101
|
Krom N, Ramakrishna W. Retrotransposon insertions in rice gene pairs associated with reduced conservation of gene pairs in grass genomes. Genomics 2012; 99:308-14. [PMID: 22414560 DOI: 10.1016/j.ygeno.2012.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/15/2012] [Accepted: 02/24/2012] [Indexed: 12/26/2022]
Abstract
Small-scale changes in gene order and orientation are common in plant genomes, even across relatively short evolutionary distances. We investigated the association of retrotransposons in and near rice gene pairs with gene pair conservation, inversion, rearrangement, and deletion in sorghum, maize, and Brachypodium. Copia and Gypsy LTR-retrotransposon insertions were found to be primarily associated with reduced frequency of gene pair conservation and an increase in both gene pair rearrangement and gene deletions. SINEs are associated with gene pair rearrangement, while LINEs are associated with gene deletions. Despite being more frequently associated with retrotransposons than convergent and tandem pairs, divergent gene pairs showed the least effects from that association. In contrast, convergent pairs were least frequently associated with retrotransposons yet showed the greatest effects. Insertions between genes were associated with the greatest effects on gene pair arrangement, while insertions flanking gene pairs had significant effects only on divergent pairs.
Collapse
Affiliation(s)
- Nicholas Krom
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | |
Collapse
|
102
|
Kelly LJ, Leitch IJ. Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res 2012; 19:939-53. [PMID: 21987187 DOI: 10.1007/s10577-011-9246-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genome size in plants is characterised by its extraordinary range. Although it appears that the majority of plants have small genomes, in several lineages genome size has reached giant proportions. The recent advent of next-generation sequencing (NGS) methods has for the first time made detailed analysis of even the largest of plant genomes a possibility. In this review, we highlight investigations that have utilised NGS for the study of plants with large genomes, as well as describing ongoing work that aims to harness the power of these technologies to gain insights into their evolution. In addition, we emphasise some areas of research where the use of NGS has the potential to generate significant advances in our current understanding of how plant genomes evolve. Finally, we discuss some of the future developments in sequencing technology that may further improve our ability to explore the content and evolutionary dynamics of the very largest genomes.
Collapse
Affiliation(s)
- Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
| | | |
Collapse
|
103
|
Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon SB, Cregan P, Ma J. Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. THE PLANT CELL 2012; 24:21-32. [PMID: 22227891 PMCID: PMC3289580 DOI: 10.1105/tpc.111.092759] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 05/18/2023]
Abstract
The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions-the cold spots for meiotic recombination in soybean-showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes.
Collapse
Affiliation(s)
- Jianchang Du
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Yi Sui
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- Institute of Oil Crops, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qijian Song
- U.S. Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center-West, Beltsville, Maryland 20705
| | - Steven B. Cannon
- U.S. Department of Agriculture, Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Ames, Iowa 50011
| | - Perry Cregan
- U.S. Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center-West, Beltsville, Maryland 20705
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
104
|
Woody JL, Shoemaker RC. Gene expression: sizing it all up. Front Genet 2011; 2:70. [PMID: 22303365 PMCID: PMC3268623 DOI: 10.3389/fgene.2011.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/29/2011] [Indexed: 11/13/2022] Open
Abstract
Genomic architecture appears to be a largely unexplored component of gene expression. That architecture can be related to chromatin domains, transposable element neighborhoods, epigenetic modifications of the genome, and more. Although surely not the end of the story, we are learning that when it comes to gene expression, size is also important. We have been surprised to find that certain patterns of expression, tissue specific versus constitutive, or high expression versus low expression, are often associated with physical attributes of the gene and genome. Multiple studies have shown an inverse relationship between gene expression patterns and various physical parameters of the genome such as intron size, exon size, intron number, and size of intergenic regions. An increase in expression level and breadth often correlates with a decrease in the size of physical attributes of the gene. Three models have been proposed to explain these relationships. Contradictory results were found in several organisms when expression level and expression breadth were analyzed independently. However, when both factors were combined in a single study a novel relationship was revealed. At low levels of expression, an increase in expression breadth correlated with an increase in genic, intergenic, and intragenic sizes. Contrastingly, at high levels of expression, an increase in expression breadth inversely correlated with the size of the gene. In this article we explore the several hypotheses regarding genome physical parameters and gene expression.
Collapse
|
105
|
Flowers JM, Molina J, Rubinstein S, Huang P, Schaal BA, Purugganan MD. Natural Selection in Gene-Dense Regions Shapes the Genomic Pattern of Polymorphism in Wild and Domesticated Rice. Mol Biol Evol 2011; 29:675-87. [DOI: 10.1093/molbev/msr225] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
106
|
Huo N, Garvin DF, You FM, McMahon S, Luo MC, Gu YQ, Lazo GR, Vogel JP. Comparison of a high-density genetic linkage map to genome features in the model grass Brachypodium distachyon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:455-64. [PMID: 21597976 DOI: 10.1007/s00122-011-1598-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 04/08/2011] [Indexed: 05/25/2023]
Abstract
The small annual grass Brachypodium distachyon (Brachypodium) is rapidly emerging as a powerful model system to study questions unique to the grasses. Many Brachypodium resources have been developed including a whole genome sequence, highly efficient transformation and a large germplasm collection. We developed a genetic linkage map of Brachypodium using single nucleotide polymorphism (SNP) markers and an F(2) mapping population of 476 individuals. SNPs were identified by targeted resequencing of single copy genomic sequences. Using the Illumina GoldenGate Genotyping platform we placed 558 markers into five linkage groups corresponding to the five chromosomes of Brachypodium. The unusually long total genetic map length, 1,598 centiMorgans (cM), indicates that the Brachypodium mapping population has a high recombination rate. By comparing the genetic map to genome features we found that the recombination rate was positively correlated with gene density and negatively correlated with repetitive regions and sites of ancestral chromosome fusions that retained centromeric repeat sequences. A comparison of adjacent genome regions with high versus low recombination rates revealed a positive correlation between interspecific synteny and recombination rate.
Collapse
Affiliation(s)
- Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Jacquemin J, Chaparro C, Laudié M, Berger A, Gavory F, Goicoechea JL, Wing RA, Cooke R. Long-range and targeted ectopic recombination between the two homeologous chromosomes 11 and 12 in Oryza species. Mol Biol Evol 2011; 28:3139-50. [PMID: 21616911 DOI: 10.1093/molbev/msr144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Whole genome duplication (WGD) and subsequent evolution of gene pairs have been shown to have shaped the present day genomes of most, if not all, plants and to have played an essential role in the evolution of many eukaryotic genomes. Analysis of the rice (Oryza sativa ssp. japonica) genome sequence suggested an ancestral WGD ∼50-70 Ma common to all cereals and a segmental duplication between chromosomes 11 and 12 as recently as 5 Ma. More recent studies based on coding sequences have demonstrated that gene conversion is responsible for the high sequence conservation which suggested such a recent duplication. We previously showed that gene conversion has been a recurrent process throughout the Oryza genus and in closely related species and that orthologous duplicated regions are also highly conserved in other cereal genomes. We have extended these studies to compare megabase regions of genomic (coding and noncoding) sequences between two cultivated (O. sativa, Oryza glaberrima) and one wild (Oryza brachyantha) rice species using a novel approach of topological incongruency. The high levels of intraspecies conservation of both gene and nongene sequences, particularly in O. brachyantha, indicate long-range conversion events less than 4 Ma in all three species. These observations demonstrate megabase-scale conversion initiated within a highly rearranged region located at ∼2.1 Mb from the chromosome termini and emphasize the importance of gene conversion in cereal genome evolution.
Collapse
Affiliation(s)
- J Jacquemin
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut de Recherche pour le Développement/Université de Perpignan Via Domitia, Université de Perpignan, Perpignan-Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 2011; 186:1085-93. [PMID: 21156958 DOI: 10.1534/genetics.110.124180] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as "transposable elements" in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work.
Collapse
|
109
|
Tian Z, Yu Y, Lin F, Yu Y, Sanmiguel PJ, Wing RA, McCouch SR, Ma J, Jackson SA. Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. BMC Genomics 2011; 12:142. [PMID: 21385395 PMCID: PMC3060143 DOI: 10.1186/1471-2164-12-142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background Extensive DNA rearrangement of genic colinearity, as revealed by comparison of orthologous genomic regions, has been shown to be a general concept describing evolutionary dynamics of plant genomes. However, the nature, timing, lineages and adaptation of local genomic rearrangement in closely related species (e.g., within a genus) and haplotype variation of genomic rearrangement within populations have not been well documented. Results We previously identified a hotspot for genic rearrangement and transposon accumulation in the Orp region of Asian rice (Oryza sativa, AA) by comparison with its orthologous region in sorghum. Here, we report the comparative analysis of this region with its orthologous regions in the wild progenitor species (O. nivara, AA) of Asian rice and African rice (O. glaberrima) using the BB genome Oryza species (O. punctata) as an outgroup, and investigation of transposon insertion sites and a segmental inversion event in the AA genomes at the population level. We found that Orp region was primarily and recently expanded in the Asian rice species O. sativa and O. nivara. LTR-retrotransposons shared by the three AA-genomic regions have been fixed in all the 94 varieties that represent different populations of the AA-genome species/subspecies, indicating their adaptive role in genome differentiation. However, LTR-retrotransposons unique to either O. nivara or O. sativa regions exhibited dramatic haplotype variation regarding their presence or absence between or within populations/subpopulations. Conclusions The LTR-retrotransposon insertion hotspot in the Orp region was formed recently, independently and concurrently in different AA-genome species, and that the genic rearrangements detected in different species appear to be differentially triggered by transposable elements. This region is located near the end of the short arm of chromosome 8 and contains a high proportion of LTR-retrotransposons similar to observed in the centromeric region of this same chromosome, and thus may represent a genomic region that has recently switched from euchromatic to heterochromatic states. The haplotype variation of LTR-retrotransposon insertions within this region reveals substantial admixture among various subpopulations as established by molecular markers at the whole genome level, and can be used to develop retrotransposon junction markers for simple and rapid classification of O. sativa germplasm.
Collapse
Affiliation(s)
- Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Saintenac C, Faure S, Remay A, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 2010; 120:185-98. [PMID: 21161258 DOI: 10.1007/s00412-010-0302-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
In bread wheat (Triticum aestivum L.), initial studies using deletion lines indicated that crossover (CO) events occur mainly in the telomeric regions of the chromosomes with a possible correlation with the presence of genes. However, little is known about the distribution of COs at the sequence level. To investigate this, we studied in detail the pattern of COs along a contig of 3.110 Mb using two F2 segregating populations (Chinese Spring × Renan (F2-CsRe) and Chinese Spring × Courtot (F2-CsCt)) each containing ~2,000 individuals. The availability of the sequence of the contig from Cs enabled the development of 318 markers among which 23 co-dominant polymorphic markers (11 SSRs and 12 SNPs) were selected for CO distribution analyses. The distribution of CO events was not homogeneous throughout the contig, ranging from 0.05 to 2.77 cM/Mb, but was conserved between the two populations despite very different contig recombination rate averages (0.82 cM/Mb in F2-CsRe vs 0.35 cM/Mb in F2-CsCt). The CO frequency was correlated with the percentage of coding sequence in Cs and with the polymorphism rate between Cs and Re or Ct in both populations, indicating an impact of these two factors on CO distribution. At a finer scale, COs were found in a region covering 2.38 kb, spanning a gene coding for a glycosyl transferase (Hga3), suggesting the presence of a CO hotspot. A non-crossover event covering at least 453 bp was also identified in the same interval. From these results, we can conclude that gene content could be one of the factors driving recombination in bread wheat.
Collapse
Affiliation(s)
- Cyrille Saintenac
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, INRA-UBP, Domaine de Crouël, 234 Avenue du Brézet, Clermont-Ferrand, 63100, France
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Petrov DA, Fiston-Lavier AS, Lipatov M, Lenkov K, González J. Population genomics of transposable elements in Drosophila melanogaster. Mol Biol Evol 2010; 28:1633-44. [PMID: 21172826 DOI: 10.1093/molbev/msq337] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transposable elements (TEs) are the primary contributors to the genome bulk in many organisms and are major players in genome evolution. A clear and thorough understanding of the population dynamics of TEs is therefore essential for full comprehension of the eukaryotic genome evolution and function. Although TEs in Drosophila melanogaster have received much attention, population dynamics of most TE families in this species remains entirely unexplored. It is not clear whether the same population processes can account for the population behaviors of all TEs in Drosophila or whether, as has been suggested previously, different orders behave according to very different rules. In this work, we analyzed population frequencies for a large number of individual TEs (755 TEs) in five North American and one sub-Saharan African D. melanogaster populations (75 strains in total). These TEs have been annotated in the reference D. melanogaster euchromatic genome and have been sampled from all three major orders (non-LTR, LTR, and TIR) and from all families with more than 20 TE copies (55 families in total). We find strong evidence that TEs in Drosophila across all orders and families are subject to purifying selection at the level of ectopic recombination. We showed that strength of this selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs in the same family. Importantly, these rules do not appear to vary across orders. Finally, we built a statistical model that considered only individual TE-level (such as the TE length) and family-level properties (such as the copy number) and were able to explain more than 40% of the variation in TE frequencies in D. melanogaster.
Collapse
|
112
|
Hu G, Hawkins JS, Grover CE, Wendel JF. The history and disposition of transposable elements in polyploid Gossypium. Genome 2010; 53:599-607. [PMID: 20725147 DOI: 10.1139/g10-038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are a major component of plant genomes. It is of particular interest to explore the potential activation of TE proliferation, especially in hybrids and polyploids, which often are associated with rapid genomic and epigenetic restructuring. Here we explore the consequences of genomic merger and doubling on copia and gypsy-like Gorge3 long terminal repeat (LTR) retrotransposons as well as on non-LTR long interspersed nuclear elements (LINEs) in allotetraploid cotton, Gossypium hirsutum. Using phylogenetic and quantitative methods, we describe the composition and genomic origin of TEs in polyploid Gossypium. In addition, we present information on ancient and recent transposition activities of the three TE types and demonstrate the absence of an impressive proliferation of TEs following polyploidization in Gossypium. Further, we provide evidence for present-day transcription of LINEs, a relatively minor component of Gossypium genomes, whereas the more abundant LTR retrotransposons display limited expression and only under stressed conditions.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
113
|
Tenaillon MI, Hollister JD, Gaut BS. A triptych of the evolution of plant transposable elements. TRENDS IN PLANT SCIENCE 2010; 15:471-8. [PMID: 20541961 DOI: 10.1016/j.tplants.2010.05.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 05/06/2023]
Abstract
Transposable elements (TEs) constitute the majority of angiosperm DNA, but the processes that govern their accumulation remain mysterious. Here we discuss the three major forces that govern the accumulation of TEs, corresponding to the three panels of a triptych. The first force, transposition, creates new copies of TEs, but is regulated by both host- and TE-specific mechanisms. The second force, deletion of TE DNA, is capable of removing vast swaths of genomic regions via recombinational processes, but we still have very little insight into how deletion varies across species and even among TE types. Finally, we focus on the often-ignored third panel of our triptych - the population processes that determine the ultimate evolutionary fate of TE insertions.
Collapse
Affiliation(s)
- Maud I Tenaillon
- CNRS, UMR 0320/UMR8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
114
|
Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:584-98. [PMID: 20525006 DOI: 10.1111/j.1365-313x.2010.04263.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The availability of complete or nearly complete genome sequences from several plant species permits detailed discovery and cross-species comparison of transposable elements (TEs) at the whole genome level. We initially investigated 510 long terminal repeat-retrotransposon (LTR-RT) families comprising 32370 elements in soybean (Glycine max (L.) Merr.). Approximately 87% of these elements were located in recombination-suppressed pericentromeric regions, where the ratio (1.26) of solo LTRs to intact elements (S/I) is significantly lower than that of chromosome arms (1.62). Further analysis revealed a significant positive correlation between S/I and LTR sizes, indicating that larger LTRs facilitate solo LTR formation. Phylogenetic analysis revealed seven Copia and five Gypsy evolutionary lineages that were present before the divergence of eudicot and monocot species, but the scales and timeframes within which they proliferated vary dramatically across families, lineages and species, and notably, a Copia lineage has been lost in soybean. Analysis of the physical association of LTR-RTs with centromere satellite repeats identified two putative centromere retrotransposon (CR) families of soybean, which were grouped into the CR (e.g. CRR and CRM) lineage found in grasses, indicating that the 'functional specification' of CR pre-dates the bifurcation of eudicots and monocots. However, a number of families of the CR lineage are not concentrated in centromeres, suggesting that their CR roles may now be defunct. Our data also suggest that the envelope-like genes in the putative Copia retrovirus-like family are probably derived from the Gypsy retrovirus-like lineage, and thus we propose the hypothesis of a single ancient origin of envelope-like genes in flowering plants.
Collapse
Affiliation(s)
- Jianchang Du
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. THE PLANT CELL 2010; 22:1686-701. [PMID: 20581307 PMCID: PMC2910976 DOI: 10.1105/tpc.110.074187] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/26/2010] [Accepted: 06/08/2010] [Indexed: 05/18/2023]
Abstract
To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.
Collapse
Affiliation(s)
- Frédéric Choulet
- Institut National de la Recherche Agronomique, Université Blaise Pascal, Unité Mixte de Recherche 1095 Genetics Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Genome sizes vary considerably across all eukaryotes and even among closely related species. The genesis and evolutionary dynamics of that variation have generated considerable interest, as have the patterns of variation themselves. Here we review recent developments in our understanding of genome size evolution in plants, drawing attention to the higher order processes that can influence the mechanisms generating changing genome size.
Collapse
|
117
|
Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J. SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 2010; 11:113. [PMID: 20163715 PMCID: PMC2830986 DOI: 10.1186/1471-2164-11-113] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements are the most abundant components of all characterized genomes of higher eukaryotes. It has been documented that these elements not only contribute to the shaping and reshaping of their host genomes, but also play significant roles in regulating gene expression, altering gene function, and creating new genes. Thus, complete identification of transposable elements in sequenced genomes and construction of comprehensive transposable element databases are essential for accurate annotation of genes and other genomic components, for investigation of potential functional interaction between transposable elements and genes, and for study of genome evolution. The recent availability of the soybean genome sequence has provided an unprecedented opportunity for discovery, and structural and functional characterization of transposable elements in this economically important legume crop. DESCRIPTION Using a combination of structure-based and homology-based approaches, a total of 32,552 retrotransposons (Class I) and 6,029 DNA transposons (Class II) with clear boundaries and insertion sites were structurally annotated and clearly categorized, and a soybean transposable element database, SoyTEdb, was established. These transposable elements have been anchored in and integrated with the soybean physical map and genetic map, and are browsable and visualizable at any scale along the 20 soybean chromosomes, along with predicted genes and other sequence annotations. BLAST search and other infrastracture tools were implemented to facilitate annotation of transposable elements or fragments from soybean and other related legume species. The majority (> 95%) of these elements (particularly a few hundred low-copy-number families) are first described in this study. CONCLUSION SoyTEdb provides resources and information related to transposable elements in the soybean genome, representing the most comprehensive and the largest manually curated transposable element database for any individual plant genome completely sequenced to date. Transposable elements previously identified in legumes, the third largest family of flowering plants, are relatively scarce. Thus this database will facilitate structural, evolutionary, functional, and epigenetic analyses of transposable elements in soybean and other legume species.
Collapse
Affiliation(s)
- Jianchang Du
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - David Grant
- US Department of Agriculture-Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Rex T Nelson
- US Department of Agriculture-Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Liucun Zhu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Randy C Shoemaker
- US Department of Agriculture-Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|