoded mitochondria proteins. We suggest that the YY1 motif plays a dual role in both transcription and translation initiation of these genes. We also discuss the evolutionary advantages of housing a transcriptional element inside the transcript in terms of the migration of these genes in the human genome.
Collapse
Affiliation(s)
- Hualin Xi
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Yong Yu
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Yutao Fu
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Jonathan Foley
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anason Halees
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Zhiping Weng
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Corresponding author.E-mail ; fax (617) 353-6766
| |
Collapse
|
116
|
Gao S, Zhao Y, Kong L, Toselli P, Chou IN, Stone P, Li W. Cloning and characterization of the rat lysyl oxidase gene promoter: identification of core promoter elements and functional nuclear factor I-binding sites. J Biol Chem 2007; 282:25322-37. [PMID: 17597074 DOI: 10.1074/jbc.m610108200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl oxidase (LO) stabilizes the extracellular matrix by cross-linking collagen and elastin. To assess the transcriptional regulation of LO, we cloned the 5'-flanking region with 3,979 bp of the rat LO gene. LO transcription started at multiple sites clustered at the region from -78 to -51 upstream of ATG. The downstream core promoter element functionally independent of the initiator predominantly activated the TATA-less LO gene. 5' Deletion assays illustrated a sequence of 804 bp upstream of ATG sufficient for eliciting the maximal promoter activity and the region -709/-598 exhibiting strongly enhancing effects on the reporter gene expression in transiently transfected RFL6 cells. DNase I footprinting assays showed a protected pattern existing in the fragment -612/-580, which contains a nuclear factor I (NFI)-binding site at the region -594/-580 confirmed by electrophoretic mobility supershift assays. Mutations on this acting site decreased both NFI binding affinity in gel shift assays and stimulation of SV40 promoter activities in cells transfected with the NFI-binding site-SV40 promoter chimeric construct. Furthermore, at least two functional NFI-binding sites, including another one located at -147/-133, were identified in the LO promoter region -804/-1. Only NFI-A and NFI-B were expressed in rat lung fibroblasts, and their interaction with the LO gene was sensitively modulated by exogenous stimuli such as cigarette smoke condensate. In conclusion, the isolated rat LO gene promoter contains functionally independent initiator and downstream core promoter elements, and the conserved NFI-binding sites play a critical role in the LO gene activation.
Collapse
Affiliation(s)
- Song Gao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 2007; 282:23981-95. [PMID: 17575275 PMCID: PMC2039722 DOI: 10.1074/jbc.m702044200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional program induced by growth factor stimulation is classically described in two stages as follows: the rapid protein synthesis-independent induction of immediate-early genes, followed by the subsequent protein synthesis-dependent induction of secondary response genes. In this study, we obtained a comprehensive view of this transcriptional program. As expected, we identified both rapid and delayed gene inductions. Surprisingly, however, a large fraction of genes induced with delayed kinetics did not require protein synthesis and therefore represented delayed primary rather than secondary response genes. Of 133 genes induced within 4 h of growth factor stimulation, 49 (37%) were immediate-early genes, 58 (44%) were delayed primary response genes, and 26 (19%) were secondary response genes. Comparison of immediate-early and delayed primary response genes revealed functional and regulatory differences. Whereas many immediate-early genes encoded transcription factors, transcriptional regulators were not prevalent among the delayed primary response genes. The lag in induction of delayed primary response compared with immediate-early mRNAs was because of delays in both transcription initiation and subsequent stages of elongation and processing. Consistent with increased abundance of RNA polymerase II at their promoters, immediate-early genes were characterized by over-representation of transcription factor binding sites and high affinity TATA boxes. Immediate-early genes also had short primary transcripts with few exons, whereas delayed primary response genes more closely resembled other genes in the genome. These findings suggest that genomic features of immediate-early genes, in contrast to the delayed primary response genes, are selected for rapid induction, consistent with their regulatory functions.
Collapse
Affiliation(s)
- John W Tullai
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
118
|
Dhar AK, Lakshman DK, Natarajan S, Allnutt FCT, van Beek NAM. Functional characterization of putative promoter elements from infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimp and in insect and fish cell lines. Virus Res 2007; 127:1-8. [PMID: 17434223 DOI: 10.1016/j.virusres.2007.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) of shrimp contains a linear single-stranded DNA genome of approximately 4.1kb with three putative open reading frames (ORFs) on the same DNA strand designated, the Left, Middle, and Right ORFs. The Left ORF codes for non-structural protein and the Right ORF codes for capsid protein, whereas the role of the Middle ORF is still unknown. Two putative promoters, designated P2 and P61, were detected upstream of the Left ORF and Right ORF, respectively. We evaluated the activities of these two promoters with or without a transcriptional enhancer element via the use of firefly luciferase reporter constructs in insect and fish cells, and in shrimp tail muscle. In insect and fish cells, the P2 promoter was stronger than the P61 promoter. The presence of the SV40 enhancer element negatively affected P2 but not P61 promoter activity in insect cells. However, in fish cells, the SV40 enhancer element dramatically increased the activities of both promoters. In shrimp, there was no significant difference in luciferase expression driven by these two promoters. In shrimp tail muscle, the presence of SV40 enhancer element in the construct had no significant effect on the P2 promoter and a negative effect on the P61 promoter. The IHHNV P2 and P61 promoters were found to be constitutive promoters that can drive gene expression in both invertebrate and vertebrate hosts.
Collapse
Affiliation(s)
- Arun K Dhar
- Advanced BioNutrition Corporation, 7155 Columbia Gateway Drive, Suite H, Columbia, MD 21046, United States.
| | | | | | | | | |
Collapse
|
119
|
Colón-Parrilla WV, Pérez-Chiesa I. Partial characterization and evolution of Adh-Adhr in Drosophila dunni. Biochem Genet 2007; 45:225-38. [PMID: 17333331 DOI: 10.1007/s10528-006-9067-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 09/11/2006] [Indexed: 11/28/2022]
Abstract
We sequenced 2123 bp of the Adh-Adhr genomic region of Drosophila dunni of the cardini group from two cloned DNA PCR fragments and from two cDNA clones of an Adh transcript. This comprises the Adh coding region and introns, 3' UTR, intergenic sequence, and most of Adhr, which is 260 bp downstream of Adh. Both genes have the typical Drosophila melanogaster Adh structure of three exons and two introns, except for changes in the putative 8 bp sequence involved in downregulation within the 3' UTR of Adh. Two amino acid substitutions could explain the low activity previously reported for this enzyme in D. dunni: Thr --> Lys at position 191 and Val --> Thr at position 189. D. dunni's Adh has the lowest codon bias reported so far for Drosophila species, and based on analysis of the nucleotide substitution rate, it is less conserved than Adhr.
Collapse
Affiliation(s)
- Wilma V Colón-Parrilla
- Department of Biological Sciences, Faculty of General Studies, University of Puerto Rico, San Juan, P.R 00931-3323, USA.
| | | |
Collapse
|
120
|
Juven-Gershon T, Hsu JY, Kadonaga JT. Perspectives on the RNA polymerase II core promoter. Biochem Soc Trans 2007; 34:1047-50. [PMID: 17073747 DOI: 10.1042/bst0341047] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The RNA polymerase II core promoter is a critical yet often overlooked component in the transcription process. The core promoter is defined as the stretch of DNA, which encompasses the RNA start site and is typically approx. 40-50 nt in length, that directs the initiation of gene transcription. In the past, it has been generally presumed that core promoters are general in function and that transcription initiation occurs via a common shared mechanism. Recent studies have revealed, however, that there is considerable diversity in core promoter structure and function. There are a number of DNA elements that contribute to core promoter activity, and the specific properties of a given core promoter are dictated by the presence or absence of these core promoter motifs. The known core promoter elements include the TATA box, Inr (initiator), BRE(u) {BRE [TFIIB (transcription factor for RNA polymerase IIB) recognition element] upstream of the TATA box} and BRE(d) (BRE downstream of the TATA box), MTE (motif ten element), DCE (downstream core element) and DPE (downstream core promoter element). In this paper, we will provide some perspectives on current and future issues that pertain to the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- T Juven-Gershon
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, USA
| | | | | |
Collapse
|
121
|
Abstract
The alpha-synuclein (Snca) gene is expressed at higher levels in alcohol-naïve, inbred alcohol-preferring (iP) rats than in alcohol-non preferring (iNP) rats. Snca modulates dopamine transmission and the dopamineregic system, which play a role in mediating the rewarding properties of alcohol consumption. Thus, understanding regulation of Snca gene expression could provide insight into the relationship of Snca and alcohol consumption. To study regulation of rat Snca expression, 1,912 bp of the iP and iNP 5'-regions were cloned and sequenced. 5'-rapid amplification of cDNA ends (RACE), primer extension and RT-PCR mapped three transcription start site clusters (clusters TSS1, TSS2 and TSS3), suggesting that the Snca proximal promoter region has a complex architecture. This proximal promoter region has three TATA-less core promoters containing SP1 binding sites, initiator elements and downstream core promoter elements, which are often located in such promoters. Snca-luc constructs transiently transfected into SK-N-SH neuroblastoma cells showed that the region from - 1,912 to - 1,746 contained a strong core promoter, and that the entire approximately 2 kb region had significant promoter activity. Five polymorphisms identified between the iP and iNP in the proximal promoter region did not influence differential expression between the strains. In contrast, a single nucleotide polymorphism (SNP) at + 679 in the 3'-untranslated region (UTR) resulted in a 1.3-fold longer half-life of iP mRNA compared with iNP mRNA, which is consistent with the differential expression observed between the iP and iNP strains. These results suggest that regulation of rat Snca gene expression is complex and may contribute to alcohol preference in the iP rats.
Collapse
MESH Headings
- 3' Untranslated Regions/drug effects
- 3' Untranslated Regions/physiology
- Alcohol-Induced Disorders, Nervous System/genetics
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Alcoholism/genetics
- Alcoholism/metabolism
- Alcoholism/physiopathology
- Animals
- Base Sequence/genetics
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cell Line, Tumor
- Central Nervous System Depressants/adverse effects
- Choice Behavior
- Disease Models, Animal
- Dopamine/metabolism
- Ethanol/adverse effects
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- HeLa Cells
- Humans
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Polymorphism, Single Nucleotide/drug effects
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Regulatory Elements, Transcriptional/genetics
- Species Specificity
- alpha-Synuclein/biosynthesis
- alpha-Synuclein/drug effects
- alpha-Synuclein/genetics
Collapse
Affiliation(s)
- Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | |
Collapse
|
122
|
Skovorodkin I, Pimenov A, Raykhel I, Schimanski B, Ammermann D, Günzl A. alpha-tubulin minichromosome promoters in the stichotrichous ciliate Stylonychia lemnae. EUKARYOTIC CELL 2006; 6:28-36. [PMID: 17085637 PMCID: PMC1800363 DOI: 10.1128/ec.00003-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated protists are model organisms for a number of molecular phenomena including telomerase function, self-splicing introns, and an RNA interference-related mechanism in programmed DNA elimination. Despite this relevance, our knowledge about promoters and transcriptional regulation in these organisms is very limited. The macronuclear genome of stichotrichous ciliates consists of minichromosomes which typically encode a single gene. The 5' nontranscribed spacers are usually no longer than 400 bp and highly suitable for promoter characterizations. We used microinjection of two artificial and differently tagged alpha1 tubulin minichromosomes into the macronucleus of Stylonychia lemnae as a means to characterize in detail the corresponding promoter. Clonal cell lines that stably maintained both minichromosomes were generated, enabling comparative expression analysis by primer extension assays. Deletion and block substitution mutations of one of the minichromosomes revealed a TATA-like element, a putative initiator element, and two distinct upstream sequence elements (USEs). Determination of transcription initiation sites and a sequence alignment indicated that both TATA-like and initiator elements are conserved components of S. lemnae minichromosomes, whereas the USEs appear to be specific for the alpha1 tubulin minichromosome. The alpha2 tubulin minichromosome promoter is very short, comprising the two proximal elements but not the USEs. Despite the latter finding, up-regulation of alpha-tubulin expression in cells treated with concanavalin A activated the alpha2 but not the alpha1 tubulin promoter. These results therefore show that gene expression regulation in S. lemnae occurs at the level of transcription initiation on the basis of structurally different promoters.
Collapse
Affiliation(s)
- Ilya Skovorodkin
- Zoologisches Institut der Universität Tübingen, Abteilung Zellbiologie, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Chan CB, Tang WK, Cheng CHK, Fong WP. Cloning of the black seabream (Acanthopagrus schlegeli) antiquitin gene and functional characterization of its promoter region. Mol Cell Biochem 2006; 297:151-60. [PMID: 17075685 DOI: 10.1007/s11010-006-9340-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/28/2006] [Indexed: 11/28/2022]
Abstract
Antiquitin (ALDH7) is a member of the aldehyde dehydrogenase superfamily. In plants, ALDH7 is inducible upon dehydration and is thus believed to possess an osmoregulatory role. On the other hand, however, its exact physiological function in animals remains elusive. We herein report the isolation of the black seabream (Acanthopagrus schlegeli) antiquitin gene (sbALDH7) and the functional characterization of its promoter region. The 1.6 kb 5'-flanking region of sbALDH7 exhibits an intense promoter activity (30-170 fold of the basal) in five mammalian and fish cell lines of different origins. Progressive 5'-deletion analysis suggests that the core promoter is located within the region -297/+41 whereas a cis-acting repressor of basal transcription is present in the region -878/-297. In silico analysis of this sbALDH7 promoter region does not reveal any osmotic response element. Instead, it contains potential binding sites for cell cycle related cis-elements such as CCAAT displacement protein and cell cycle-dependent element/cell cycle genes homology region.
Collapse
Affiliation(s)
- Chi-Bun Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
124
|
Lee AM, Wu CT. Enhancer-promoter communication at the yellow gene of Drosophila melanogaster: diverse promoters participate in and regulate trans interactions. Genetics 2006; 174:1867-80. [PMID: 17057235 PMCID: PMC1698615 DOI: 10.1534/genetics.106.064121] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The many reports of trans interactions between homologous as well as nonhomologous loci in a wide variety of organisms argue that such interactions play an important role in gene regulation. The yellow locus of Drosophila is especially useful for investigating the mechanisms of trans interactions due to its ability to support transvection and the relative ease with which it can be altered by targeted gene replacement. In this study, we exploit these aspects of yellow to further our understanding of cis as well as trans forms of enhancer-promoter communication. Through the analysis of yellow alleles whose promoters have been replaced with wild-type or altered promoters from other genes, we show that mutation of single core promoter elements of two of the three heterologous promoters tested can influence whether yellow enhancers act in cis or in trans. This finding parallels observations of the yellow promoter, suggesting that the manner in which trans interactions are controlled by core promoter elements describes a general mechanism. We further demonstrate that heterologous promoters themselves can be activated in trans as well as participate in pairing-mediated insulator bypass. These results highlight the potential of diverse promoters to partake in many forms of trans interactions.
Collapse
Affiliation(s)
- Anne M Lee
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
125
|
Maxwell PH, Belote JM, Levis RW. Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons. Nucleic Acids Res 2006; 34:5498-507. [PMID: 17020919 PMCID: PMC1636488 DOI: 10.1093/nar/gkl709] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Drosophila non-long terminal repeat (non-LTR) retrotransposons TART and HeT-A specifically retrotranspose to chromosome ends to maintain Drosophila telomeric DNA. Relatively little is known, though, about the regulation of their expression and their retrotransposition to telomeres. We have used rapid amplification of cDNA ends (RACE) to identify multiple transcription initiation and polyadenylation sites for sense and antisense transcripts of three subfamilies of TART elements in Drosophila melanogaster. These results are consistent with the production of an array of TART transcripts. In contrast to other Drosophila non-LTR elements, a major initiation site for sense transcripts was mapped near the 3′ end of the TART 5′-untranslated region (5′-UTR), rather than at the start of the 5′-UTR. A sequence overlapping this sense start site contains a good match to an initiator consensus for the transcription start sites of Drosophila LTR retrotransposons. Interestingly, analysis of 5′ RACE products for antisense transcripts and the GenBank EST database revealed that TART antisense transcripts contain multiple introns. Our results highlight differences between transcription of TART and of other Drosophila non-LTR elements and they provide a foundation for testing the relationship between exceptional aspects of TART transcription and TART's specialized role at telomeres.
Collapse
Affiliation(s)
- Patrick H Maxwell
- Department of Biology, Syracuse University, 130 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
126
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
127
|
Böhm J, Sustmann C, Wilhelm C, Kohlhase J. SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2006; 348:898-907. [PMID: 16899215 DOI: 10.1016/j.bbrc.2006.07.124] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
The SALL4 promoter has not yet been characterized. Animal studies showed that SALL4 is downstream of and interacts with TBX5 during limb and heart development, but a direct regulation of SALL4 by TBX5 has not been demonstrated. For other SAL genes, regulation within the Shh, Wnt, and Fgf pathways has been reported. Chicken csal1 expression can be activated by a combination of Fgf4 and Wnt3a or Wnt7a. Murine Sall1 enhances, but Xenopus Xsal2 represses, the canonical Wnt signaling. Here we describe the cloning and functional analysis of the SALL4 promoter. Within a minimal promoter region of 31bp, we identified a consensus TCF/LEF-binding site. The SALL4 promoter was strongly activated not only by LEF1 but also by TCF4E. Mutation of the TCF/LEF-binding site resulted in decreased promoter activation. Our results demonstrate for the first time the direct regulation of a SALL gene by the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Johann Böhm
- Institut für Humangenetik und Anthropologie, Universität Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
128
|
Fablet M, Rebollo R, Biémont C, Vieira C. The evolution of retrotransposon regulatory regions and its consequences on the Drosophila melanogaster and Homo sapiens host genomes. Gene 2006; 390:84-91. [PMID: 17005332 DOI: 10.1016/j.gene.2006.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.
Collapse
Affiliation(s)
- Marie Fablet
- UMR CNRS 5558, Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
129
|
Ding Y, Hawkes N, Meredith J, Eggleston P, Hemingway J, Ranson H. Characterization of the promoters of Epsilon glutathione transferases in the mosquito Anopheles gambiae and their response to oxidative stress. Biochem J 2006; 387:879-88. [PMID: 15631620 PMCID: PMC1135021 DOI: 10.1042/bj20041850] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epsilon class GSTs (glutathione transferases) are expressed at higher levels in Anopheles gambiae mosquitoes that are resistant to DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] than in insecticide-susceptible individuals. At least one of the eight Epsilon GSTs in this species, GSTe2, efficiently metabolizes DDT to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane]. In the present study, we investigated the factors regulating expression of this class of GSTs. The activity of the promoter regions of GSTe2 and GSTe3 were compared between resistant and susceptible strains by transfecting recombinant reporter constructs into an A. gambiae cell line. The GSTe2 promoter from the resistant strain exhibited 2.8-fold higher activity than that of the susceptible strain. Six polymorphic sites were identified in the 352 bp sequence immediately upstream of GSTe2. Among these, a 2 bp adenosine indel (insertion/deletion) was found to have the greatest effect on determining promoter activity. The activity of the GSTe3 promoter was elevated to a lesser degree in the DDT-resistant strain (1.3-fold). The role of putative transcription-factor-binding sites in controlling promoter activity was investigated by sequentially deleting the promoter constructs. Several putative transcription-factor-binding sites that are responsive to oxidative stress were present within the core promoters of these GSTs, hence the effect of H2O2 exposure on the transcription of the Epsilon GSTs was investigated. In the DDT-resistant strain, expression of GSTe1, GSTe2 and GSTe3 was significantly increased by a 1-h exposure to H2O2, whereas, in the susceptible strain, only GSTe3 expression responded to this treatment.
Collapse
Affiliation(s)
- Yunchuan Ding
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Nicola Hawkes
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Janet Meredith
- †Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, U.K
| | - Paul Eggleston
- †Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, U.K
| | - Janet Hemingway
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Hilary Ranson
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
130
|
Bajic VB, Tan SL, Christoffels A, Schönbach C, Lipovich L, Yang L, Hofmann O, Kruger A, Hide W, Kai C, Kawai J, Hume DA, Carninci P, Hayashizaki Y. Mice and men: their promoter properties. PLoS Genet 2006; 2:e54. [PMID: 16683032 PMCID: PMC1449896 DOI: 10.1371/journal.pgen.0020054] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 02/27/2006] [Indexed: 12/28/2022] Open
Abstract
Using the two largest collections of Mus musculus and Homo sapiens transcription start sites (TSSs) determined based on CAGE tags, ditags, full-length cDNAs, and other transcript data, we describe the compositional landscape surrounding TSSs with the aim of gaining better insight into the properties of mammalian promoters. We classified TSSs into four types based on compositional properties of regions immediately surrounding them. These properties highlighted distinctive features in the extended core promoters that helped us delineate boundaries of the transcription initiation domain space for both species. The TSS types were analyzed for associations with initiating dinucleotides, CpG islands, TATA boxes, and an extensive collection of statistically significant cis-elements in mouse and human. We found that different TSS types show preferences for different sets of initiating dinucleotides and cis-elements. Through Gene Ontology and eVOC categories and tissue expression libraries we linked TSS characteristics to expression. Moreover, we show a link of TSS characteristics to very specific genomic organization in an example of immune-response-related genes (GO:0006955). Our results shed light on the global properties of the two transcriptomes not revealed before and therefore provide the framework for better understanding of the transcriptional mechanisms in the two species, as well as a framework for development of new and more efficient promoter- and gene-finding tools.
Collapse
Affiliation(s)
- Vladimir B Bajic
- Knowledge Extraction Laboratory, Institute for Infocomm Research, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Jin VX, Singer GAC, Agosto-Pérez FJ, Liyanarachchi S, Davuluri RV. Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs. BMC Bioinformatics 2006; 7:114. [PMID: 16522199 PMCID: PMC1475891 DOI: 10.1186/1471-2105-7-114] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 03/07/2006] [Indexed: 01/20/2023] Open
Abstract
Background The canonical core promoter elements consist of the TATA box, initiator (Inr), downstream core promoter element (DPE), TFIIB recognition element (BRE) and the newly-discovered motif 10 element (MTE). The motifs for these core promoter elements are highly degenerate, which tends to lead to a high false discovery rate when attempting to detect them in promoter sequences. Results In this study, we have performed the first analysis of these core promoter elements in orthologous mouse and human promoters with experimentally-supported transcription start sites. We have identified these various elements using a combination of positional weight matrices (PWMs) and the degree of conservation of orthologous mouse and human sequences – a procedure that significantly reduces the false positive rate of motif discovery. Our analysis of 9,010 orthologous mouse-human promoter pairs revealed two combinations of three-way synergistic effects, TATA-Inr-MTE and BRE-Inr-MTE. The former has previously been putatively identified in human, but the latter represents a novel synergistic relationship. Conclusion Our results demonstrate that DNA sequence conservation can greatly improve the identification of functional core promoter elements in the human genome. The data also underscores the importance of synergistic occurrence of two or more core promoter elements. Furthermore, the sequence data and results presented here can help build better computational models for predicting the transcription start sites in the promoter regions, which remains one of the most challenging problems.
Collapse
Affiliation(s)
- Victor X Jin
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory AC Singer
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Francisco J Agosto-Pérez
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ramana V Davuluri
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
132
|
Lee DH, Gershenzon N, Gupta M, Ioshikhes IP, Reinberg D, Lewis BA. Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Mol Cell Biol 2005; 25:9674-86. [PMID: 16227614 PMCID: PMC1265815 DOI: 10.1128/mcb.25.21.9674-9686.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Downstream elements are a newly appreciated class of core promoter elements of RNA polymerase II-transcribed genes. The downstream core element (DCE) was discovered in the human beta-globin promoter, and its sequence composition is distinct from that of the downstream promoter element (DPE). We show here that the DCE is a bona fide core promoter element present in a large number of promoters and with high incidence in promoters containing a TATA motif. Database analysis indicates that the DCE is found in diverse promoters, supporting its functional relevance in a variety of promoter contexts. The DCE consists of three subelements, and DCE function is recapitulated in a TFIID-dependent manner. Subelement 3 can function independently of the other two and shows a TFIID requirement as well. UV photo-cross-linking results demonstrate that TAF1/TAF(II)250 interacts with the DCE subelement DNA in a sequence-dependent manner. These data show that downstream elements consist of at least two types, those of the DPE class and those of the DCE class; they function via different DNA sequences and interact with different transcription activation factors. Finally, these data argue that TFIID is, in fact, a core promoter recognition complex.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Biochemistry, Robert Woods Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
133
|
Higazi TB, Deoliveira A, Katholi CR, Shu L, Barchue J, Lisanby M, Unnasch TR. Identification of elements essential for transcription in Brugia malayi promoters. J Mol Biol 2005; 353:1-13. [PMID: 16154590 DOI: 10.1016/j.jmb.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/23/2022]
Abstract
Little is known concerning promoter structure in the filarial parasites. Recently, transient transfection methods have been developed for the human filarial parasite Brugia malayi. These methods have been employed to localize the promoter for the 70kDa heat shock protein (BmHSP70) to a region extending 394nt upstream from the initiating codon of the BmHSP70 open reading frame. Replacement mutagenesis was used to define the elements necessary for BmHSP70 promoter activity in detail. Four domains, ranging in size from six to 22 nucleotides, were found to be necessary for full promoter activity. The two most distal domains encoded a binding site for the heat shock transcription factor and a putative binding site for the GAGA transcription factor, motifs that are found in many other HSP70 promoters. However, none of the essential domains contained sequences typical of cis elements that are usually found in the core domain of a eukaryotic promoter. The largest essential domain was located at positions -53 to -32, and included the splice leader addition site. These data suggest that the regulatory domains of the BmHSP70 promoter were similar to those found in other eukaryotes, but that the core promoter domain exhibited features that appeared to be distinct from those found in most other well-characterized eukaryotic promoters. An analysis of two additional promoters of B.malayi highly transcribed genes suggests that they also lack features commonly found in most eukaryotic core promoters, suggesting that the unique features of the BmHSP70 core promoter are not confined to this gene.
Collapse
Affiliation(s)
- Tarig B Higazi
- Division of Geographic Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Pannetier M, Renault L, Jolivet G, Cotinot C, Pailhoux E. Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter. Genomics 2005; 85:715-26. [PMID: 15885498 DOI: 10.1016/j.ygeno.2005.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 02/04/2005] [Accepted: 02/17/2005] [Indexed: 11/25/2022]
Abstract
Studies on XX sex reversal in polled goats (PIS mutation: polled intersex syndrome) have led to the discovery of a female-specific locus crucial for ovarian differentiation. This genomic region is composed of at least two genes, FOXL2 and PISRT1, sharing a common transcriptional regulatory region, PIS. In this paper, we describe a third gene, PFOXic (promoter FOXL2 inverse complementary), located near FOXL2 in the opposite orientation. This gene composed of five exons encodes a 1723-bp cDNA, enclosing two repetitive elements in its 3' end. PFOXic mRNA encodes a putative protein of 163 amino acids with no homologies in any of the databases tested. The transcriptional expression of PFOXic is driven by a bidirectional promoter also enhancing FOXL2 transcription. In goats, PFOXic is expressed in developing ovaries, from 36 days postcoitum until adulthood. Ovarian-specific expression of PFOXic is regulated by the PIS region. PFOXic is found conserved only in Bovidae. But, a human gene located in the opposite orientation relative to FOXL2 can be considered a human PFOXic. Finally, we discuss evidence arguing for regulation of the level of FOXL2 transcription via the bidirectional promoter and the level of transcription of PFOXic.
Collapse
Affiliation(s)
- Maëlle Pannetier
- Biologie du Développement et de la Reproduction, Institut National de la Recherche Agronomique, Bât. J. Poly, 78350 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
135
|
Lago C, Clerici E, Dreni L, Horlow C, Caporali E, Colombo L, Kater MM. The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth. Dev Biol 2005; 285:91-100. [PMID: 16039640 DOI: 10.1016/j.ydbio.2005.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/30/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Recently, the complete Arabidopsis TAF family has been identified. To obtain functional information about Arabidopsis TAFs, we analyzed a T-DNA insertion mutant for AtTAF6. Segregation analysis showed that plants homozygous for the mutant allele were never found, indicating that inhibition of the AtTAF6 function is lethal. Genetic experiments also revealed that the male gametophyte was affected by the attaf6 mutation since significant reduced transmission of the mutant allele through the male gametophyte was observed. Detailed histological and morphological analysis showed that the T-DNA insertion in AtTAF6 specifically affects pollen tube growth, indicating that the transcriptional regulation of only a specific subset of genes is controlled by this basal transcription factor.
Collapse
Affiliation(s)
- Clara Lago
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
136
|
Principles of Functioning of the Machinery of Transcription Initiation by RNA Polymerase II. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
137
|
Abstract
The relatively complex archaeal RNA polymerases are constructed along eukaryotic lines, and require two initiation factors for promoter recognition and specific transcription that are homologues of the RNA polymerase II TATA-binding protein and TFIIB. Many archaea also produce histones. In contrast, the transcriptional regulators encoded by archaeal genomes are primarily of bacterial rather than eukaryotic type. It is this combination of elements commonly regarded as separate and mutually exclusive that promises unifying insights into basic transcription mechanisms across all three domains of life.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences and Center for Molecular Genetics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | |
Collapse
|
138
|
Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. PLANT PHYSIOLOGY 2005; 138:2111-23. [PMID: 16055677 PMCID: PMC1183399 DOI: 10.1104/pp.105.066225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 05/31/2005] [Accepted: 05/31/2005] [Indexed: 05/03/2023]
Abstract
In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of peroxisomal MDAR 1 transcripts in pea plants grown under the mentioned stress conditions. These findings show that the peroxisomal MDAR 1 has a differential regulation that could be indicative of its specific function in peroxisomes. All these biochemical and molecular data represent a significant step to understand the specific physiological role of each MDAR isoenzyme and its participation in the antioxidant mechanisms of plant cells.
Collapse
Affiliation(s)
- Marina Leterrier
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado 419, E-18080 Granada, Spain
| | | | | | | | | |
Collapse
|
139
|
Gallagher PG, Nilson DG, Wong C, Weisbein JL, Garrett-Beal LJ, Eber SW, Bodine DM. A dinucleotide deletion in the ankyrin promoter alters gene expression, transcription initiation and TFIID complex formation in hereditary spherocytosis. Hum Mol Genet 2005; 14:2501-9. [PMID: 16037067 DOI: 10.1093/hmg/ddi254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ankyrin defects are the most common cause of hereditary spherocytosis (HS). In some HS patients, mutations in the ankyrin promoter have been hypothesized to lead to decreased ankyrin mRNA synthesis. The ankyrin erythroid promoter is a member of the most common class of mammalian promoters which lack conserved TATA, initiator or other promoter cis elements and have high G+C content, functional Sp1 binding sites and multiple transcription initiation sites. We identified a novel ankyrin gene promoter mutation, a TG deletion adjacent to a transcription initiation site, in a patient with ankyrin-linked HS and analyzed its effects on ankyrin expression. In vitro, the mutant promoter directed decreased levels of gene expression, altered transcription initiation site utilization and exhibited defective binding of TATA-binding protein (TBP) and TFIID complex formation. In a transgenic mouse model, the mutant ankyrin promoter led to abnormalities in gene expression, including decreased expression of a reporter gene and altered transcription initiation site utilization. These data indicate that the mutation alters ankyrin gene transcription and contributes to the HS phenotype by decreasing ankyrin gene synthesis via disruption of TFIID complex interactions with the ankyrin core promoter. These studies support the model that in promoters that lack conserved cis elements, the TFIID complex directs preinitiation complex formation at specific sites in core promoter DNA and provide the first evidence that disruption of TBP binding and TFIID complex formation in this type of promoter leads to alterations in start site utilization, decreased gene expression and a disease phenotype in vivo.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA.
| | | | | | | | | | | | | |
Collapse
|
140
|
Lewis BA, Sims RJ, Lane WS, Reinberg D. Functional characterization of core promoter elements: DPE-specific transcription requires the protein kinase CK2 and the PC4 coactivator. Mol Cell 2005; 18:471-81. [PMID: 15893730 DOI: 10.1016/j.molcel.2005.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/05/2005] [Accepted: 04/13/2005] [Indexed: 11/22/2022]
Abstract
Downstream core promoter elements are an expanding class of regulatory sequences that add considerable diversity to the promoter architecture of RNA polymerase II-transcribed genes. We set out to determine the factors necessary for downstream promoter element (DPE)-dependent transcription and find that, against expectations, TFIID and the GTFs are not sufficient. Instead, the protein kinase CK2 and the coactivator PC4 establish DPE-specific transcription in an in vitro transcription system containing TFIID, Mediator, and the GTFs. Chromatin immunoprecipitation analyses using the DPE-dependent IRF-1 and TAF7 promoters demonstrated that CK2, and PC4 are present on these promoters in vivo. In contrast, neither PC4 nor CK2 were detected on the TAF1-dependent cyclin D promoter, which contains a DCE type of downstream element. Our findings also demonstrate that CK2 activity alters TFIID-dependent recognition of DCE sequences. These data establish that CK2 acts as a switch, converting the transcriptional machinery from functioning on one type of downstream element to another.
Collapse
Affiliation(s)
- Brian A Lewis
- Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
141
|
Carabana J, Ortigoza E, Krangel MS. Regulation of the murine Ddelta2 promoter by upstream stimulatory factor 1, Runx1, and c-Myb. THE JOURNAL OF IMMUNOLOGY 2005; 174:4144-52. [PMID: 15778374 DOI: 10.4049/jimmunol.174.7.4144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accessibility control of V(D)J recombination at Ag receptor loci depends on the coordinate activities of transcriptional enhancers and germline promoters. Recombination of murine Tcrd gene segments is known to be regulated, at least in part, by the Tcrd enhancer (Edelta) situated in the Jdelta2-Cdelta intron. However, there has been little characterization of promoters and other cis-acting elements that are activated by or collaborate with Edelta and that might function to regulate Tcrd gene recombination events. We now describe a strong promoter that is tightly associated with the murine Ddelta2 gene segment. EMSAs reveal that upstream stimulatory factor 1, Runx1, c-Myb, lymphoid enhancer binding factor 1, NF1, and E47 all interact with this promoter in vitro. Of these, upstream stimulatory factor 1, Runx1, and c-Myb appear necessary for full promoter activity in transiently transfected cells. Moreover, the same three factors were found to interact with the promoter in vivo by chromatin immunoprecipitation. We suggest that these factors play important roles as Edelta-dependent regulators of Ddelta2 accessibility in vivo. Consistent with the established roles of c-Myb and Runx factors in Edelta function, we detected low level, enhancer-independent activity of the Ddelta2 promoter in transient transfection experiments. We speculate that the Ddelta2 promoter may play a role as a weak, enhancer-independent regulator in vivo, and might contribute to residual Tcrd rearrangement in Edelta(-/-) mice.
Collapse
Affiliation(s)
- Juan Carabana
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
142
|
|
143
|
Fabbro C, de Gemmis P, Braghetta P, Colombatti A, Volpin D, Bonaldo P, Bressan GM. Analysis of Regulatory Regions of Emilin1 Gene and Their Combinatorial Contribution to Tissue-specific Transcription. J Biol Chem 2005; 280:15749-60. [PMID: 15705587 DOI: 10.1074/jbc.m412548200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The location of regions that regulate transcription of the murine Emilin1 gene was investigated in a DNA fragment of 16.8 kb, including the entire gene and about 8.7 and 0.6 kb of 5'- and 3'-flanking sequences, respectively. The 8.7-kb segment contains the 5'-end of the putative 2310015E02Rik gene and the sequence that separates it from Emilin1, whereas the 0.6-kb fragment covers the region between Emilin1 and Ketohexokinase genes. Sequence comparison between species identified several conserved regions in the 5'-flanking sequence. Most of them contained chromatin DNase I-hypersensitive sites, which were located at about -950 (HS1), -3100 (HS2), -4750 (HS3), and -5150 (HS4) in cells expressing Emilin1 mRNA. Emilin1 transcription initiates at multiple sites, the major of which correspond to two Initiator sequences. Promoter assays suggest that core promoter activity was mainly dependent on Initiator1 and on Sp1-binding sites close to the Initiators. Moreover, one important regulatory region was contained between -1 and -169 bp and a second one between -630 bp and -1.1 kb. The latter harbors a putative binding site for transcription factor AP1 matching the location of HS1. The function of different regions was studied by expressing lacZ constructs in transgenic mice. The results show that the 16.8-kb segment contains regulatory sequences driving high level transcription in all the tissues where Emilin1 is expressed. Moreover, the data suggest that transcription in different tissues is achieved through combinatorial cooperation between various regions, rather than being dependent on a single cis-activating region specific for each tissue.
Collapse
Affiliation(s)
- Carla Fabbro
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
144
|
Talamillo A, Fernández-Moreno MA, Martínez-Azorín F, Bornstein B, Ochoa P, Garesse R. Expression of the Drosophila melanogaster ATP synthase alpha subunit gene is regulated by a transcriptional element containing GAF and Adf-1 binding sites. ACTA ACUST UNITED AC 2005; 271:4003-13. [PMID: 15479229 DOI: 10.1111/j.1432-1033.2004.04336.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial biogenesis is a complex and highly regulated process that requires the controlled expression of hundreds of genes encoded in two separated genomes, namely the nuclear and mitochondrial genomes. To identify regulatory proteins involved in the transcriptional control of key nuclear-encoded mitochondrial genes, we have performed a detailed analysis of the promoter region of the alpha subunit of the Drosophila melanogaster F1F0 ATP synthase complex. Using transient transfection assays, we have identified a 56 bp cis-acting proximal regulatory region that contains binding sites for the GAGA factor and the alcohol dehydrogenase distal factor 1. In vitro mutagenesis revealed that both sites are functional, and phylogenetic footprinting showed that they are conserved in other Drosophila species and in Anopheles gambiae. The 56 bp region has regulatory enhancer properties and strongly activates heterologous promoters in an orientation-independent manner. In addition, Northern blot and RT-PCR analysis identified two alpha-F1-ATPase mRNAs that differ in the length of the 3' untranslated region due to the selection of alternative polyadenylation sites.
Collapse
Affiliation(s)
- Ana Talamillo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
145
|
van Roon-Mom WMC, Reid SJ, Faull RLM, Snell RG. TATA-binding protein in neurodegenerative disease. Neuroscience 2005; 133:863-72. [PMID: 15916858 DOI: 10.1016/j.neuroscience.2005.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/17/2005] [Accepted: 03/19/2005] [Indexed: 11/29/2022]
Abstract
TATA binding protein (TBP) is a general transcription factor that plays an important role in initiation of transcription. In recent years evidence has emerged implicating TPB in the molecular mechanism of a number of neurodegenerative diseases. Wild type TBP in humans contains a long polyglutamine stretch ranging in size from 29 to 42. It has been found associated with aggregated proteins in several of the polyglutamine disorders. Expansion in the CAA/CAG composite repeat beyond 42 has been shown to cause a cerebellar ataxia, SCA17. The involvement of such an important housekeeping protein in the disease mechanism suggests a major impact on the functioning of cells. The question remains, does TBP contribute to these diseases through a loss of normal function, likely to be catastrophic to a cell, or the gain of an aberrant function? This review deals with the function of TBP in transcription and cell function. The distribution of the polyglutamine coding allele lengths in TBP of the normal population and in SCA17 is reviewed and an outline is given on the reported cases of SCA17. The role of TBP in other polyglutamine disorders will be addressed as well as its possible role in other neurodegenerative diseases.
Collapse
Affiliation(s)
- W M C van Roon-Mom
- Division of Anatomy with Radiology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, 1003 Auckland, New Zealand
| | | | | | | |
Collapse
|
146
|
Auty R, Steen H, Myers LC, Persinger J, Bartholomew B, Gygi SP, Buratowski S. Purification of Active TFIID from Saccharomyces cerevisiae. J Biol Chem 2004; 279:49973-81. [PMID: 15448131 DOI: 10.1074/jbc.m409849200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basal transcription factor TFIID is composed of the TATA-binding protein (TBP) and 14 TBP-associated factors (TAFs). Although TBP alone binds to the TATA box of DNA and supports basal transcription, the TAFs have essential functions that remain poorly defined. In order to study its properties, TFIID was purified from Saccharomyces cerevisiae using a newly developed affinity tag. Analysis of the final elution by mass spectrometry confirms the presence of all the known TAFs and TBP, as well as Rsp5, Bul1, Ubp3, Bre5, Cka1, and Cka2. Both Taf1 and Taf5 are ubiquitinated, and the ubiquitination pattern of TFIID changes when BUL1 or BRE5 is deleted. Purified TFIID binds specifically to promoter DNA in a manner stabilized by TFIIA, and these complexes can be analyzed by native gel electrophoresis. Phenanthroline-copper footprinting and photoaffinity cross-linking indicate that TFIID makes extensive contacts upstream and downstream of the TATA box. TFIID supports basal transcription and activated transcription, both of which are enhanced by TFIIA.
Collapse
Affiliation(s)
- Roy Auty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
McLeod A, Smart CD, Fry WE. Core promoter structure in the oomycete Phytophthora infestans. EUKARYOTIC CELL 2004; 3:91-9. [PMID: 14871940 PMCID: PMC329498 DOI: 10.1128/ec.3.1.91-99.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the core promoter structure of the oomycete Phytophthora infestans. The transcriptional start sites (TSS) of three previously characterized P. infestans genes, Piexo1, Piexo3, and Piendo1, were determined by primer extension analyses. The TSS regions were homologous to a previously identified 16-nucleotide (nt) core sequence that overlaps the TSS in most oomycete genes. The core promoter regions of Piexo1 and Piendo1 were investigated by using a transient protoplast expression assay and the reporter gene beta-glucuronidase. Mutational analyses of the promoters of Piexo1 and Piendo1 showed that there is a putative core promoter element encompassing the TSS (-2 to +5) that has high sequence and functional homology to a known core promoter element present in other eukaryotes, the initiator element (Inr). Downstream and flanking the Inr is a highly conserved oomycete promoter region (+7 to +15), hereafter referred to as FPR (flanking promoter region), which is also important for promoter function. The importance of the 19-nt core promoter region (Inr and FPR) in Piexo1 and Piendo1 was further investigated through electrophoretic mobility shift assays (EMSA). The EMSA studies showed that (i) both core promoters were able to specifically bind a protein or protein complex in a P. infestans whole-cell protein extract and (ii) the same mutations that reduced binding of the EMSA complex also reduced beta-glucuronidase (GUS) levels in transient expression assays. The consistency of results obtained using two different assays (GUS transient assays [in vivo] and EMSA studies [in vitro]) supports a convergence of inference about the relative importance of specific nucleotides within the 19-nt core promoter region.
Collapse
Affiliation(s)
- Adele McLeod
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
148
|
Miska KB, Wright AM, Lundgren R, Sasaki-McClees R, Osterman A, Gale JM, Miller RD. Analysis of a marsupial MHC region containing two recently duplicated class I loci. Mamm Genome 2004; 15:851-64. [PMID: 15520888 DOI: 10.1007/s00335-004-2224-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 05/24/2004] [Indexed: 11/26/2022]
Abstract
A 37-kb cosmid containing two complete major histocompatibility complex (MHC) class I alpha chain loci from the opossum Monodelphis domestica was isolated, fully sequenced, and characterized. This sequence represents the largest contiguous genomic sequence reported for the MHC region of a nonplacental mammal. Based on particular conserved amino acid residues, and limited expression analyses, the two MHC-I loci, designated ModoUB and ModoUC, appear to encode functional MHC-I molecules. The two coding regions are 98% identical at the nucleotide level; however, their promoter regions differ significantly. Two CpG islands present in the cosmid sequence correspond to the two coding regions. Twelve microsatellites and six retroelements were also present in the cosmid. The retroelements share highest sequence homology to the CORE-SINE family of retroelements. Due to high sequence identity, it is very likely that ModoUB and ModoUC loci are products of recent gene duplication that occurred less than 4 million years ago.
Collapse
Affiliation(s)
- Katarzyna B Miska
- Department of Biology, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Laniel MA, Poirier GG, Guérin SL. A conserved initiator element on the mammalian poly(ADP-ribose) polymerase-1 promoters, in combination with flanking core elements, is necessary to obtain high transcriptional activity. ACTA ACUST UNITED AC 2004; 1679:37-46. [PMID: 15245915 DOI: 10.1016/j.bbaexp.2004.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a conserved nuclear protein present in nearly all eukaryotes. In mammalian cells, its abundant expression and its ability to specifically bind to DNA strand breaks make it an important enzyme in the rapid cellular response to DNA damage. Although the promoter regions of the three known mammalian PARP-1 genes, from human, rat and mouse, are different, they share common features, such as multiple GC-rich regions, lack of a functional TATA box, and presence of a putative initiator element. In this study, we analyzed the core promoter region of the rat PARP-1 gene, and show that it contains a functional initiator element surrounding the transcription start site. This core element lies within an approximately 40-base-pair region that is highly conserved in all three mammalian PARP-1 promoters. Furthermore, we show that other core elements located upstream and downstream of the PARP-1 initiator, including a functional Sp1 target site, synergize to regulate rat PARP-1 transcription. As the initiator region of all three PARP-1 gene promoters is highly conserved, their transcriptional regulation is likely achieved through similar mechanisms.
Collapse
Affiliation(s)
- Marc-André Laniel
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center, 2705 Laurier Blvd., Ste-Foy, QC, Canada G1V 4G2
| | | | | |
Collapse
|
150
|
Lim CY, Santoso B, Boulay T, Dong E, Ohler U, Kadonaga JT. The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev 2004; 18:1606-17. [PMID: 15231738 PMCID: PMC443522 DOI: 10.1101/gad.1193404] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The core promoter is the ultimate target of the vast network of regulatory factors that contribute to the initiation of transcription by RNA polymerase II. Here we describe the MTE (motif ten element), a new core promoter element that appears to be conserved from Drosophila to humans. The MTE promotes transcription by RNA polymerase II when it is located precisely at positions +18 to +27 relative to A(+1) in the initiator (Inr) element. MTE sequences from +18 to +22 relative to A(+1) are important for basal transcription, and a region from +18 to +27 is sufficient to confer MTE activity to heterologous core promoters. The MTE requires the Inr, but functions independently of the TATA-box and DPE. Notably, the loss of transcriptional activity upon mutation of a TATA-box or DPE can be compensated by the addition of an MTE. In addition, the MTE exhibits strong synergism with the TATA-box as well as the DPE. These findings indicate that the MTE is a novel downstream core promoter element that is important for transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Chin Yan Lim
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|