101
|
Abstract
Bacteria and bacteriophages have evolved DNA modification as a strategy to protect their genomes. Mom protein of bacteriophage Mu modifies the phage DNA, rendering it refractile to numerous restriction enzymes and in turn enabling the phage to successfully invade a variety of hosts. A strong fortification, a combined activity of the phage and host factors, prevents untimely expression of mom and associated toxic effects. Here, we identify the bacterial chromatin architectural protein Fis as an additional player in this crowded regulatory cascade. Both in vivo and in vitro studies described here indicate that Fis acts as a transcriptional repressor of mom promoter. Further, our data shows that Fis mediates its repressive effect by denying access to RNA polymerase at mom promoter. We propose that a combined repressive effect of Fis and previously characterized negative regulatory factors could be responsible to keep the gene silenced most of the time. We thus present a new facet of Fis function in Mu biology. In addition to bringing about overall downregulation of Mu genome, it also ensures silencing of the advantageous but potentially lethal mom gene.
Collapse
Affiliation(s)
- Shweta Karambelkar
- Department of Microbiology and Cell Biology, Indian Institute of Science and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | | | | |
Collapse
|
102
|
Ge J, Lou Z, Cui H, Shang L, Harshey RM. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements. J Biosci 2012; 36:587-601. [PMID: 21857106 DOI: 10.1007/s12038-011-9108-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
103
|
Ishihama A. Prokaryotic genome regulation: a revolutionary paradigm. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:485-508. [PMID: 23138451 PMCID: PMC3511978 DOI: 10.2183/pjab.88.485] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
After determination of the whole genome sequence, the research frontier of bacterial molecular genetics has shifted to reveal the genome regulation under stressful conditions in nature. The gene selectivity of RNA polymerase is modulated after interaction with two groups of regulatory proteins, 7 sigma factors and 300 transcription factors. For identification of regulation targets of transcription factors in Escherichia coli, we have developed Genomic SELEX system and subjected to screening the binding sites of these factors on the genome. The number of regulation targets by a single transcription factor was more than those hitherto recognized, ranging up to hundreds of promoters. The number of transcription factors involved in regulation of a single promoter also increased to as many as 30 regulators. The multi-target transcription factors and the multi-factor promoters were assembled into complex networks of transcription regulation. The most complex network was identified in the regulation cascades of transcription of two master regulators for planktonic growth and biofilm formation.
Collapse
Affiliation(s)
- Akira Ishihama
- Department of Frontier Bioscience and Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-8584, Japan.
| |
Collapse
|
104
|
Cho BK, Federowicz S, Park YS, Zengler K, Palsson BØ. Deciphering the transcriptional regulatory logic of amino acid metabolism. Nat Chem Biol 2011; 8:65-71. [PMID: 22082910 DOI: 10.1038/nchembio.710] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 08/27/2011] [Indexed: 11/09/2022]
Abstract
Although metabolic networks have been reconstructed on a genome scale, the corresponding reconstruction and integration of governing transcriptional regulatory networks has not been fully achieved. Here we reconstruct such an integrated network for amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and gene expression data for the transcription factors ArgR, Lrp and TrpR showed that 19 out of 20 amino acid biosynthetic pathways are either directly or indirectly controlled by these regulators. Classifying the regulated genes into three functional categories of transport, biosynthesis and metabolism leads to the elucidation of regulatory motifs that constitute the integrated network's basic building blocks. The regulatory logic of these motifs was determined on the basis of relationships between transcription factor binding and changes in the amount of transcript in response to exogenous amino acids. Remarkably, the resulting logic shows how amino acids are differentiated as signaling and nutrient molecules, revealing the overarching regulatory principles of the amino acid stimulon.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California at San Diego, La Jolla, California, USA.
| | | | | | | | | |
Collapse
|
105
|
Cho BK, Palsson B, Zengler K. Deciphering the regulatory codes in bacterial genomes. Biotechnol J 2011; 6:1052-63. [PMID: 21845736 DOI: 10.1002/biot.201000349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/30/2011] [Accepted: 07/25/2011] [Indexed: 12/24/2022]
Abstract
Interactions between cis-regulatory elements and trans-acting factors are fundamental for cellular functions such as transcription. With the revolution in microarrays and sequencing technologies, genome-wide binding locations of trans-acting factors are being determined in large numbers. The richness of the genome-scale information has revealed that the nature of the bacterial transcriptome and regulome are considerably more complex than previously expected. In addition, the emerging view of the bacterial transcriptome is revising the concept of the operon organization of the genome. This review describes current advances in the genome-scale analysis of the interaction between cis-regulatory elements and trans-acting factors in microorganisms.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | | | | |
Collapse
|
106
|
Dame RT, Kalmykowa OJ, Grainger DC. Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in gram negative bacteria. PLoS Genet 2011; 7:e1002123. [PMID: 21698131 PMCID: PMC3116907 DOI: 10.1371/journal.pgen.1002123] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Escherichia coli chromosome is organized into four macrodomains, the function and organisation of which are poorly understood. In this review we focus on the MatP, SeqA, and SlmA proteins that have recently been identified as the first examples of factors with macrodomain-specific DNA-binding properties. In particular, we review the evidence that these factors contribute towards the control of chromosome replication and segregation by specifically targeting subregions of the genome and contributing towards their unique properties. Genome sequence analysis of multiple related bacteria, including pathogenic species, reveals that macrodomain-specific distribution of SeqA, SlmA, and MatP is conserved, suggesting common principles of chromosome organisation in these organisms. This discovery of proteins with macrodomain-specific binding properties hints that there are other proteins with similar specificity yet to be unveiled. We discuss the roles of the proteins identified to date as well as strategies that may be employed to discover new factors.
Collapse
Affiliation(s)
- Remus T. Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Laboratory of Molecular Genetics and Cell Observatory, Leiden University, Leiden, The Netherlands
- * E-mail: (DCG); (RTD)
| | - Olga J. Kalmykowa
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Laboratory of Molecular Genetics and Cell Observatory, Leiden University, Leiden, The Netherlands
| | - David C. Grainger
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail: (DCG); (RTD)
| |
Collapse
|
107
|
Cho BK, Federowicz SA, Embree M, Park YS, Kim D, Palsson BØ. The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Res 2011; 39:6456-64. [PMID: 21572102 PMCID: PMC3159470 DOI: 10.1093/nar/gkr307] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The PurR transcription factor plays a critical role in transcriptional regulation of purine metabolism in enterobacteria. Here, we elucidate the role of PurR under exogenous adenine stimulation at the genome-scale using high-resolution chromatin immunoprecipitation (ChIP)–chip and gene expression data obtained under in vivo conditions. Analysis of microarray data revealed that adenine stimulation led to changes in transcript level of about 10% of Escherichia coli genes, including the purine biosynthesis pathway. The E. coli strain lacking the purR gene showed that a total of 56 genes are affected by the deletion. From the ChIP–chip analysis, we determined that over 73% of genes directly regulated by PurR were enriched in the biosynthesis, utilization and transport of purine and pyrimidine nucleotides, and 20% of them were functionally unknown. Compared to the functional diversity of the regulon of the other general transcription factors in E. coli, the functions and size of the PurR regulon are limited.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
108
|
Xiao B, Zhang H, Johnson RC, Marko JF. Force-driven unbinding of proteins HU and Fis from DNA quantified using a thermodynamic Maxwell relation. Nucleic Acids Res 2011; 39:5568-77. [PMID: 21427084 PMCID: PMC3141252 DOI: 10.1093/nar/gkr141] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining numbers of proteins bound to large DNAs is important for understanding their chromosomal functions. Protein numbers may be affected by physical factors such as mechanical forces generated in DNA, e.g. by transcription or replication. We performed single-DNA stretching experiments with bacterial nucleoid proteins HU and Fis, verifying that the force-extension measurements were in thermodynamic equilibrium. We, therefore, could use a thermodynamic Maxwell relation to deduce the change of protein number on a single DNA due to varied force. For the binding of both HU and Fis under conditions studied, numbers of bound proteins decreased as force was increased. Our experiments showed that most of the bound HU proteins were driven off the DNA at 6.3 pN for HU concentrations lower than 150 nM; our HU data were fit well by a statistical-mechanical model of protein-induced bending of DNA. In contrast, a significant amount of Fis proteins could not be forced off the DNA at forces up to 12 pN and Fis concentrations up to 20 nM. This thermodynamic approach may be applied to measure changes in numbers of a wide variety of molecules bound to DNA or other polymers. Force-dependent DNA binding by proteins suggests mechano-chemical mechanisms for gene regulation.
Collapse
Affiliation(s)
- Botao Xiao
- Department of Physics and Astronomy, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
109
|
Cameron ADS, Stoebel DM, Dorman CJ. DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 2011; 80:85-101. [DOI: 10.1111/j.1365-2958.2011.07560.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
110
|
Rimsky S, Travers A. Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 2011; 14:136-41. [PMID: 21288763 DOI: 10.1016/j.mib.2011.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/10/2023]
Abstract
Bacterial DNA is organised in a compact nucleoid body that is tightly associated with the coupled transcription and translation of mRNAs. This structure contains abundant DNA-binding proteins which perform both structural and regulatory roles, and, in Escherichia coli, serve to buffer and organise pervasive DNA superhelicity. We argue that NAPs coordinate regulation of gene expression and superhelicity at the global (or chromosomal) and at local (corresponding to promoter activity and genetic recombination) levels.
Collapse
Affiliation(s)
- Sylvie Rimsky
- LBPA, Ecole Normale Supérieure de Cachan, CNRS, 94235 Cachan, France.
| | | |
Collapse
|
111
|
Scolari VF, Bassetti B, Sclavi B, Lagomarsino MC. Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. ACTA ACUST UNITED AC 2011; 7:878-88. [DOI: 10.1039/c0mb00213e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
112
|
Seshasayee ASN, Sivaraman K, Luscombe NM. An overview of prokaryotic transcription factors : a summary of function and occurrence in bacterial genomes. Subcell Biochem 2011; 52:7-23. [PMID: 21557077 DOI: 10.1007/978-90-481-9069-0_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional initiation is arguably the most important control point for gene expression. It is regulated by a combination of factors, including DNA sequence and its three-dimensional topology, proteins and small molecules. In this chapter, we focus on the trans-acting factors of bacterial regulation. Initiation begins with the recruitment of the RNA polymerase holoenzyme to a specific locus upstream of the gene known as its promoter. The sigma factor, which is a component of the holoenzyme, provides the most fundamental mechanisms for orchestrating broad changes in gene expression state. It is responsible for promoter recognition as well as recruiting the holoenzyme to the promoter. Distinct sigma factors compete with for binding to a common pool of RNA polymerases, thus achieving condition-dependent differential expression. Another important class of bacterial regulators is transcription factors, which activate or repress transcription of target genes typically in response to an environmental or cellular trigger. These factors may be global or local depending on the number of genes and range of cellular functions that they target. The activities of both global and local transcription factors may be regulated either at a post-transcriptional level via signal-sensing protein domains or at the level of their own expression. In addition to modulating polymerase recruitment to promoters, several global factors are considered as "nucleoid-associated proteins" that impose structural constraints on the chromosome by altering the conformation of the bound DNA, thus influencing other processes involving DNA such as replication and recombination. This chapter concludes with a discussion of how regulatory interactions between transcription factors and their target genes can be represented as a network.
Collapse
|
113
|
Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 2011; 79:484-502. [PMID: 21219465 PMCID: PMC3071548 DOI: 10.1111/j.1365-2958.2010.07465.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Natalia Beloglazova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Robert Flick
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Chris Graham
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Tatiana Skarina
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Alla Gagarinova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Oxana Pogoutse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Greg Brown
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrew Binkowski
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Aled M. Edwards
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Alexander F. Yakunin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| |
Collapse
|
114
|
Browning DF, Grainger DC, Busby SJW. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 2010; 13:773-80. [DOI: 10.1016/j.mib.2010.09.013] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
|
115
|
Graham JS, Johnson RC, Marko JF. Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 2010; 39:2249-59. [PMID: 21097894 PMCID: PMC3064784 DOI: 10.1093/nar/gkq1140] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each other. In experiments focused on the Escherichia coli nucleoid-associated protein Fis, only a small fraction of protein bound to DNA spontaneously dissociates into protein-free solution. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over the bound protein, with a rate of kexch = 6 × 104 M−1s−1. The bacterial DNA-binding protein HU and the yeast HMGB protein NHP6A display the same phenomenon of protein in solution accelerating dissociation of previously bound labeled proteins as exchange occurs. Thus, solvated proteins can play a key role in facilitating removal and renewal of proteins bound to the double helix, an effect that likely plays a major role in promoting the turnover of proteins bound to DNA in vivo and, therefore, in controlling the dynamics of gene regulation.
Collapse
Affiliation(s)
- John S Graham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, USA.
| | | | | |
Collapse
|
116
|
Kahramanoglou C, Seshasayee ASN, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 2010; 39:2073-91. [PMID: 21097887 PMCID: PMC3064808 DOI: 10.1093/nar/gkq934] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) are global regulators of gene expression in Escherichia coli, which affect DNA conformation by bending, wrapping and bridging the DNA. Two of these--H-NS and Fis--bind to specific DNA sequences and structures. Because of their importance to global gene expression, the binding of these NAPs to the DNA was previously investigated on a genome-wide scale using ChIP-chip. However, variation in their binding profiles across the growth phase and the genome-scale nature of their impact on gene expression remain poorly understood. Here, we present a genome-scale investigation of H-NS and Fis binding to the E. coli chromosome using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq). By performing our experiments under multiple time-points during growth in rich media, we show that the binding regions of the two proteins are mutually exclusive under our experimental conditions. H-NS binds to significantly longer tracts of DNA than Fis, consistent with the linear spread of H-NS binding from high- to surrounding lower-affinity sites; the length of binding regions is associated with the degree of transcriptional repression imposed by H-NS. For Fis, a majority of binding events do not lead to differential expression of the proximal gene; however, it has a significant indirect effect on gene expression partly through its effects on the expression of other transcription factors. We propose that direct transcriptional regulation by Fis is associated with the interaction of tandem arrays of Fis molecules to the DNA and possible DNA bending, particularly at operon-upstream regions. Our study serves as a proof-of-principle for the use of ChIP-seq for global DNA-binding proteins in bacteria, which should become significantly more economical and feasible with the development of multiplexing techniques.
Collapse
|
117
|
Bauer AL, Hlavacek WS, Unkefer PJ, Mu F. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites. PLoS Comput Biol 2010; 6:e1001007. [PMID: 21124945 PMCID: PMC2987836 DOI: 10.1371/journal.pcbi.1001007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022] Open
Abstract
An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF). Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.
Collapse
Affiliation(s)
- Amy L. Bauer
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Pat J. Unkefer
- National Stable Isotope Resource, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Fangping Mu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
118
|
Aikawa C, Maruyama F, Nakagawa I. The dawning era of comprehensive transcriptome analysis in cellular microbiology. Front Microbiol 2010; 1:118. [PMID: 21687718 PMCID: PMC3109594 DOI: 10.3389/fmicb.2010.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/06/2010] [Indexed: 01/19/2023] Open
Abstract
Bacteria rapidly change their transcriptional patterns during infection in order to adapt to the host environment. To investigate host–bacteria interactions, various strategies including the use of animal infection models, in vitro assay systems and microscopic observations have been used. However, these studies primarily focused on a few specific genes and molecules in bacteria. High-density tiling arrays and massively parallel sequencing analyses are rapidly improving our understanding of the complex host–bacterial interactions through identification and characterization of bacterial transcriptomes. Information resulting from these high-throughput techniques will continue to provide novel information on the complexity, plasticity, and regulation of bacterial transcriptomes as well as their adaptive responses relative to pathogenecity. Here we summarize recent studies using these new technologies and discuss the utility of transcriptome analysis.
Collapse
Affiliation(s)
- Chihiro Aikawa
- Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | | | | |
Collapse
|
119
|
Barrett CL, Cho BK, Palsson BO. Sensitive and accurate identification of protein-DNA binding events in ChIP-chip assays using higher order derivative analysis. Nucleic Acids Res 2010; 39:1656-65. [PMID: 21051353 PMCID: PMC3061075 DOI: 10.1093/nar/gkq848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immuno-precipitation of protein-DNA complexes followed by microarray hybridization is a powerful and cost-effective technology for discovering protein-DNA binding events at the genome scale. It is still an unresolved challenge to comprehensively, accurately and sensitively extract binding event information from the produced data. We have developed a novel strategy composed of an information-preserving signal-smoothing procedure, higher order derivative analysis and application of the principle of maximum entropy to address this challenge. Importantly, our method does not require any input parameters to be specified by the user. Using genome-scale binding data of two Escherichia coli global transcription regulators for which a relatively large number of experimentally supported sites are known, we show that ∼90% of known sites were resolved to within four probes, or ∼88 bp. Over half of the sites were resolved to within two probes, or ∼38 bp. Furthermore, we demonstrate that our strategy delivers significant quantitative and qualitative performance gains over available methods. Such accurate and sensitive binding site resolution has important consequences for accurately reconstructing transcriptional regulatory networks, for motif discovery, for furthering our understanding of local and non-local factors in protein-DNA interactions and for extending the usefulness horizon of the ChIP-chip platform.
Collapse
Affiliation(s)
- Christian L Barrett
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
120
|
Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 2010; 34:628-45. [DOI: 10.1111/j.1574-6976.2010.00227.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
121
|
Kaleta C, Göhler A, Schuster S, Jahreis K, Guthke R, Nikolajewa S. Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis. BMC SYSTEMS BIOLOGY 2010; 4:116. [PMID: 20718955 PMCID: PMC2936295 DOI: 10.1186/1752-0509-4-116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
Background Although Escherichia coli is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference. Results We used a three-step approach in which we combined gene regulatory network inference based on directed information (DTI) and sequence analysis. DTI values were calculated on a set of gene expression profiles from 19 time course experiments extracted from the Many Microbes Microarray Database. Focusing on influences between pairs of genes in which one partner encodes a transcription factor (TF) we derived a network which contains 878 TF - gene interactions of which 166 are known according to RegulonDB. Afterward, we selected a subset of 109 interactions that could be confirmed by the presence of a phylogenetically conserved binding site of the respective regulator. By this second step, the fraction of known interactions increased from 19% to 60%. In the last step, we checked the 44 of the 109 interactions not yet included in RegulonDB for functional relationships between the regulator and the target and, thus, obtained ten TF - target gene interactions. Five of them concern the regulator LexA and have already been reported in the literature. The remaining five influences describe regulations by Fis (with two novel targets), PhdR, PhoP, and KdgR. For the validation of our approach, one of them, the regulation of lipoate synthase (LipA) by the pyruvate-sensing pyruvate dehydrogenate repressor (PdhR), was experimentally checked and confirmed. Conclusions We predicted a set of five novel TF - target gene interactions in E. coli. One of them, the regulation of lipA by the transcriptional regulator PdhR was validated experimentally. Furthermore, we developed DTInfer, a new R-package for the inference of gene-regulatory networks from microarrays using directed information.
Collapse
Affiliation(s)
- Christoph Kaleta
- Systems Biology/Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr, 11a, D-07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
122
|
Waldminghaus T, Skarstad K. ChIP on Chip: surprising results are often artifacts. BMC Genomics 2010; 11:414. [PMID: 20602746 PMCID: PMC2996942 DOI: 10.1186/1471-2164-11-414] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 07/05/2010] [Indexed: 12/02/2022] Open
Abstract
Background The method of chromatin immunoprecipitation combined with microarrays (ChIP-Chip) is a powerful tool for genome-wide analysis of protein binding. However, a high background signal is a common phenomenon. Results Reinvestigation of the chromatin immunoprecipitation procedure led us to discover four causes of high background: i) non-unique sequences, ii) incomplete reversion of crosslinks, iii) retention of protein in spin-columns and iv) insufficient RNase treatment. The chromatin immunoprecipitation method was modified and applied to analyze genome-wide binding of SeqA and σ32 in Escherichia coli. Conclusions False positive findings originating from these shortcomings of the method could explain surprising and contradictory findings in published ChIP-Chip studies. We present a modified chromatin immunoprecipitation method greatly reducing the background signal.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, 0310 Oslo, Norway
| | | |
Collapse
|
123
|
Qiu Y, Cho BK, Park YS, Lovley D, Palsson BØ, Zengler K. Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res 2010; 20:1304-11. [PMID: 20592237 DOI: 10.1101/gr.107540.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prokaryotic genomes can be annotated based on their structural, operational, and functional properties. These annotations provide the pivotal scaffold for understanding cellular functions on a genome-scale, such as metabolism and transcriptional regulation. Here, we describe a systems approach to simultaneously determine the structural and operational annotation of the Geobacter sulfurreducens genome. Integration of proteomics, transcriptomics, RNA polymerase, and sigma factor-binding information with deep-sequencing-based analysis of primary 5'-end transcripts allowed for a most precise annotation. The structural annotation is comprised of numerous previously undetected genes, noncoding RNAs, prevalent leaderless mRNA transcripts, and antisense transcripts. When compared with other prokaryotes, we found that the number of antisense transcripts reversely correlated with genome size. The operational annotation consists of 1453 operons, 22% of which have multiple transcription start sites that use different RNA polymerase holoenzymes. Several operons with multiple transcription start sites encoded genes with essential functions, giving insight into the regulatory complexity of the genome. The experimentally determined structural and operational annotations can be combined with functional annotation, yielding a new three-level annotation that greatly expands our understanding of prokaryotic genomes.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
124
|
Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 2010; 76:1250-65. [PMID: 20444106 DOI: 10.1111/j.1365-2958.2010.07173.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.
Collapse
Affiliation(s)
- Shane C Dillon
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
125
|
Stella S, Cascio D, Johnson RC. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev 2010; 24:814-26. [PMID: 20395367 DOI: 10.1101/gad.1900610] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The bacterial nucleoid-associated protein Fis regulates diverse reactions by bending DNA and through DNA-dependent interactions with other control proteins and enzymes. In addition to dynamic nonspecific binding to DNA, Fis forms stable complexes with DNA segments that share little sequence conservation. Here we report the first crystal structures of Fis bound to high- and low-affinity 27-base-pair DNA sites. These 11 structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the minor groove and sequence-dependent induced fits over adjacent major groove interfaces. The DNA shows an overall curvature of approximately 65 degrees , and the unprecedented close spacing between helix-turn-helix motifs present in the apodimer is accommodated by severe compression of the central minor groove. In silico DNA structure models show that only the roll, twist, and slide parameters are sufficient to reproduce the changes in minor groove widths and recreate the curved Fis-bound DNA structure. Models based on naked DNA structures suggest that Fis initially selects DNA targets with intrinsically narrow minor grooves using the separation between helix-turn-helix motifs in the Fis dimer as a ruler. Then Fis further compresses the minor groove and bends the DNA to generate the bound structure.
Collapse
Affiliation(s)
- Stefano Stella
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, 90095-1737, USA
| | | | | |
Collapse
|
126
|
Tomljenovic-Berube AM, Mulder DT, Whiteside MD, Brinkman FSL, Coombes BK. Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system. PLoS Genet 2010; 6:e1000875. [PMID: 20300643 PMCID: PMC2837388 DOI: 10.1371/journal.pgen.1000875] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/06/2010] [Indexed: 11/19/2022] Open
Abstract
Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host. All organisms have a means to control gene expression ensuring correct spatiotemporal deployment of gene products. In bacteria, gene control presents a challenge because one species can reside in multiple niches, requiring them to coordinate gene expression with environmental sensing. Also, widespread acquisition of DNA by horizontal gene transfer demands a mechanism to integrate new genes into existing regulatory circuitry. The environmental awareness issue can be controlled using two-component regulatory systems that connect environmental cues to transcription factor activation, whereas the integration problem can be resolved using DNA regulatory evolution to create new regulatory connections between genes. The evolutionary significance of regulatory evolution for host adaptation is not fully known. We studied the convergence of environmental sensing and genetic networks by examining how the Salmonella enterica SsrA-SsrB two-component system, activated in response to host cues, has integrated ancestral and acquired genes into a common regulon. We identified a palindrome as the major element apportioning SsrB on the chromosome. SsrB binding sites have been selected to co-regulate a gene program involved in pathogenic adaptation of Salmonella to its host. In addition, our results indicate that promoter architecture emerging from SsrB-dependent regulatory evolution may support both mutualistic and parasitic bacteria-host relationships.
Collapse
Affiliation(s)
- Ana M. Tomljenovic-Berube
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - David T. Mulder
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Matthew D. Whiteside
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
127
|
Abstract
Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
Collapse
|
128
|
Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 2010; 6:e1000750. [PMID: 20140235 PMCID: PMC2816674 DOI: 10.1371/journal.ppat.1000750] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/06/2010] [Indexed: 02/02/2023] Open
Abstract
P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors. Pasteurella multocida is an animal pathogen of worldwide economic significance. It causes fowl cholera in wild birds and poultry, hemorrhagic septicemia in ungulates, and atrophic rhinitis in swine. The major virulence factor in fowl cholera-causing isolates is the polysaccharide capsule, which is composed of hyaluronic acid. Although there have been reports of spontaneous capsule loss in some strains, to date there has been no systematic investigation into the molecular mechanisms of this phenomenon. In this study, we describe for the first time the underlying transcriptional mechanisms required for the expression of capsule in P. multocida, and identify a transcriptional regulator required for capsule production.
Collapse
|
129
|
Grainger WH, Machón C, Scott DJ, Soultanas P. DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis. Nucleic Acids Res 2010; 38:2851-64. [PMID: 20071750 PMCID: PMC2874997 DOI: 10.1093/nar/gkp1236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Initiation of bacterial DNA replication at oriC is mediated by primosomal proteins that act cooperatively to melt an AT-rich region where the replicative helicase is loaded prior to the assembly of the replication fork. In Bacillus subtilis, the dnaD, dnaB and dnaI genes are essential for initiation of DNA replication. We established that their mRNAs are maintained in fast growing asynchronous cultures. DnaB is truncated at its C-terminus in a growth phase-dependent manner. Proteolysis is confined to cytosolic, not to membrane-associated DnaB, and affects oligomerization. Truncated DnaB is depleted at the oriC relative to the native protein. We propose that DNA-induced oligomerization is essential for its action at oriC and proteolysis regulates its localization at oriC. We show that DnaB has two separate ssDNA-binding sites one located within residues 1–300 and another between residues 365–428, and a dsDNA-binding site within residues 365–428. Tetramerization of DnaB is mediated within residues 1–300, and DNA-dependent oligomerization within residues 365–428. Finally, we show that association of DnaB with the oriC is asymmetric and extensive. It encompasses an area from the middle of dnaA to the end of yaaA that includes the AT-rich region melted during the initiation stage of DNA replication.
Collapse
Affiliation(s)
- William H Grainger
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
130
|
Pin C, Rolfe MD, Muñoz-Cuevas M, Hinton JCD, Peck MW, Walton NJ, Baranyi J. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase. BMC SYSTEMS BIOLOGY 2009; 3:108. [PMID: 19917103 PMCID: PMC2780417 DOI: 10.1186/1752-0509-3-108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells. Numerous genes encoding transporters for carbohydrates and organic alcohols and acids were down-regulated in old cells only. Conclusion Network analysis revealed very different transcriptional activities during the lag period in old and young cells. Rejuvenation seems to take place during exponential growth by replicative dilution of old cellular components.
Collapse
Affiliation(s)
- Carmen Pin
- Institute of Food Research, Norwich NR4 7UA, UK.
| | | | | | | | | | | | | |
Collapse
|
131
|
Cho BK, Zengler K, Qiu Y, Park YS, Knight EM, Barrett CL, Gao Y, Palsson BØ. The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 2009; 27:1043-9. [PMID: 19881496 DOI: 10.1038/nbt.1582] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 10/09/2009] [Indexed: 01/26/2023]
Abstract
Bacterial genomes are organized by structural and functional elements, including promoters, transcription start and termination sites, open reading frames, regulatory noncoding regions, untranslated regions and transcription units. Here, we iteratively integrate high-throughput, genome-wide measurements of RNA polymerase binding locations and mRNA transcript abundance, 5' sequences and translation into proteins to determine the organizational structure of the Escherichia coli K-12 MG1655 genome. Integration of the organizational elements provides an experimentally annotated transcription unit architecture, including alternative transcription start sites, 5' untranslated region, boundaries and open reading frames of each transcription unit. A total of 4,661 transcription units were identified, representing an increase of >530% over current knowledge. This comprehensive transcription unit architecture allows for the elucidation of condition-specific uses of alternative sigma factors at the genome scale. Furthermore, the transcription unit architecture provides a foundation on which to construct genome-scale transcriptional and translational regulatory networks.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Cho BK, Palsson BØ. Can the protein occupancy landscape show the topologically isolated chromosomal domains in the E. coli genome?: An exciting prospect. Mol Cell 2009; 35:255-6. [PMID: 19683488 DOI: 10.1016/j.molcel.2009.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2009] [Indexed: 11/29/2022]
Abstract
In a recent issue of Molecular Cell, Vora et al. (2009) introduce an in vivo protein occupancy display (IPOD) technology and propose that the domains extensively occupied by proteins with inactive transcription in bacteria are mainly topologically isolated chromosomal domains.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, USA
| | | |
Collapse
|
133
|
Grainger DC, Lee DJ, Busby SJW. Direct methods for studying transcription regulatory proteins and RNA polymerase in bacteria. Curr Opin Microbiol 2009; 12:531-5. [PMID: 19762273 DOI: 10.1016/j.mib.2009.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/22/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
Transcription factors and sigma factors play a major role in bacterial gene regulation by guiding the distribution of RNA polymerase between the promoters of different transcription units in response to changes in the environment. For 40 years Escherichia coli K-12 has been the paradigm for investigating this regulation and most studies have focused on small numbers of promoters studied by a combination of genetics and biochemistry. Since the first complete sequence for a bacterial genome was reported, the emphasis has switched to studying transcription on a global scale, with transcriptomics and bioinformatics becoming the methods of choice. Here we discuss two complementary direct experimental methods for studying transcription factors and sigma factors and we outline their potential use in rapidly establishing the regulatory networks in newly sequenced bacteria.
Collapse
Affiliation(s)
- David C Grainger
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
134
|
Protein occupancy landscape of a bacterial genome. Mol Cell 2009; 35:247-53. [PMID: 19647521 DOI: 10.1016/j.molcel.2009.06.035] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/07/2009] [Accepted: 06/24/2009] [Indexed: 11/22/2022]
Abstract
Protein-DNA interactions are fundamental to core biological processes, including transcription, DNA replication, and chromosomal organization. We have developed in vivo protein occupancy display (IPOD), a technology that reveals protein occupancy across an entire bacterial chromosome at the resolution of individual binding sites. Application to Escherichia coli reveals thousands of protein occupancy peaks, highly enriched within and in close proximity to noncoding regulatory regions. In addition, we discovered extensive (>1 kilobase) protein occupancy domains (EPODs), some of which are localized to highly expressed genes, enriched in RNA-polymerase occupancy. However, the majority are localized to transcriptionally silent loci dominated by conserved hypothetical ORFs. These regions are highly enriched in both predicted and experimentally determined binding sites of nucleoid proteins and exhibit extreme biophysical characteristics such as high intrinsic curvature. Our observations implicate these transcriptionally silent EPODs as the elusive organizing centers, long proposed to topologically isolate chromosomal domains.
Collapse
|
135
|
Gianchandani EP, Joyce AR, Palsson BØ, Papin JA. Functional states of the genome-scale Escherichia coli transcriptional regulatory system. PLoS Comput Biol 2009; 5:e1000403. [PMID: 19503608 PMCID: PMC2685017 DOI: 10.1371/journal.pcbi.1000403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 05/04/2009] [Indexed: 11/19/2022] Open
Abstract
A transcriptional regulatory network (TRN) constitutes the collection of regulatory rules that link environmental cues to the transcription state of a cell's genome. We recently proposed a matrix formalism that quantitatively represents a system of such rules (a transcriptional regulatory system [TRS]) and allows systemic characterization of TRS properties. The matrix formalism not only allows the computation of the transcription state of the genome but also the fundamental characterization of the input-output mapping that it represents. Furthermore, a key advantage of this “pseudo-stoichiometric” matrix formalism is its ability to easily integrate with existing stoichiometric matrix representations of signaling and metabolic networks. Here we demonstrate for the first time how this matrix formalism is extendable to large-scale systems by applying it to the genome-scale Escherichia coli TRS. We analyze the fundamental subspaces of the regulatory network matrix (R) to describe intrinsic properties of the TRS. We further use Monte Carlo sampling to evaluate the E. coli transcription state across a subset of all possible environments, comparing our results to published gene expression data as validation. Finally, we present novel in silico findings for the E. coli TRS, including (1) a gene expression correlation matrix delineating functional motifs; (2) sets of gene ontologies for which regulatory rules governing gene transcription are poorly understood and which may direct further experimental characterization; and (3) the appearance of a distributed TRN structure, which is in stark contrast to the more hierarchical organization of metabolic networks. Cells are comprised of genomic information that encodes for proteins, the basic building blocks underlying all biological processes. A transcriptional regulatory system (TRS) connects a cell's environmental cues to its genome and in turn determines which genes are turned “on” in response to these cues. Consequently, TRSs control which proteins of an intracellular biochemical reaction network are present. These systems have been mathematically described, often through Boolean expressions that represent the activation or inhibition of gene transcription in response to various inputs. We recently developed a matrix formalism that extends these approaches and facilitates a quantitative representation of the Boolean logic underlying a TRS. We demonstrated on small-scale TRSs that this matrix representation is advantageous in that it facilitates the calculation of unique properties of a given TRS. Here we apply this matrix formalism to the genome-scale Escherichia coli TRS, demonstrating for the first time the predictive power of the approach at a large scale. We use the matrix-based model of E. coli transcriptional regulation to generate novel findings about the system, including new functional motifs; sets of genes whose regulation is poorly understood; and features of the TRS structure.
Collapse
Affiliation(s)
- Erwin P. Gianchandani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Andrew R. Joyce
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Bernhard Ø. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
136
|
Competition between NarL-dependent activation and Fis-dependent repression controls expression from the Escherichia coli yeaR and ogt promoters. Biochem J 2009; 420:249-57. [DOI: 10.1042/bj20090183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli NarL protein is a global gene regulatory factor that activates transcription at many target promoters in response to nitrate and nitrite ions. Although most NarL-dependent promoters are also co-dependent on a second transcription factor, FNR protein, two targets, the yeaR and ogt promoters, are activated by NarL alone with no involvement of FNR. Biochemical and genetic studies presented here show that activation of the yeaR promoter is dependent on the binding of NarL to a single target centred at position −43.5, whereas activation at the ogt promoter requires NarL binding to tandem DNA targets centred at position −45.5 and −78.5. NarL-dependent activation at both the yeaR and ogt promoters is decreased in rich medium and this depends on Fis, a nucleoid-associated protein. DNase I footprinting studies identified Fis-binding sites that overlap the yeaR promoter NarL site at position −43.5, and the ogt promoter NarL site at position −78.5, and suggest that Fis represses both promoters by displacing NarL. The ogt gene encodes an O6-alkylguanine DNA alkyltransferase and, hence, this is the first report of expression of a DNA repair function being controlled by nitrate ions.
Collapse
|
137
|
Dorman CJ. Nucleoid-associated proteins and bacterial physiology. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:47-64. [PMID: 19245936 DOI: 10.1016/s0065-2164(08)01002-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial physiology is enjoying a renaissance in the postgenomic era as investigators struggle to interpret the wealth of new data that has emerged and continues to emerge from genome sequencing projects and from analyses of bacterial gene regulation patterns using whole-genome methods at the transcriptional and posttranscriptional levels. Information from model organisms such as the Gram-negative bacterium Escherichia coli is proving to be invaluable in providing points of reference for such studies. An important feature of this work concerns the nature of global mechanisms of gene regulation where a relatively small number of regulatory proteins affect the expression of scores of genes simultaneously. The nucleoid-associated proteins, especially Factor for Inversion Stimulation (Fis), IHF, H-NS, HU, and Lrp, represent a prominent group of global regulators and studies of these proteins and their roles in bacterial physiology are providing new insights into how the bacterium governs gene expression in ways that maximize its competitive advantage.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
138
|
Balleza E, López-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI, Encarnación S, Collado-Vides J. Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 2009; 33:133-51. [PMID: 19076632 PMCID: PMC2704942 DOI: 10.1111/j.1574-6976.2008.00145.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema.
Collapse
Affiliation(s)
- Enrique Balleza
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009; 7:129-43. [PMID: 19116616 PMCID: PMC3119670 DOI: 10.1038/nrmicro1949] [Citation(s) in RCA: 578] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systems analysis of metabolic and growth functions in microbial organisms is rapidly developing and maturing. Such studies are enabled by reconstruction, at the genomic scale, of the biochemical reaction networks that underlie cellular processes. The network reconstruction process is organism specific and is based on an annotated genome sequence, high-throughput network-wide data sets and bibliomic data on the detailed properties of individual network components. Here we describe the process that is currently used to achieve comprehensive network reconstructions and discuss how these reconstructions are curated and validated. This review should aid the growing number of researchers who are carrying out reconstructions for particular target organisms.
Collapse
Affiliation(s)
- Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
140
|
Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 2009; 43:393-418. [PMID: 19037758 DOI: 10.1080/10409230802528488] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
141
|
Shimada T, Ishihama A, Busby SJW, Grainger DC. The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 2008; 36:3950-5. [PMID: 18515344 PMCID: PMC2475637 DOI: 10.1093/nar/gkn339] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli RutR protein is the master regulator of genes involved in pyrimidine catabolism. Here we have used chromatin immunoprecipitation in combination with DNA microarrays to measure the binding of RutR across the chromosome of exponentially growing E. coli cells. Twenty RutR-binding targets were identified and analysis of these targets generated a DNA consensus logo for RutR binding. Complementary in vitro binding assays showed high-affinity RutR binding to 16 of the 20 targets, with the four low-affinity RutR targets lacking predicted key binding determinants. Surprisingly, most of the DNA targets for RutR are located within coding segments of the genome and appear to have little or no effect on transcript levels in the conditions tested. This contrasts sharply with other E. coli transcription factors whose binding sites are primarily located in intergenic regions. We suggest that either RutR has yet undiscovered function or that evolution has been slow to eliminate non-functional DNA sites for RutR because they do not have an adverse effect on cell fitness.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience and Micro-Nano Technology Research Centre, Hosei University, Koganei, Tokyo 184-8584, Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan
| | | | | | | |
Collapse
|