101
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
102
|
Zhao T, Hao Y, Kaplan JM. Axonal Mitochondria Modulate Neuropeptide Secretion Through the Hypoxic Stress Response in Caenorhabditis elegans. Genetics 2018; 210:275-285. [PMID: 30049781 PMCID: PMC6116974 DOI: 10.1534/genetics.118.301014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Neurons are highly dependent on mitochondrial function, and mitochondrial damage has been implicated in many neurological and neurodegenerative diseases. Here we show that axonal mitochondria are necessary for neuropeptide secretion in Caenorhabditis elegans and that oxidative phosphorylation, but not mitochondrial calcium uptake, is required for secretion. Oxidative phosphorylation produces cellular ATP, reactive oxygen species, and consumes oxygen. Disrupting any of these functions could inhibit neuropeptide secretion. We show that blocking mitochondria transport into axons or decreasing mitochondrial function inhibits neuropeptide secretion through activation of the hypoxia inducible factor HIF-1 Our results suggest that axonal mitochondria modulate neuropeptide secretion by regulating transcriptional responses induced by metabolic stress.
Collapse
Affiliation(s)
- Tongtong Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yingsong Hao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
103
|
Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2018; 112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. Importantly, Nrf2 expression correlates with potential lifespan in rodents. However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
Collapse
|
104
|
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 2018; 124:420-430. [PMID: 29960100 PMCID: PMC6098721 DOI: 10.1016/j.freeradbiomed.2018.06.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
The Free Radical Theory of Ageing, was first proposed by Denham Harman in the mid-1950's, based largely on work conducted by Rebeca Gerschman and Daniel Gilbert. At its core, the Free Radical Theory of Ageing posits that free radical and related oxidants, from the environment and internal metabolism, cause damage to cellular constituents that, over time, result in an accumulation of structural and functional problems. Several variations on the original concept have been advanced over the past six decades, including the suggestion of a central role for mitochondria-derived reactive species, and the proposal of an age-related decline in the effectiveness of protein, lipid, and DNA repair systems. Such innovations have helped the Free Radical Theory of Aging to achieve widespread popularity. Nevertheless, an ever-growing number of apparent 'exceptions' to the Theory have seriously undermined its acceptance. In part, we suggest, this has resulted from a rather simplistic experimental approach of knocking-out, knocking-down, knocking-in, or overexpressing antioxidant-related genes to determine effects on lifespan. In some cases such experiments have yielded results that appear to support the Free Radical Theory of Aging, but there are just as many published papers that appear to contradict the Theory. We suggest that free radicals and related oxidants are but one subset of stressors with which all life forms must cope over their lifespans. Adaptive Homeostasis is the mechanism by which organisms dynamically expand or contract the homeostatic range of stress defense and repair systems, employing a veritable armory of signal transduction pathways (such as the Keap1-Nrf2 system) to generate a complex profile of inducible and enzymatic protection that best fits the particular need. Viewed as a component of Adaptive Homeostasis, the Free Radical Theory of Aging appears both viable and robust.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
105
|
Roma LP, Deponte M, Riemer J, Morgan B. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid Redox Signal 2018; 29:552-568. [PMID: 29160083 DOI: 10.1089/ars.2017.7449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Genetically encoded hydrogen peroxide (H2O2) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular H2O2 changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔCR offer considerably improved H2O2 sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. CRITICAL ISSUES The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls, and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. FUTURE DIRECTIONS The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real time now allows us to re-visit long-held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced reactive oxygen species production. Further, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties, and the impact of post-translational modifications, in vivo. Antioxid. Redox Signal. 29, 552-568.
Collapse
Affiliation(s)
- Leticia Prates Roma
- 1 Biophysics Department, Center for Human and Molecular Biology, Universität des Saarlandes , Homburg/Saar, Germany
| | - Marcel Deponte
- 2 Faculty of Chemistry/Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 3 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 4 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
106
|
Keller J, Borzekowski A, Haase H, Menzel R, Rueß L, Koch M. Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism. Toxins (Basel) 2018; 10:toxins10070284. [PMID: 29987228 PMCID: PMC6070962 DOI: 10.3390/toxins10070284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/17/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022] Open
Abstract
To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess potential threats to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as the model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA-14-S was reduced to α-/β-ZEL-14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats.
Collapse
Affiliation(s)
- Julia Keller
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Antje Borzekowski
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Ralph Menzel
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany.
| | - Liliane Rueß
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany.
| | - Matthias Koch
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
107
|
Kamireddy K, Chinnu S, Priyanka PS, Rajini PS, Giridhar P. Neuroprotective effect of Decalepis hamiltonii aqueous root extract and purified 2-hydroxy-4-methoxy benzaldehyde on 6-OHDA induced neurotoxicity in Caenorhabditis elegans. Biomed Pharmacother 2018; 105:997-1005. [PMID: 30021395 DOI: 10.1016/j.biopha.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the possible neuroprotective efficacy of Decalepis hamiltonii tuber extract against 6-Hydroxy dopamine (6-OHDA) induced neurotoxicity and associated effects in Caenorhabditis elegans. The major component of flavour rich extract from D. hamiltonii is 2-hydroxy-4-methoxy benzaldehyde (2H4MB) which is an isomer of vanillin. We have conducted preliminary experiments with different types of extracts and subsequently DHFE (D. hamiltonii Fresh Tuber Extract) and DHPF (D. hamiltonii purified 2H4MB fraction) were used for further studies. Here we attempted to enumerate the neuroprotective efficacy of the above compounds in worms by evaluating behavioural and mitochondrial function, dopamine content and selective degeneration of dopaminergic neurons in BZ555 strains in comparison with control and 6-OHDA treated organisms. The relative expression levels of selected antioxidant genes involved in defence mechanism like SOD-3, GST-2 and GST-4 were evaluated along with those of CAT-2 and DOP-2 at mRNA level. We observed that both DHPF and DHFE exhibited significant levels of neuroprotective property against 6-OHDA induced neurotoxicity, which was evident in mitochondrial/dopaminergic function and antioxidant defence mechanism.
Collapse
Affiliation(s)
- Kiran Kamireddy
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India
| | - Salim Chinnu
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Food Protectants and Infestation Control Department, CSIR-CFTRI, Mysore, 570020, India
| | - P S Priyanka
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India
| | - P S Rajini
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Food Protectants and Infestation Control Department, CSIR-CFTRI, Mysore, 570020, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India.
| |
Collapse
|
108
|
Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. Front Endocrinol (Lausanne) 2018; 9:258. [PMID: 29887832 PMCID: PMC5980968 DOI: 10.3389/fendo.2018.00258] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
World population has been continuously increasing and progressively aging. Aging is characterized by a complex and intraindividual process associated with nine major cellular and molecular hallmarks, namely, genomic instability, telomere attrition, epigenetic alterations, a loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This review exposes the positive antiaging impact of physical exercise at the cellular level, highlighting its specific role in attenuating the aging effects of each hallmark. Exercise should be seen as a polypill, which improves the health-related quality of life and functional capabilities while mitigating physiological changes and comorbidities associated with aging. To achieve a framework of effective physical exercise interventions on aging, further research on its benefits and the most effective strategies is encouraged.
Collapse
Affiliation(s)
- Alexandre Rebelo-Marques
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
| | - Adriana De Sousa Lages
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Faculty of Sports, University of Porto, Porto, Portugal
| | | | | | - Francisco Carrilho
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Guimarães, Braga, Portugal
- Orthopaedics Department of Minho University, Minho, Portugal
| |
Collapse
|
109
|
Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis. Redox Biol 2018; 17:377-385. [PMID: 29857312 PMCID: PMC6007053 DOI: 10.1016/j.redox.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022] Open
Abstract
Superoxide dismutase, an enzyme that converts superoxide into less-toxic hydrogen peroxide and oxygen, has been shown to mediate behavioral response to pathogens. However, it remains largely unknown how superoxide dismutase is regulated in the nervous system amid pathogen-induced gut dysbiosis. Although there are five superoxide dismutases in C. elegans, our genetic analyses suggest that SOD-1 is the primary superoxide dismutase to mediate the pathogen avoidance response. When C. elegans are fed a P. aeruginosa diet, the lack of SOD-1 contributes to enhanced lethality. We found that guanylyl cyclases GCY-5 and GCY-22 and neuropeptide receptor NPR-1 act antagonistically to regulate SOD-1 expression in the gustatory neuron ASER. After C. elegans ingests a diet that contributes to high levels of oxidative stress, the temporal regulation of SOD-1 and the SOD-1–dependent response in the gustatory system demonstrates a sophisticated mechanism to fine-tune behavioral plasticity. Our results may provide the initial glimpse of a strategy by which a multicellular organism copes with oxidative stress amid gut dysbiosis.
Collapse
|
110
|
van Gastel J, Boddaert J, Jushaj A, Premont RT, Luttrell LM, Janssens J, Martin B, Maudsley S. GIT2-A keystone in ageing and age-related disease. Ageing Res Rev 2018; 43:46-63. [PMID: 29452267 DOI: 10.1016/j.arr.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Since its discovery, G protein-coupled receptor kinase-interacting protein 2, GIT2, and its family member, GIT1, have received considerable interest concerning their potential key roles in regulating multiple inter-connected physiological and pathophysiological processes. GIT2 was first identified as a multifunctional protein that is recruited to G protein-coupled receptors (GPCRs) during the process of receptor internalization. Recent findings have demonstrated that perhaps one of the most important effects of GIT2 in physiology concerns its role in controlling multiple aspects of the complex ageing process. Ageing can be considered the most prevalent pathophysiological condition in humans, affecting all tissue systems and acting as a driving force for many common and intractable disorders. The ageing process involves a complex interplay among various deleterious activities that profoundly disrupt the body's ability to cope with damage, thus increasing susceptibility to pathophysiologies such as neurodegeneration, central obesity, osteoporosis, type 2 diabetes mellitus and atherosclerosis. The biological systems that control ageing appear to function as a series of interconnected complex networks. The inter-communication among multiple lower-complexity signaling systems within the global ageing networks is likely coordinated internally by keystones or hubs, which regulate responses to dynamic molecular events through protein-protein interactions with multiple distinct partners. Multiple lines of research have suggested that GIT2 may act as one of these network coordinators in the ageing process. Identifying and targeting keystones, such as GIT2, is thus an important approach in our understanding of, and eventual ability to, medically ameliorate or interdict age-related progressive cellular and tissue damage.
Collapse
|
111
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1006] [Impact Index Per Article: 167.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
112
|
Senchuk MM, Dues DJ, Schaar CE, Johnson BK, Madaj ZB, Bowman MJ, Winn ME, Van Raamsdonk JM. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 2018. [PMID: 29522556 PMCID: PMC5862515 DOI: 10.1371/journal.pgen.1007268] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity. We find that genes regulated by the FOXO transcription factor DAF-16 are upregulated in all three strains, and that the transcriptional changes present in these worms overlap significantly with the long-lived insulin-IGF1 signaling pathway mutant daf-2. We show that DAF-16 and multiple DAF-16 interacting proteins (MATH-33, IMB-2, CST-1/2, BAR-1) are required for the full longevity of all three mitochondrial mutants. Our results suggest that the activation of DAF-16 in these mutants results from elevated levels of reactive oxygen species. Overall, this work reveals an overlapping genetic pathway required for longevity in three mitochondrial mutants, and, combined with previous work, demonstrates that DAF-16 is a downstream mediator of lifespan extension in multiple pathways of longevity. The use of genetic model organisms has permitted the identification of a large number of genes that influence longevity. These genes have been grouped into different pathways of lifespan extension, which have been proposed to modulate longevity by distinct mechanisms. In this work, we explore the mechanisms underlying longevity in three long-lived mitochondrial mutants in C. elegans. We find that all three mutants show upregulation of DAF-16/FOXO target genes and that DAF-16 as well as multiple proteins that function with DAF-16 are required for their longevity. Since DAF-16 has previously been shown to be responsible for the increase in lifespan resulting from decreasing insulin-IGF1 signaling, this indicates that different pathways of lifespan extension have overlapping mechanisms, and that DAF-16/FOXO is a common downstream mediator of longevity.
Collapse
Affiliation(s)
- Megan M. Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Dylan J. Dues
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Claire E. Schaar
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Benjamin K. Johnson
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Megan J. Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
113
|
Wang X, Cao M, Dong Y. Royal jelly promotes DAF-16-mediated proteostasis to tolerate β-amyloid toxicity in C. elegans model of Alzheimer's disease. Oncotarget 2018; 7:54183-54193. [PMID: 27472466 PMCID: PMC5342333 DOI: 10.18632/oncotarget.10857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated that dietary intervention may promote health and help prevent Alzheimer's disease (AD). We recently reported that bee products of royal jelly (RJ) and enzyme-treated royal jelly (eRJ) were potent to promote healthy aging in C. elegans. Here, we examined whether RJ/eRJ consumption may benefit to mitigate the AD symptom in the disease model of C. elegans. Our results showed that RJ/eRJ supplementation significantly delayed the body paralysis in AD worms, suggesting the β-amyloid (Aβ) toxicity attenuation effects of RJ/eRJ. Genetic analyses suggested that RJ/eRJ-mediated alleviation of Aβ toxicity in AD worms required DAF-16, rather than HSF-1 and SKN-1, in an insulin/IGF signaling dependent manner. Moreover, RJ/eRJ modulated the transactivity of DAF-16 and dramatically improved the protein solubility in aged worms. Given protein solubility is a hallmark of healthy proteostasis, our findings demonstrated that RJ/eRJ supplementation improved proteostasis, and this promotion depended on the transactivity of DAF-16. Collectively, the present study not only elucidated the possible anti-AD mechanism of RJ/eRJ, but also provided evidence from a practical point of view to shed light on the extensive correlation of proteostasis and the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Min Cao
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Institute for Engaged Aging, Clemson University, Clemson, SC, USA
| | - Yuqing Dong
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Institute for Engaged Aging, Clemson University, Clemson, SC, USA
| |
Collapse
|
114
|
Abstract
Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded 'Free Radical Theory of Aging', proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as 'antioxidants'. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.
Collapse
Affiliation(s)
- Elizabeth Veal
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK.
| | - Thomas Jackson
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| | - Heather Latimer
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| |
Collapse
|
115
|
The Mitochondrial Basis of Aging and Age-Related Disorders. Genes (Basel) 2017; 8:genes8120398. [PMID: 29257072 PMCID: PMC5748716 DOI: 10.3390/genes8120398] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is a natural phenomenon characterized by progressive decline in tissue and organ function leading to increased risk of disease and mortality. Among diverse factors that contribute to human aging, the mitochondrial dysfunction has emerged as one of the key hallmarks of aging process and is linked to the development of numerous age-related pathologies including metabolic syndrome, neurodegenerative disorders, cardiovascular diseases and cancer. Mitochondria are central in the regulation of energy and metabolic homeostasis, and harbor a complex quality control system that limits mitochondrial damage to ensure mitochondrial integrity and function. The intricate regulatory network that balances the generation of new and removal of damaged mitochondria forms the basis of aging and longevity. Here, I will review our current understanding on how mitochondrial functional decline contributes to aging, including the role of somatic mitochondrial DNA (mtDNA) mutations, reactive oxygen species (ROS), mitochondrial dynamics and quality control pathways. I will further discuss the emerging evidence on how dysregulated mitochondrial dynamics, mitochondrial biogenesis and turnover mechanisms contribute to the pathogenesis of age-related disorders. Strategies aimed to enhance mitochondrial function by targeting mitochondrial dynamics, quality control, and mitohormesis pathways might promote healthy aging, protect against age-related diseases, and mediate longevity.
Collapse
|
116
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
117
|
Relevance of the p53-MDM2 axis to aging. Cell Death Differ 2017; 25:169-179. [PMID: 29192902 DOI: 10.1038/cdd.2017.187] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
In response to varying stress signals, the p53 tumor suppressor is able to promote repair, survival, or elimination of damaged cells - processes that have great relevance to organismal aging. Although the link between p53 and cancer is well established, the contribution of p53 to the aging process is less clear. Delineating how p53 regulates distinct aging hallmarks such as cellular senescence, genomic instability, mitochondrial dysfunction, and altered metabolic pathways will be critical. Mouse models have further revealed the centrality and complexity of the p53 network in aging processes. While naturally aged mice have linked longevity with declining p53 function, some accelerated aging mice present with chronic p53 activation, whose phenotypes can be rescued upon p53 deficiency. Further, direct modulation of the p53-MDM2 axis has correlated elevated p53 activity with either early aging or with delayed-onset aging. We speculate that p53-mediated aging phenotypes in these mice must have (1) stably active p53 due to MDM2 dysregulation or chronic stress or (2) shifted p53 outcomes. Pinpointing which p53 stressors, modifications, and outcomes drive aging processes will provide further insights into our understanding of the human aging process and could have implications for both cancer and aging therapeutics.
Collapse
|
118
|
Smita SS, Raj Sammi S, Laxman TS, Bhatta RS, Pandey R. Shatavarin IV elicits lifespan extension and alleviates Parkinsonism in Caenorhabditis elegans. Free Radic Res 2017; 51:954-969. [PMID: 29069955 DOI: 10.1080/10715762.2017.1395419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Shatavarin IV (SIV), a steroidal saponin, is a major bioactive phytomolecule present in roots of Asparagus racemosus (Liliaceae) known for its anticancer activity. Age-associated neurodegenerative Parkinson's disease (PD) is characterised by alpha-synuclein aggregation in dopaminergic neuron resulting in neurodegeneration. The invention of bioactive molecules that delay aging and age-associated disorders endorses development of natural phytomolecule as a therapeutic agent for curing age-related diseases. Therefore, the present study for the first time explores the potential of SIV against aging and Parkinsonism utilising Caenorhabditis elegans model system. SIV significantly attenuated oxidative stress in terms of intracellular reactive oxygen species (ROS) as well as oxidative damage including protein carbonylation and also promotes longevity. SIV also significantly increased the mRNA expression of stress responsive genes namely sod-1, sod-2, sod-3, gst-4, gst-7 and ctl-2 suggesting its anti-oxidant property that might be contributed in the modulation of oxidative stress and promoting lifespan. Additionally, SIV improved PD symptoms by reducing the alpha-synuclein aggregation, lipid accumulation and enhancing dopamine level. Altogether, present findings indicate that SIV possibly utilising ubiquitin-mediated proteasomal system and attenuating oxidative stress by up-regulating PD-associated genes pdr-1, ubc-12 and pink-1. Therefore, this study is a forward step in exploring the anti-aging and anti-Parkinsonism potential of bioactive compound SIV in C. elegans.
Collapse
Affiliation(s)
- Shachi Shuchi Smita
- a Laboratory of Aging Biology, Department of Microbial Technology and Nematology , Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research , Lucknow , India
| | - Shreesh Raj Sammi
- a Laboratory of Aging Biology, Department of Microbial Technology and Nematology , Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research , Lucknow , India
| | - Tulsankar S Laxman
- b Pharmacokinetics and Metabolism Division , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Rabi S Bhatta
- b Pharmacokinetics and Metabolism Division , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Rakesh Pandey
- a Laboratory of Aging Biology, Department of Microbial Technology and Nematology , Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research , Lucknow , India
| |
Collapse
|
119
|
Sedlak E, Musatov A. Inner mechanism of protection of mitochondrial electron-transfer proteins against oxidative damage. Focus on hydrogen peroxide decomposition. Biochimie 2017; 142:152-157. [DOI: 10.1016/j.biochi.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022]
|
120
|
Abstract
An answer to the question posed by the title must be simple not to disturb in his tomb Albert Einstein, who wrote "Man muß die Dinge so einfach wie möglich machen. Aber nicht einfacher". A simple answer (not simpler) can be: Antioxidants are not antioxidants, they are not wonder drugs and they are not all quackery; but they are not nothing. The arguments in support of this conundrumic statement will be developed below. © 2017 BioFactors, 43(6):785-788, 2017.
Collapse
Affiliation(s)
- Angelo Azzi
- JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
121
|
Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2017; 109:5-15. [PMID: 29054534 DOI: 10.1016/j.exger.2017.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. One of the main risk factors for CVD is age, however the biological processes that occur in the heart during ageing are poorly understood. It is therefore important to understand the fundamental mechanisms driving heart ageing to enable the development of preventions and treatments targeting these processes. Cellular senescence is often described as the irreversible cell-cycle arrest which occurs in somatic cells. Emerging evidence suggests that cellular senescence plays a key role in heart ageing, however the cell-types involved and the underlying mechanisms are not yet elucidated. In this review we discuss the current understanding of how mechanisms known to contribute to senescence impact on heart ageing and CVD. Finally, we evaluate recent data suggesting that targeting senescent cells may be a viable therapy to counteract the ageing of the heart.
Collapse
Affiliation(s)
- Rhys Anderson
- The Randall Division, King's College London, London, UK; Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Gavin D Richardson
- Cardiovascular Research Centre, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
122
|
Abstract
Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.
Collapse
Affiliation(s)
- Edward F Greenberg
- 1 The Cleveland Clinic Foundation, Department of Translational Hematology and Oncology Research, Taussig Cancer Center , Cleveland, Ohio.,2 The Cleveland Clinic Foundation, Hematology/Oncology Fellowship, Taussig Cancer Center , Cleveland, Ohio
| | - Sergei Vatolin
- 1 The Cleveland Clinic Foundation, Department of Translational Hematology and Oncology Research, Taussig Cancer Center , Cleveland, Ohio
| |
Collapse
|
123
|
Zemva J, Fink CA, Fleming TH, Schmidt L, Loft A, Herzig S, Knieß RA, Mayer M, Bukau B, Nawroth PP, Tyedmers J. Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux. Redox Biol 2017; 13:674-686. [PMID: 28826004 PMCID: PMC5565788 DOI: 10.1016/j.redox.2017.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
Abstract
Energy production is inevitably linked to the generation of toxic metabolites, such as reactive oxygen and carbonyl species, known as major contributors to ageing and degenerative diseases. It remains unclear how cells can adapt to elevated energy flux accompanied by accumulating harmful by-products without taking any damage. Therefore, effects of a sudden rise in glucose concentrations were studied in yeast cells. This revealed a feedback mechanism initiated by the reactive dicarbonyl methylglyoxal, which is formed non-enzymatically during glycolysis. Low levels of methylglyoxal activate a multi-layered defence response against toxic metabolites composed of prevention, detoxification and damage remission. The latter is mediated by the protein quality control system and requires inducible Hsp70 and Btn2, the aggregase that sequesters misfolded proteins. This glycohormetic mechanism enables cells to pre-adapt to rising energy flux and directly links metabolic to proteotoxic stress. Further data suggest the existence of a similar response in endothelial cells. Low-dose MG induces tolerance towards toxic levels of MG and ROS in yeast cells. This preconditioning effect is mediated via a multi-layered defence mechanism. The hormetic defence is composed of prevention, detoxification and damage remission. Low MG induces the PQS including protein sorting and handling via HSPs.
Collapse
Affiliation(s)
- Johanna Zemva
- Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Christoph Andreas Fink
- Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Thomas Henry Fleming
- Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Leonard Schmidt
- Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anne Loft
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Robert André Knieß
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Peter Paul Nawroth
- Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jens Tyedmers
- Department for Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
124
|
Brandt T, Mourier A, Tain LS, Partridge L, Larsson NG, Kühlbrandt W. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. eLife 2017; 6. [PMID: 28699890 PMCID: PMC5580880 DOI: 10.7554/elife.24662] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 06/19/2017] [Indexed: 02/04/2023] Open
Abstract
Ageing is a progressive decline of intrinsic physiological functions. We examined the impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies (Drosophila melanogaster) by electron cryo-tomography and respirometry. We discovered distinct age-related changes in both model organisms. Mitochondrial function and ultrastructure are maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-related changes in membrane morphology. Subpopulations of mitochondria from young and old mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is compromised and the production of peroxide radicals is increased. In about 50% of mitochondria from old flies, the inner membrane organization breaks down. This establishes a clear link between inner membrane architecture and functional decline. Mitochondria were affected by ageing to very different extents, depending on the organism and possibly on the degree to which tissues within the same organism are protected against mitochondrial damage.
Collapse
Affiliation(s)
- Tobias Brandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Institut de Biochimie et Génétique Cellulaires UMR 5095, Université de Bordeaux, Bordeaux, France.,CNRS, Institut de Biochimie et Génétique Cellulaires UMR 5095, Bordeaux, France
| | - Luke S Tain
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Werner Kühlbrandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
125
|
Dues DJ, Schaar CE, Johnson BK, Bowman MJ, Winn ME, Senchuk MM, Van Raamsdonk JM. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radic Biol Med 2017; 108:362-373. [PMID: 28392283 PMCID: PMC5493208 DOI: 10.1016/j.freeradbiomed.2017.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/24/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
Abstract
Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan.
Collapse
Affiliation(s)
- Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Claire E Schaar
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Benjamin K Johnson
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Megan J Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
126
|
Rangel-Zuñiga OA, Cruz-Teno C, Haro C, Quintana-Navarro GM, Camara-Martos F, Perez-Martinez P, Garcia-Rios A, Garaulet M, Tena-Sempere M, Lopez-Miranda J, Perez-Jimenez F, Camargo A. Differential menopause- versus aging-induced changes in oxidative stress and circadian rhythm gene markers. Mech Ageing Dev 2017; 164:41-48. [PMID: 28408140 DOI: 10.1016/j.mad.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/17/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Menopause is characterized by the depletion of estrogen that has been proposed to cause oxidative stress. Circadian rhythm is an internal biological clock that controls physiological processes. It was analyzed the gene expression in peripheral blood mononuclear cells and the lipids and glucose levels in plasma of a subgroup of 17 pre-menopausal women, 19 men age-matched as control group for the pre-menopausal women, 20 post-menopausal women and 20 men age-matched as control group for the post-menopausal women; all groups were matched by body mass index. Our study showed a decrease in the expression of the oxidative stress-related gene GPX1, and an increase in the expression of SOD1 as consequence of menopause. In addition, we found that the circadian rhythm-related gene PER2 decreased as consequence of menopause. On the other hand, we observed a decrease in the expression of the oxidative stress-related gene GPX4 and an increase in the expression of CAT as a consequence of aging, independently of menopause. Our results suggest that the menopause-induced oxidative stress parallels a disruption in the circadian clock in women, and part of the differences in oxidative stress observed between pre- and post-menopausal women was due to aging, independent of menopause. Clinical Trials.gov.Identifier: NCT00924937.
Collapse
Affiliation(s)
- Oriol A Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Cristina Cruz-Teno
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Carmen Haro
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Gracia M Quintana-Navarro
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | | | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Antonio Garcia-Rios
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | | | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Francisco Perez-Jimenez
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain.
| |
Collapse
|
127
|
Karimi J, Mohsenzadeh S. Expression of some Genes in Response to Cadmium Stress in <i>Triticum aestivum</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2017. [DOI: 10.56431/p-5216ai] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heavy metal toxicity has become a universal threat to all life forms, including plants. The main purpose of this study was to identify the gene expression profiling of MAPK, Thioredoxin, and MnSOD genes in wheat seedlings as affected by cadmium treatment. For this experiment, the quantitative Real-Time PCR on RNA isolated from shoots of wheat exposed to CdCl2 at a concentration of 100 mg/L was used. Results showed that in wheat seedling that exposed to cadmium stress for six days of beginning constant cadmium stress, Thioredoxin gene expression showed a large rise compared with the control sample, MnSOD gene expression increased compared with non-treated wheat seedling at the same times, but unlike the Thioredoxin and MnSOD genes, MAPK gene expression has no significant changes. Of course, it is possible that other times of beginning treatments (instead of six days) cause a change in this gene expression.
Collapse
|
128
|
Karimi J, Mohsenzadeh S. Expression of some Genes in Response to Cadmium Stress in Triticum aestivum. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2017. [DOI: 10.18052/www.scipress.com/ilns.63.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heavy metal toxicity has become a universal threat to all life forms, including plants. The main purpose of this study was to identify the gene expression profiling of MAPK, Thioredoxin, and MnSOD genes in wheat seedlings as affected by cadmium treatment. For this experiment, the quantitative Real-Time PCR on RNA isolated from shoots of wheat exposed to CdCl2 at a concentration of 100 mg/L was used. Results showed that in wheat seedling that exposed to cadmium stress for six days of beginning constant cadmium stress, Thioredoxin gene expression showed a large rise compared with the control sample, MnSOD gene expression increased compared with non-treated wheat seedling at the same times, but unlike the Thioredoxin and MnSOD genes, MAPK gene expression has no significant changes. Of course, it is possible that other times of beginning treatments (instead of six days) cause a change in this gene expression.
Collapse
|
129
|
Han Y, Song S, Wu H, Zhang J, Ma E. Antioxidant enzymes and their role in phoxim and carbaryl stress in Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:43-50. [PMID: 28456303 DOI: 10.1016/j.pestbp.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Pesticide exposure can induce oxidative stress and cause changes to antioxidant enzymes in living organisms. In the present study, the effects of phoxim (an organophosphorus insecticide) and carbaryl (a carbamate insecticide) on antioxidant enzyme activity and gene expression were investigated in the model organism Caenorhabditis elegans. The results show that phoxim exposure can induce superoxide dismutase (SOD) and catalase (CAT) activities and decrease glutathione peroxidase (GPx) activity at lower concentrations. The expression levels of sod-3, sod-5, ctl-1, gpx-6, and gpx-8 were up-regulated after treatment with phoxim. The mRNA expression levels of sod-5, ctl-1 and gpx-6 were increased approximately 70-, 170- and 130-fold, respectively, in the 0.25mM treatment group compared to the control group. Carbaryl exposure decreased SOD activity and induced CAT and GPx activities. The addition of carbaryl up-regulated the expression of sod-5, ctl-1, ctl-3 and gpx-8. Specifically, ctl-1 expression increased approximately 10-fold, and gpx-8 expression increased <30-fold in the 0.5mM treatment group relative to the control group. The transcript level of sod-5 increased >20-fold, and ctl-3 increased approximately 10-fold in the 1mM treatment group. The functions of the antioxidant enzymes during oxidative stress caused by the two insecticides were investigated using deletion mutants. The LC50 values phoxim for the of sod-3 (tm760), sod-5 (tm1146), ctl-1 (ok1242), ctl-3 (ok2042) and gpx-8 (tm2108) mutant strains were lower than those observed for the N2 strain. The LC50 values of carbaryl for the ctl-1 (ok1242), ctl-3 (ok2042) and gpx-6 (tm2535) deletion mutant strains decreased in comparison to the N2 strain. The results suggest that these two insecticides caused oxidative stress and changed altered the antioxidant enzyme activities and their gene expressions in C. elegans. The sod-3, sod-5, ctl-1, ctl-3, gpx-6, and gpx-8 encoding enzymes may play roles in defending cells from oxidative stress caused by these two insecticides.
Collapse
Affiliation(s)
- Yan Han
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China
| | - Shaojuan Song
- Basic Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 92 Wucheng Road, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
130
|
Knuppertz L, Warnsmann V, Hamann A, Grimm C, Osiewacz HD. Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina. Autophagy 2017; 13:1037-1052. [PMID: 28368682 PMCID: PMC5486364 DOI: 10.1080/15548627.2017.1303021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, does not affect life span of the fungal aging model Podospora anserina, although superoxide levels are strongly increased and complex I-dependent respiration is impaired. This unexpected phenotype depends on functional autophagy, particularly mitophagy, which is upregulated during aging of this mutant. It identifies mitophagy as a prosurvival response involved in the control of mitohormesis, the well-known beneficial effect of mild mitochondrial oxidative stress. In contrast, excessive superoxide stress turns mitophagy to a prodeath pathway and leads to accelerated aging. Overall our data uncover mitophagy as a dynamic pathway that specifically responds to different levels of mitochondrial oxidative stress and thereby affects organismal aging.
Collapse
Affiliation(s)
- Laura Knuppertz
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Verena Warnsmann
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Andrea Hamann
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Carolin Grimm
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Heinz D Osiewacz
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| |
Collapse
|
131
|
Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017; 69:305-314. [PMID: 28371201 DOI: 10.1002/iub.1627] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Indexed: 12/27/2022]
Abstract
The extension of life span by caloric restriction has been studied across species from yeast and Caenorhabditis elegans to primates. No generally accepted theory has been proposed to explain these observations. Here, we propose that the life span extension produced by caloric restriction can be duplicated by the metabolic changes induced by ketosis. From nematodes to mice, extension of life span results from decreased signaling through the insulin/insulin-like growth factor receptor signaling (IIS) pathway. Decreased IIS diminishes phosphatidylinositol (3,4,5) triphosphate (PIP3 ) production, leading to reduced PI3K and AKT kinase activity and decreased forkhead box O transcription factor (FOXO) phosphorylation, allowing FOXO proteins to remain in the nucleus. In the nucleus, FOXO proteins increase the transcription of genes encoding antioxidant enzymes, including superoxide dismutase 2, catalase, glutathione peroxidase, and hundreds of other genes. An effective method for combating free radical damage occurs through the metabolism of ketone bodies, ketosis being the characteristic physiological change brought about by caloric restriction from fruit flies to primates. A dietary ketone ester also decreases circulating glucose and insulin leading to decreased IIS. The ketone body, d-β-hydroxybutyrate (d-βHB), is a natural inhibitor of class I and IIa histone deacetylases that repress transcription of the FOXO3a gene. Therefore, ketosis results in transcription of the enzymes of the antioxidant pathways. In addition, the metabolism of ketone bodies results in a more negative redox potential of the NADP antioxidant system, which is a terminal destructor of oxygen free radicals. Addition of d-βHB to cultures of C. elegans extends life span. We hypothesize that increasing the levels of ketone bodies will also extend the life span of humans and that calorie restriction extends life span at least in part through increasing the levels of ketone bodies. An exogenous ketone ester provides a new tool for mimicking the effects of caloric restriction that can be used in future research. The ability to power mitochondria in aged individuals that have limited ability to oxidize glucose metabolites due to pyruvate dehydrogenase inhibition suggests new lines of research for preventative measures and treatments for aging and aging-related disorders. © 2017 The Authors IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 69(5):305-314, 2017.
Collapse
Affiliation(s)
| | - Patrick C Bradshaw
- East Tennessee State University College of Medicine, Johnson City, TN, USA
| | | | | | | | - M Todd King
- Lab of Metabolic Control, NIH/NIAAA, Rockville, MD, USA
| |
Collapse
|
132
|
Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior. Sci Rep 2017; 7:45128. [PMID: 28322326 PMCID: PMC5359715 DOI: 10.1038/srep45128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
The C. elegans nervous system mediates protective physiological and behavioral responses amid infection. However, it remains largely unknown how the nervous system responds to reactive oxygen species (ROS) activated by pathogenic microbes during infection. Here, we show superoxide dismutase-1 (SOD-1), an enzyme that converts superoxide into less toxic hydrogen peroxide and oxygen, functions in the gustatory neuron ASER to mediate C. elegans pathogen avoidance response. When C. elegans first encounters pathogenic bacteria P. aeruginosa, SOD-1 is induced in the ASER neuron. After prolonged P. aeruginosa exposure, ASER-specific SOD-1 expression is diminished. In turn, C. elegans starts to vacate the pathogenic bacteria lawn. Genetic knockdown experiments reveal that pathogen-induced ROS activate sod-1 dependent behavioral response non cell-autonomously. We postulate that the delayed aversive response to detrimental microbes may provide survival benefits by allowing C. elegans to temporarily utilize food that is tainted with pathogens as an additional energy source. Our data offer a mechanistic insight into how the nervous system mediates food-seeking behavior amid oxidative stress and suggest that the internal state of redox homeostasis could underlie the behavioral response to harmful microbial species.
Collapse
|
133
|
Lucas ER, Augustyniak M, Kędziorski A, Keller L. Lifespan differences between queens and workers are not explained by rates of molecular damage. Exp Gerontol 2017; 92:1-6. [PMID: 28285146 DOI: 10.1016/j.exger.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Abstract
The biological processes that underlie senescence are of universal biological importance, yet they remain poorly understood. A popular theory proposes that senescence is the result of limited investment into mechanisms involved in the prevention and repair of molecular damage, leading to an accumulation of molecular damage with age. In ants, queen and worker lifespans differ by an order of magnitude, and this remarkable difference in lifespan has been shown to be associated with differences in the expression of genes involved in DNA and protein repair. Here we use the comet assay and Western Blotting for poly-ubiquitinated proteins to explore whether these differences in expression lead to differences in the accumulation of DNA damage (comet assay) or protein damage (protein ubiquitination) with age. Surprisingly, there was no difference between queens and workers in the rate of accumulation of DNA damage. We also found that levels of ubiquitinated proteins decreased with age, as previously reported in honeybees. This is in contrast to what has been found in model organisms such as worms and flies. Overall, these results reveal that the link between investment into macromolecular repair, age-related damage accumulation and lifespan is more complex than usually recognised.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Biology & Environmental Protection, Department of Animal Physiology & Ecotoxicology, Bankowa 9, PL 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Biology & Environmental Protection, Department of Animal Physiology & Ecotoxicology, Bankowa 9, PL 40-007 Katowice, Poland
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
134
|
Abstract
Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.
Collapse
Affiliation(s)
- Hae-Eun H. Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seung-Jae V. Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
135
|
Ewald CY, Hourihan JM, Bland MS, Obieglo C, Katic I, Moronetti Mazzeo LE, Alcedo J, Blackwell TK, Hynes NE. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans. eLife 2017; 6. [PMID: 28085666 PMCID: PMC5235354 DOI: 10.7554/elife.19493] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/27/2016] [Indexed: 12/23/2022] Open
Abstract
Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity. DOI:http://dx.doi.org/10.7554/eLife.19493.001
Collapse
Affiliation(s)
- Collin Yvès Ewald
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.,Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland.,Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - John M Hourihan
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Monet S Bland
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Carolin Obieglo
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| | - Lorenza E Moronetti Mazzeo
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Joy Alcedo
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland.,Department of Biological Sciences, Wayne State University, Detroit, United States
| | - T Keith Blackwell
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
136
|
de Carvalho MDC, De Mesquita JF, Eleutherio ECA. In Vivo Characterization of I91T Sod2 Polymorphism of Saccharomyces cerevisiae. J Cell Biochem 2017; 118:1078-1086. [DOI: 10.1002/jcb.25720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022]
Affiliation(s)
| | - Joelma Freire De Mesquita
- Department of Genetics and Molecular Biology; Federal University of the State of Rio de Janeiro (UNIRIO); Rio de Janeiro 22290-240 Brazil
| | | |
Collapse
|
137
|
Braeckman BP, Dhondt I. Lifespan extension in Caenorhabditis elegans insulin/IGF-1 signalling mutants is supported by non-vertebrate physiological traits. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin/IGF-1 signalling (IIS) pathway connects nutrient levels to metabolism, growth and lifespan in eukaryotes ranging from yeasts to humans, including nematodes such as the genetic model organismCaenorhabditis elegans. The link between ageing and the IIS pathway has been thoroughly studied inC. elegans; upon reduced IIS signalling, a genetic survival program is activated resulting in a drastic lifespan extension. One of the components of this program is the upregulation of antioxidant activity but experiments failed to show a clear causal relation to longevity. However, oxidative damage, such as protein carbonyls, accumulates at a slower pace in long-livedC. elegansmutants with reduced IIS. This is probably not achieved by increased macroautophagy, a process that sequesters cellular components to be eliminated as protein turnover rates are slowed down in IIS mutants. The IIS mutantdaf-2, bearing a mutation in the insulin/IGF-1 receptor, recapitulates the dauer survival program, including accumulation of fat and glycogen. Fat can be converted into glucose and glycogenviathe glyoxylate shunt, a pathway absent in vertebrates. These carbohydrates can be used as substrates for trehalose synthesis, also absent in mammals. Trehalose, a non-reducing homodimer of glucose, stabilises intracellular components and is responsible for almost half of the lifespan extension in IIS mutants. Hence, the molecular mechanisms by which lifespan is extended under reduced IIS may differ substantially between phyla that have an active glyoxylate cycle and trehalose synthesis, such as ecdysozoans and fungi, and vertebrate species such as mammals.
Collapse
Affiliation(s)
- Bart P. Braeckman
- Biology Department, Ghent University, Proeftuinstraat 86 N1, Ghent, Belgium
| | - Ineke Dhondt
- Biology Department, Ghent University, Proeftuinstraat 86 N1, Ghent, Belgium
| |
Collapse
|
138
|
|
139
|
Hong SY, Ng LT, Ng LF, Inoue T, Tolwinski NS, Hagen T, Gruber J. The Role of Mitochondrial Non-Enzymatic Protein Acylation in Ageing. PLoS One 2016; 11:e0168752. [PMID: 28033361 PMCID: PMC5199114 DOI: 10.1371/journal.pone.0168752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
In recent years, various large-scale proteomic studies have demonstrated that mitochondrial proteins are highly acylated, most commonly by addition of acetyl and succinyl groups. These acyl modifications may be enzyme catalysed but can also be driven non-enzymatically. The latter mechanism is promoted in mitochondria due to the nature of the mitochondrial microenvironment, which is alkaline and contains high concentrations of acyl-CoA species. Protein acylation may modify enzyme activity, typically inhibiting it. We posited that organismal ageing might be accompanied by an accumulation of acylated proteins, especially in mitochondria, and that this might compromise mitochondrial function and contribute to ageing. In this study, we used R. norvegicus, C. elegans and D. melanogaster to compare the acylation status of mitochondrial proteins between young and old animals. We observed a specific age-dependent increase in protein succinylation in worms and flies but not in rat. Rats have two substrate-specific mitochondrial deacylases, SIRT3 and SIRT5 while both flies and worms lack these enzymes. We propose that accumulation of mitochondrial protein acylation contributes to age-dependent mitochondrial functional decline and that SIRT3 and SIRT5 enzymes may promote longevity through regulation of mitochondrial protein acylation during ageing.
Collapse
Affiliation(s)
- Shin Yee Hong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Theng Ng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Fang Ng
- Department of Science, Yale- NUS College, Singapore, Singapore
| | - Takao Inoue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas S. Tolwinski
- Department of Science, Yale- NUS College, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (TH); (JG)
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Science, Yale- NUS College, Singapore, Singapore
- * E-mail: (TH); (JG)
| |
Collapse
|
140
|
Meng J, Lv Z, Qiao X, Li X, Li Y, Zhang Y, Chen C. The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging. Redox Biol 2016; 11:365-374. [PMID: 28043053 PMCID: PMC5219648 DOI: 10.1016/j.redox.2016.12.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/17/2023] Open
Abstract
Aging is tightly associated with redox events. The free radical theory of aging indicates that redox imbalance may be an important factor in the aging process. Most studies about redox and aging focused on the static status of oxidative stress levels, there has been little research investigating differential responses to redox challenge during aging. In this study, we used Caenorhabditis elegans and human fibroblasts as models to compare differential responses to oxidative stress challenge in young and old individuals. In response to paraquat stress, young individuals generated more ROS and activated signaling pathways including p-ERK, p-AKT and p-AMPKα/β. After the initial response, young individuals then promoted NRF2 translocation and induced additional antioxidant enzymes and higher expression of phase II enzymes, including SOD, CAT, GPX, HO-1, GSTP-1and others, to maintain redox homeostasis. Moreover, young individuals also demonstrated a better ability to degrade damaged proteins by up-regulating the expression of chaperones and improving proteasome activity. Based on these data, we propose a new concept "Redox-stress Response Capacity (RRC)", which suggests cells or organisms are capable of generating dynamic redox responses to activate cellular signaling and maintain cellular homeostasis. The decay of RRC is the substantive characteristic of aging, which gives a new understand of the redox theory of aging.
Collapse
Affiliation(s)
- Jiao Meng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaopeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yazi Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China; Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China.
| |
Collapse
|
141
|
Miranda-Vizuete A, Veal EA. Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biol 2016; 11:708-714. [PMID: 28193593 PMCID: PMC5304259 DOI: 10.1016/j.redox.2016.12.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
ROS (reactive oxygen species) are potentially damaging by-products of aerobic metabolism which, unchecked, can have detrimental effects on cell function. However, it is now widely accepted that, at physiological levels, certain ROS play important roles in cell signaling, acting as second messengers to regulate cell choices that contribute to the development, adaptation and survival of plants and animals. Despite important recent advances in the biochemical tools available to study redox-signaling, the molecular mechanisms underlying most of these responses remain poorly understood, particularly in multicellular organisms. As we will review here, C. elegans has emerged as a powerful animal model to elucidate these and other aspects of redox biology.
Collapse
Affiliation(s)
- Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
142
|
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2016; 1389:92-107. [PMID: 28009055 DOI: 10.1111/nyas.13302] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Males and females in many species differ in how they age and how long they live. These differences have motivated much research, concerning both their evolution and the underlying mechanisms that cause them. We review how differences in male and female life histories have evolved to shape patterns of aging and some of the mechanisms and pathways involved. We pay particular attention to three areas where considerable potential for synergy between mechanistic and evolutionary research exists: (1) the role of estrogens, androgens, the growth hormone/insulin-like growth factor 1 pathway, and the mechanistic target of rapamycin signaling pathway in sex-dependent growth and reproduction; (2) sexual conflict over mating rate and fertility, and how mate presence or mating can become an avenue for males and females to directly affect each other's life span; and (3) the link between dietary restriction and aging, and the emerging understanding that only the restriction of certain nutrients is involved and that this is linked to reproduction. We suggest that ideas about life histories, sex-dependent selection, and sexual conflict can inform and be informed by the ever more refined and complex understanding of the mechanisms that cause aging.
Collapse
Affiliation(s)
- Robert C Brooks
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia
| | - Michael G Garratt
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
143
|
Chen J, Zhang J, Xiang Y, Xiang L, Liu Y, He X, Zhou X, Liu X, Huang Z. Extracts of Tsai Tai (Brassica chinensis): enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans. Food Funct 2016; 7:943-52. [PMID: 26726147 DOI: 10.1039/c5fo01241d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tsai Tai is one of the most widely consumed Brassica vegetables in Asian countries because of its good taste and its nutritional benefits. This study evaluated the antioxidant capacity and possible associated health benefits of 3 Tsai Tai (Brassica chinensis) varieties, namely, Hon Tsai Tai, Pak Choi and Choi Sum. The DPPH radical scavenging ability and reducing power assays were performed to evaluate the in vitro activities of the extracts. Caenorhabditis elegans was used as an in vivo model for evaluation of beneficial health effects, including antioxidant activity and delayed aging. In vitro, the Hon Tsai Tai extract exhibited higher antioxidant activities than Pak Choi and Choi Sum, and the total phenolic contents were significantly correlated with the DPPH and RP values. In vivo, the three assayed Tsai Tai extracts significantly increased resistance against paraquat-induced oxidative stress with an increase in survival rates from 15% to 28% compared with controls. However, only the extract from Hon Tsai Tai significantly prolonged the lifespan of Caenorhabditis elegans, with an 8% increase in the mean lifespan with respect to controls. Further evidence of antioxidant protection was obtained by assessing ROS production via the DCF assay. The analyses of intracellular SOD activity and MDA content confirmed the existence of an antioxidant protective effect. These results suggest that Tsai Tai might serve as a good source of natural antioxidants, and in particular, Hon Tsai Tai could be explored as a potential dietary supplement to retard aging.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Ju Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Yanxia Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Limin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Yongmei Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Xiangjiu He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Xiaoju Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Xin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zebo Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China. and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
144
|
Ingram T, Chakrabarti L. Proteomic profiling of mitochondria: what does it tell us about the ageing brain? Aging (Albany NY) 2016; 8:3161-3179. [PMID: 27992860 PMCID: PMC5270661 DOI: 10.18632/aging.101131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.
Collapse
Affiliation(s)
- Thomas Ingram
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Lisa Chakrabarti
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
145
|
Bindu S, Pillai VB, Kanwal A, Samant S, Mutlu GM, Verdin E, Dulin N, Gupta MP. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am J Physiol Lung Cell Mol Physiol 2016; 312:L68-L78. [PMID: 27815257 PMCID: PMC5283928 DOI: 10.1152/ajplung.00188.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast differentiation is a key process in the pathogenesis of fibrotic diseases. Transforming growth factor-β1 (TGF-β1) is a powerful inducer of myofibroblast differentiation and is implicated in pathogenesis of tissue fibrosis. This study was undertaken to determine the role of mitochondrial deacetylase SIRT3 in TGF-β1-induced myofibroblast differentiation in vitro and lung fibrosis in vivo. Treatment of human lung fibroblasts with TGF-β1 resulted in increased expression of fibrosis markers, smooth muscle α-actin (α-SMA), collagen-1, and fibronectin. TGF-β1 treatment also caused depletion of endogenous SIRT3, which paralleled with increased production of reactive oxygen species (ROS), DNA damage, and subsequent reduction in levels of 8-oxoguanine DNA glycosylase (OGG1), an enzyme that hydrolyzes oxidized guanine (8-oxo-dG) and thus protects DNA from oxidative damage. Overexpression of SIRT3 by adenovirus-mediated transduction reversed the effects of TGF-β1 on ROS production and mitochondrial DNA damage and inhibited TGF-β1-induced myofibroblast differentiation. To determine the antifibrotic role of SIRT3 in vivo, we used the bleomycin-induced mouse model of pulmonary fibrosis. Compared with wild-type controls, Sirt3-knockout mice showed exacerbated fibrosis after intratracheal instillation of bleomycin. Increased lung fibrosis was associated with decreased levels of OGG1 and concomitant accumulation of 8-oxo-dG and increased mitochondrial DNA damage. In contrast, the transgenic mice with whole body Sirt3 overexpression were protected from bleomycin-induced mtDNA damage and development of lung fibrosis. These data demonstrate a critical role of SIRT3 in the control of myofibroblast differentiation and lung fibrosis.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Surgery, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - Vinodkumar B Pillai
- Department of Surgery, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - Abhinav Kanwal
- Department of Surgery, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - Sadhana Samant
- Department of Surgery, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - Gökhan M Mutlu
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois; and
| | - Eric Verdin
- Gladstone Institute, University of California, San Francisco, San Francisco, California
| | - Nickolai Dulin
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois; and
| | - Mahesh P Gupta
- Department of Surgery, Biological Sciences Division, University of Chicago, Chicago, Illinois;
| |
Collapse
|
146
|
Kreko-Pierce T, Azpurua J, Mahoney RE, Eaton BA. Extension of Health Span and Life Span in Drosophila by S107 Requires the calstabin Homologue FK506-BP2. J Biol Chem 2016; 291:26045-26055. [PMID: 27803160 DOI: 10.1074/jbc.m116.758839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Indexed: 01/07/2023] Open
Abstract
The accumulation of oxidative damage is strongly linked to age-dependent declines in cell function, but the contribution of oxidative damage to morbidity is still debated. Many organisms seem to tolerate oxidative damage, and the extension of health span and life span by augmenting antioxidant activity has been inconsistent. Here we use the Drosophila model system to investigate the relationship among oxidative stress, health span, and life span. The oxidation-dependent dissociation of the Calstabin protein from the ryanodine receptor has been shown to result in reduced muscle function in mammals. The S107 molecule is able to reestablish this binding resulting in improved muscle function. We find that S107 is able to restore motor function in aging Drosophila to young levels, and this effect of S107 is absent in calstabin (FK506-BP2) mutants. Interestingly, FK506-BP2 mutant flies have reduced sensitivity to the effects of age and oxidative stress on motor function between 7 and 35 days of age. Muscle expression of FK506-BP2 in FK506-BP2 mutants completely restores the sensitivity of motor function to both age and oxidative stress, supporting the idea that the age-dependent decline in motor function in Drosophila requires FK506-BP2 function within the muscle. Although FK506-BP2 mutant flies are found to have less sensitivity to oxidative stress, FK506-BP2 mutants do not live longer than wild type. These results demonstrate that the deleterious effects of oxidation on motor function early in life are the result of a singular event that does not compromise survival.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- From the Department of Integrative and Cellular Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229
| | - Jorge Azpurua
- From the Department of Integrative and Cellular Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229
| | - Rebekah E Mahoney
- From the Department of Integrative and Cellular Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229
| | - Benjamin A Eaton
- From the Department of Integrative and Cellular Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
147
|
Chen X, Xiong W, Li C, Gao S, Song X, Wu W, Li B. Comparative RNA-sequencing profiling reveals novel Delta-class glutathione S-transferases relative genes expression patterns in Tribolium castaneum. Gene 2016; 593:13-20. [DOI: 10.1016/j.gene.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
148
|
Crossland H, Atherton PJ, Strömberg A, Gustafsson T, Timmons JA. A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. FASEB J 2016; 31:96-108. [PMID: 27698205 PMCID: PMC5161526 DOI: 10.1096/fj.201600296rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/16/2016] [Indexed: 11/11/2022]
Abstract
We recently developed a binary (i.e., young vs. old) classifier using human muscle RNA profiles that accurately distinguished the age of multiple tissue types. Pathway analysis did not reveal regulators of these 150 genes, so we used reverse genetics and pharmacologic methods to explore regulation of gene expression. Using small interfering RNA, well-studied age-related factors (i.e., rapamycin, resveratrol, TNF-α, and staurosporine), quantitative real-time PCR and clustering analysis, we studied gene-gene interactions in human skeletal muscle and renal epithelial cells. Individual knockdown of 10 different age genes yielded a consistent pattern of gene expression in muscle and renal cells, similar to in vivo. Potential epigenetic interactions included HIST1H3E knockdown, leading to decreased PHF19 and PCDH9, and increased ICAM5 in muscle and renal cells, while ICAM5 knockdown reduced HIST1H3E expression. Resveratrol, staurosporine, and TNF-α significantly regulated the in vivo aging genes, while only rapamycin perturbed the healthy-age gene expression signature in a manner consistent with in vivo. In vitro coordination of gene expression for this in vivo tissue age signature indicates a degree of direct coordination, and the observed link with mTOR activity suggests a direct link between a robust biomarker of healthy neuromuscular age and a major axis of life span in model systems.-Crossland, H., Atherton, P. J., Strömberg, A., Gustafsson, T., Timmons, J. A. A reverse genetics cell-based evaluation of genes linked to healthy human tissue age.
Collapse
Affiliation(s)
- Hannah Crossland
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, United Kingdom; and
| | - Philip J Atherton
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom; and
| | - Anna Strömberg
- Department of Laboratory Medicine, Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, United Kingdom; and
| |
Collapse
|
149
|
Braeckman BP, Smolders A, Back P, De Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid Redox Signal 2016; 25:577-92. [PMID: 27306519 PMCID: PMC5041511 DOI: 10.1089/ars.2016.6751] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. RECENT ADVANCES The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. CRITICAL ISSUES Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. FUTURE DIRECTIONS We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.
Collapse
Affiliation(s)
| | - Arne Smolders
- Biology Department, Ghent University, Ghent, Belgium
| | - Patricia Back
- Biology Department, Ghent University, Ghent, Belgium
| | - Sasha De Henau
- Biology Department, Ghent University, Ghent, Belgium
- Biomedical Genetics, University Medical Center Untrecht, Utrecht, The Netherlands
| |
Collapse
|
150
|
Hekimi S, Wang Y, Noë A. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers! Front Genet 2016; 7:161. [PMID: 27683586 PMCID: PMC5021979 DOI: 10.3389/fgene.2016.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023] Open
Abstract
It has become clear that mitochondrial reactive oxygen species (mtROS) are not simply villains and mitochondria the hapless targets of their attacks. Rather, it appears that mitochondrial dysfunction itself and the signaling function of mtROS can have positive effects on lifespan, helping to extend longevity. If events in the mitochondria can lead to better cellular homeostasis and better survival of the organism in ways beyond providing ATP and biosynthetic products, we can conjecture that they act on other cellular components through appropriate signaling pathways. We describe recent advances in a variety of species which promoted our understanding of how changes of mtROS generation are part of a system of signaling pathways that emanate from the mitochondria to impact organism lifespan through global changes, including in transcriptional patterns. In unraveling this, many old players in cellular homeostasis were encountered. Among these, maybe most strikingly, is the intrinsic apoptotic signaling pathway, which is the conduit by which at least one class of mtROS exercise their actions in the nematode Caenorhabditis elegans. This is a pathway that normally contributes to organismal homeostasis by killing defective or otherwise unwanted cells, and whose various compounds have also been implicated in other cellular processes. However, it was a surprise that that appropriate activation of a cell killing pathway can in fact prolong the lifespan of the organism. In the soma of adult C. elegans, all cells are post-mitotic, like many of our neurons and possibly some of our immune cells. These cells cannot simply be killed and replaced when showing signs of dysfunction. Thus, we speculate that it is the ability of the apoptotic pathway to pull together information about the functional and structural integrity of different cellular compartments that is the key property for why this pathway is used to decide when to boost defensive and repair processes in irreplaceable cells. When this process is artificially stimulated in mutants with elevated mtROS generation or with drug treatments it leads to lifespan prolongations beyond the normal lifespan of the organism.
Collapse
Affiliation(s)
| | - Ying Wang
- Department of Biology, McGill University Montreal, QC, Canada
| | - Alycia Noë
- Department of Biology, McGill University Montreal, QC, Canada
| |
Collapse
|