101
|
Modzelewski AJ, Hilz S, Crate EA, Schweidenback CTH, Fogarty EA, Grenier JK, Freire R, Cohen PE, Grimson A. Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males. J Cell Sci 2015; 128:2314-27. [PMID: 25934699 PMCID: PMC4487015 DOI: 10.1242/jcs.167148] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs (miRNAs) and small interfering RNAs (siRNAs) during meiosis in males, we generated germ-cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines revealed that there were frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from miRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphorylated MDC1, an ATM phosphorylation substrate. The Atm 3′UTR contains many potential microRNA target sites, and, notably, target sites for several miRNAs depleted in both conditional knockout mice were highly effective at promoting repression. RNF8, a telomere-associated protein whose localization is controlled by the MDC1–ATM kinase cascade, normally associates with the sex chromosomes during pachytene, but in both conditional knockouts redistributed to the autosomes. Taken together, these results suggest that Atm dysregulation in microRNA-deficient germ lines contributes to the redistribution of proteins involved in chromosomal stability from the sex chromosomes to the autosomes, resulting in sex chromosome fusions during meiotic prophase I. Highlighted Article: miRNA-deficient spermatocytes display frequent sex chromosome fusions and fail to progress through meiosis in a process that is probably mediated by dysregulation of Atm.
Collapse
Affiliation(s)
| | - Stephanie Hilz
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth A Crate
- Departments of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Jennifer K Grenier
- Departments of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Raimundo Freire
- Unidad de Investigacion, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, La Laguna, Tenerife 38320, Spain
| | - Paula E Cohen
- Departments of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
102
|
Federici F, Mulugeta E, Schoenmakers S, Wassenaar E, Hoogerbrugge JW, van der Heijden GW, van Cappellen WA, Slotman JA, van IJcken WFJ, Laven JSE, Grootegoed JA, Baarends WM. Incomplete meiotic sex chromosome inactivation in the domestic dog. BMC Genomics 2015; 16:291. [PMID: 25884295 PMCID: PMC4399420 DOI: 10.1186/s12864-015-1501-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammalian meiotic prophase, homologous chromosome recognition is aided by formation and repair of programmed DNA double-strand breaks (DSBs). Subsequently, stable associations form through homologous chromosome synapsis. In male mouse meiosis, the largely heterologous X and Y chromosomes synapse only in their short pseudoautosomal regions (PARs), and DSBs persist along the unsynapsed non-homologous arms of these sex chromosomes. Asynapsis of these arms and the persistent DSBs then trigger transcriptional silencing through meiotic sex chromosome inactivation (MSCI), resulting in formation of the XY body. This inactive state is partially maintained in post-meiotic haploid spermatids (postmeiotic sex chromatin repression, PSCR). For the human, establishment of MSCI and PSCR have also been reported, but X-linked gene silencing appears to be more variable compared to mouse. To gain more insight into the regulation and significance of MSCI and PSCR among different eutherian species, we have performed a global analysis of XY pairing dynamics, DSB repair, MSCI and PSCR in the domestic dog (Canis lupus familiaris), for which the complete genome sequence has recently become available, allowing a thorough comparative analyses. RESULTS In addition to PAR synapsis between X and Y, we observed extensive self-synapsis of part of the dog X chromosome, and rapid loss of known markers of DSB repair from that part of the X. Sequencing of RNA from purified spermatocytes and spermatids revealed establishment of MSCI. However, the self-synapsing region of the X displayed higher X-linked gene expression compared to the unsynapsed area in spermatocytes, and was post-meiotically reactivated in spermatids. In contrast, genes in the PAR, which are expected to escape MSCI, were expressed at very low levels in both spermatocytes and spermatids. Our comparative analysis was then used to identify two X-linked genes that may escape MSCI in spermatocytes, and 21 that are specifically re-activated in spermatids of human, mouse and dog. CONCLUSIONS Our data indicate that MSCI is incomplete in the dog. This may be partially explained by extensive, but transient, self-synapsis of the X chromosome, in association with rapid completion of meiotic DSB repair. In addition, our comparative analysis identifies novel candidate male fertility genes.
Collapse
Affiliation(s)
- Federica Federici
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Eskeatnaf Mulugeta
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Present address: Institut Curie, Genetics and Developmental Biology, Unit 11 et 13 rue Pierre et Marie Curie, 75248, Paris, Cedex 05, France.
| | - Sam Schoenmakers
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Jos W Hoogerbrugge
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Godfried W van der Heijden
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Wiggert A van Cappellen
- Department of Pathology, Erasmus Optical Imaging Centre, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Joop S E Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - J Anton Grootegoed
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
103
|
Shao B, Guo Y, Wang L, Zhou Q, Gao T, Zheng B, Zheng H, Zhou T, Zhou Z, Guo X, Huang X, Sha J. Unraveling the proteomic profile of mice testis during the initiation of meiosis. J Proteomics 2015; 120:35-43. [DOI: 10.1016/j.jprot.2015.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
104
|
Pacheco S, Marcet-Ortega M, Lange J, Jasin M, Keeney S, Roig I. The ATM signaling cascade promotes recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet 2015; 11:e1005017. [PMID: 25768017 PMCID: PMC4358828 DOI: 10.1371/journal.pgen.1005017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022] Open
Abstract
Most mutations that compromise meiotic recombination or synapsis in mouse spermatocytes result in arrest and apoptosis at the pachytene stage of the first meiotic prophase. Two main mechanisms are thought to trigger arrest: one independent of the double-strand breaks (DSBs) that initiate meiotic recombination, and another activated by persistent recombination intermediates. Mechanisms underlying the recombination-dependent arrest response are not well understood, so we sought to identify factors involved by examining mutants deficient for TRIP13, a conserved AAA+ ATPase required for the completion of meiotic DSB repair. We find that spermatocytes with a hypomorphic Trip13 mutation (Trip13mod/mod) arrest with features characteristic of early pachynema in wild type, namely, fully synapsed chromosomes without incorporation of the histone variant H1t into chromatin. These cells then undergo apoptosis, possibly in response to the arrest or in response to a defect in sex body formation. However, TRIP13-deficient cells that additionally lack the DSB-responsive kinase ATM progress further, reaching an H1t-positive stage (i.e., similar to mid/late pachynema in wild type) despite the presence of unrepaired DSBs. TRIP13-deficient spermatocytes also progress to an H1t-positive stage if ATM activity is attenuated by hypomorphic mutations in Mre11 or Nbs1 or by elimination of the ATM-effector kinase CHK2. These mutant backgrounds nonetheless experience an apoptotic block to further spermatogenic progression, most likely caused by failure to form a sex body. DSB numbers are elevated in Mre11 and Nbs1 hypomorphs but not Chk2 mutants, thus delineating genetic requirements for the ATM-dependent negative feedback loop that regulates DSB numbers. The findings demonstrate for the first time that ATM-dependent signaling enforces the normal pachytene response to persistent recombination intermediates. Our work supports the conclusion that recombination defects trigger spermatocyte arrest via pathways than are genetically distinct from sex body failure-promoted apoptosis and confirm that the latter can function even when recombination-dependent arrest is inoperative. Implications of these findings for understanding the complex relationships between spermatocyte arrest and apoptosis are discussed. Meiosis is the specialized cell division by which haploid cells are produced. As germ cells enter the first meiotic prophase, programmed double-stranded breaks (DSBs) are formed throughout the genome. Repair of these DSBs by homologous recombination is crucial for proper segregation of homologous chromosomes at the end of the first meiotic division, and thus, for the production of haploid gametes. Moreover, failure to correctly repair these DSBs can have deleterious effects on the genomic integrity of offspring. To ensure that meiocytes that fail to repair meiotic DSBs do not complete meiosis, recombination is tightly controlled. However, the signaling pathway(s) tying meiotic recombination to meiotic progression in mouse spermatocytes is not known. We report here that the ATM-signaling pathway, composed of the MRE11 complex, ATM and CHK2, is responsible for activation of the recombination-dependent arrest that occurs in Trip13 mutant mouse spermatocytes, which accumulate unrepaired DSBs during meiotic prophase.
Collapse
Affiliation(s)
- Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Cytology and Histology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marina Marcet-Ortega
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Cytology and Histology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (SK); (IR)
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Cytology and Histology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail: (SK); (IR)
| |
Collapse
|
105
|
Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet 2015; 11:e1004954. [PMID: 25634095 PMCID: PMC4310598 DOI: 10.1371/journal.pgen.1004954] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically expressed in germ cells, including spermatogonia, spermatocytes, and round spermatids. SCML2 associates with phosphorylated H2AX and localizes to the XY body in spermatocytes. Loss of SCML2 in mice causes defective spermatogenesis, resulting in sharply reduced sperm production. SCML2 interacts with and recruits a deubiquitinase, USP7, to the XY body in spermatocytes. In the absence of SCML2, USP7 fails to accumulate on the XY body, whereas H2A monoubiquitination is dramatically augmented in the XY chromatin. Our results demonstrate that the SCML2/USP7 complex constitutes a novel molecular pathway in modulating the epigenetic state of sex chromosomes during male meiosis.
Collapse
|
106
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
107
|
Broering TJ, Alavattam KG, Sadreyev RI, Ichijima Y, Kato Y, Hasegawa K, Camerini-Otero RD, Lee JT, Andreassen PR, Namekawa SH. BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. ACTA ACUST UNITED AC 2014; 205:663-75. [PMID: 24914237 PMCID: PMC4050732 DOI: 10.1083/jcb.201311050] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The major role of BRCA1 in meiosis is not in meiotic recombination but instead in promotion of the dramatic chromatin changes required for formation and function of the XY body. During meiosis, DNA damage response (DDR) proteins induce transcriptional silencing of unsynapsed chromatin, including the constitutively unsynapsed XY chromosomes in males. DDR proteins are also implicated in double strand break repair during meiotic recombination. Here, we address the function of the breast cancer susceptibility gene Brca1 in meiotic silencing and recombination in mice. Unlike in somatic cells, in which homologous recombination defects of Brca1 mutants are rescued by 53bp1 deletion, the absence of 53BP1 did not rescue the meiotic failure seen in Brca1 mutant males. Further, BRCA1 promotes amplification and spreading of DDR components, including ATR and TOPBP1, along XY chromosome axes and promotes establishment of pericentric heterochromatin on the X chromosome. We propose that BRCA1-dependent establishment of X-pericentric heterochromatin is critical for XY body morphogenesis and subsequent meiotic progression. In contrast, BRCA1 plays a relatively minor role in meiotic recombination, and female Brca1 mutants are fertile. We infer that the major meiotic role of BRCA1 is to promote the dramatic chromatin changes required for formation and function of the XY body.
Collapse
Affiliation(s)
- Tyler J Broering
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Kris G Alavattam
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Ruslan I Sadreyev
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Yosuke Ichijima
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Yasuko Kato
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114 Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Pathology, and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Paul R Andreassen
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Satoshi H Namekawa
- Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229Division of Reproductive Sciences and Division of Developmental Biology, Perinatal Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
108
|
Hopkins J, Hwang G, Jacob J, Sapp N, Bedigian R, Oka K, Overbeek P, Murray S, Jordan PW. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet 2014; 10:e1004413. [PMID: 24992337 PMCID: PMC4081007 DOI: 10.1371/journal.pgen.1004413] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/19/2014] [Indexed: 11/18/2022] Open
Abstract
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.
Collapse
Affiliation(s)
- Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Justin Jacob
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicklas Sapp
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rick Bedigian
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kazuhiro Oka
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Steve Murray
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
109
|
Comptour A, Moretti C, Serrentino ME, Auer J, Ialy-Radio C, Ward MA, Touré A, Vaiman D, Cocquet J. SSTY proteins co-localize with the post-meiotic sex chromatin and interact with regulators of its expression. FEBS J 2014; 281:1571-84. [PMID: 24456183 DOI: 10.1111/febs.12724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/07/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
Abstract
In mammals, X- and Y-encoded genes are transcriptionally shut down during male meiosis, but expression of many of them is (re)activated in spermatids after meiosis. Post-meiotic XY gene expression is regulated by active epigenetic marks, which are de novo incorporated in the sex chromatin of spermatids, and by repressive epigenetic marks inherited during meiosis; alterations in this process lead to male infertility. In the mouse, post-meiotic XY gene expression is known to depend on genetic information carried by the male-specific region of the Y chromosome long arm (MSYq). The MSYq gene Sly has been shown to be a key regulator of post-meiotic sex chromosome gene expression and is necessary for the maintenance/recruitment of repressive epigenetic marks on the sex chromatin, but studies suggest that another MSYq gene may also be required. The best candidate to date is Ssty, an MSYq multi-copy gene of unknown function. Here, we show that SSTY proteins are specifically expressed in round and elongating spermatids, and co-localize with post-meiotic sex chromatin. Moreover, SSTY proteins interact with SLY protein and its X-linked homolog SLX/SLXL1, and may be required for localization of SLX/SLY proteins in the spermatid nucleus and sex chromatin. Our data suggest that SSTY is a second MSYq factor involved in the control of XY gene expression during sperm differentiation. As Slx/Slxl1 and Sly genes have been shown to be involved in the XY intra-genomic conflict, which affects the offspring sex ratio, Ssty may constitute another player in this conflict.
Collapse
Affiliation(s)
- Aurélie Comptour
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, UMR8104, Paris, France; Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Dynamics of response to asynapsis and meiotic silencing in spermatocytes from Robertsonian translocation carriers. PLoS One 2013; 8:e75970. [PMID: 24066189 PMCID: PMC3774740 DOI: 10.1371/journal.pone.0075970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/18/2013] [Indexed: 12/23/2022] Open
Abstract
Failure of homologous synapsis during meiotic prophase triggers transcriptional repression. Asynapsis of the X and Y chromosomes and their consequent silencing is essential for spermatogenesis. However, asynapsis of portions of autosomes in heterozygous translocation carriers may be detrimental for meiotic progression. In fact, a wide range of phenotypic outcomes from meiotic arrest to normal spermatogenesis have been described and the causes of such a variation remain elusive. To better understand the consequences of asynapsis in male carriers of Robertsonian translocations, we focused on the dynamics of recruitment of markers of asynapsis and meiotic silencing at unsynapsed autosomal trivalents in the spermatocytes of Robertsonian translocation carrier mice. Here we report that the enrichment of breast cancer 1 (BRCA1) and histone γH2AX at unsynapsed trivalents declines during the pachytene stage of meiosis and differs from that observed in the sex body. Furthermore, histone variant H3.3S31, which associates with the sex chromosomes in metaphase I/anaphase I spermatocytes, localizes to autosomes in 12% and 31% of nuclei from carriers of one and three translocations, respectively. These data suggest that the proportion of spermatocytes with markers of meiotic silencing of unsynapsed chromatin (MSUC) at trivalents depends on both, the stage of meiosis and the number of translocations. This may explain some of the variability in phenotypic outcomes associated with Robertsonian translocations. In addition our data suggest that the dynamics of response to asynapsis in Robertsonian translocations differs from the response to sex chromosomal asynapsis in the male germ line.
Collapse
|