101
|
Nuclear imaging in three dimensions: A unique tool in cancer research. Ann Anat 2010; 192:292-301. [DOI: 10.1016/j.aanat.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/18/2010] [Indexed: 11/19/2022]
|
102
|
Babizhayev MA, Yegorov YE. Smoking and health: association between telomere length and factors impacting on human disease, quality of life and life span in a large population-based cohort under the effect of smoking duration. Fundam Clin Pharmacol 2010; 25:425-42. [PMID: 20698892 DOI: 10.1111/j.1472-8206.2010.00866.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are of primary importance as they cause damage to lipids, proteins, and DNA either endogenously by cellular mechanism, or through exogenous exposure to environmental injury factors, including oxidation insult factors, such as tobacco smoke. Currently 46.3 million adults (25.7 percent of the population) are smokers. This includes 24 million men (28.1 percent of the total) and more than 22 million women (23.5 percent). The prevalence is highest among persons 25-44 years of age. Cigarette smokers have a higher risk of developing several chronic disorders. These include fatty buildups in arteries, several types of cancer and chronic obstructive pulmonary disease (lung problems). As peripheral leukocytes have been the main target of human telomere research, most of what is known about human telomere dynamics in vivo is based on these cells. Leukocyte telomere length (TL) is a complex trait that is shaped by genetic, epigenetic, and environmental determinants. In this article, we consider that smoking modifies leukocyte TL in humans and contributes to its variability among individuals, although the smoking effect on TL and its relation with other metabolic indices may accelerate biological aging and development of smoking-induced chronic diseases in a large human population-based cohorts with smoking behavior. Recent studies confirmed that individuals with shorter telomeres present a higher prevalence of arterial lesions and higher risk of cardiovascular disease mortality. This study originally suggests that efficient therapeutic protection of TL and structure in response to stresses that are known to reduce TL, such as oxidative damage or inflammation associated with tobacco smoking, would lead to better telomere maintenance. Recently, we have discovered the potential use of telomere-restorative imidazole-containing dipeptide (non-hydrolized carnosine, carcinine) based therapy for better survival of smokers. We conclude that a better therapeutic or nutritional maintenance of TL may confer healthy aging in smokers and exceptional longevity in regularly ROS-exposed human survivors.
Collapse
|
103
|
Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1. J Biol Inorg Chem 2010; 15:641-54. [DOI: 10.1007/s00775-010-0631-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/27/2010] [Indexed: 12/23/2022]
|
104
|
Young NS. Telomere biology and telomere diseases: implications for practice and research. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:30-5. [PMID: 21239767 PMCID: PMC6380489 DOI: 10.1182/asheducation-2010.1.30] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recent recognition of genetic defects in telomeres and telomere repair in multiple human diseases has practical implications for hematologists and oncologists and their patients; consequences for future clinical research in hematology and other subspecialties; and even importance in the interpretation of animal experiments involving cell propagation. Telomere diseases include constitutional marrow failure as dyskeratosis congenita, some apparently acquired aplastic anemia, myelodysplasia and acute myeloid leukemia; pulmonary fibrosis; and hepatic nodular regenerative hyperplasia and cirrhosis. Accelerated telomere attrition is a likely pathophysiology of cancer arising from chronic inflammation. Telomerase can be modulated by sex hormones, which may explain the activity of androgens in marrow failure. Measurement of telomere length of peripheral blood leukocytes is a simple screening clinical assay. Detection of a mutation in a patient has implications for therapy, prognosis, monitoring, and genetic counseling. For research in hematology and oncology, telomere biology could be assessed as a risk for secondary malignancies and in graft-versus-host disease, for progression in a variety of blood cancers, and as potentially modifiable by hormone replacement strategies.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
105
|
Affiliation(s)
- Rodrigo T Calado
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
106
|
Keller G, Brassat U, Braig M, Heim D, Wege H, Brümmendorf TH. Telomeres and telomerase in chronic myeloid leukaemia: impact for pathogenesis, disease progression and targeted therapy. Hematol Oncol 2009; 27:123-9. [PMID: 19569255 DOI: 10.1002/hon.901] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Telomeres are specialized structures localized at the end of human chromosomes. Due to the end replication problem, each cell division results in a loss of telomeric repeats in normal somatic cells. In germ line and stem cells, the multicomponent enzyme telomerase maintains the length of telomere repeats. However, elevated telomerase activity has also been reported in the majority of solid tumours as well as in acute and chronic leukaemia. Chronic myeloid leukaemia (CML) serves as a model disease to study telomere biology in clonal myeloproliferative disorders. In CML, telomere shortening correlates with disease stage, duration of chronic phase (CP), prognosis measured by the Hasford risk score and the response to disease-modifying therapeutics such as the tyrosine kinase inhibitor Imatinib. In addition, telomerase activity (TA) is already increased in CP CML and further upregulated with disease progression to accelerated phase and blast crisis (BC). Furthermore, a correlation of TA with increased genetic instability as well as a shorter survival of the patients has been reported. Here, we review the current state of knowledge of the role of telomere and telomerase biology in CML and discuss the possible impact of novel treatment approaches.
Collapse
Affiliation(s)
- Gunhild Keller
- Klinik für Onkologie und Hämatologie mit der Sektion Pneumologie, Universitäres Cancer Center Hamburg (UCCH), Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
An integrative approach to the combined challenges of aging, cancer and stress is a necessary part of a global vision of wellness. Recent research into the mechanisms of aging, cancer and stress has established the biological links between these processes. Understanding these links is an important stepping-stone for developing approaches and therapies that ensure wellness throughout all stages of aging. This paper will consider the most recent developments in research into the molecular mechanisms common to aging and cancer and will discuss the effectiveness of natural approaches for preventing disease. Metabolic regulators as well as nutrient and energy sensors are involved in the processes of aging and cancer, and these are open to external manipulation and control. It is now becoming possible to demonstrate how nutrition, physical activity and stress control can lead to disease-free aging.
Collapse
Affiliation(s)
- Katya Chobotova
- Wolfson College, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
108
|
Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, Goosen L, Swanson C, Binz RL, Barlogie B, Shaughnessy J. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol 2009; 147:484-94. [PMID: 19744130 DOI: 10.1111/j.1365-2141.2009.07869.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene amplification is defined as a copy number (CN) increase in a restricted region of a chromosome arm, and is a mechanism for acquired drug resistance and oncogene activation. In multiple myeloma (MM), high CNs of genes in a 1q12 approximately 23 amplicon have been associated with disease progression and poor prognosis. To investigate the mechanisms for gene amplification in this region in MM, we performed a comprehensive metaphase analysis combining G-banding, fluorescence in situ hybridization, and spectral karyotyping in 67 patients with gain of 1q. In six patients (9%), evidence for at least one breakage-fusion-bridge (BFB) cycle was found. In three patients (4%), extended ladders of 1q12 approximately 23 amplicons were identified. Several key structures that are predicted intermediates in BFB cycles were observed, including: equal-spaced organization of amplicons, inverted repeat organization of amplicons along the same chromosome arm, and deletion of sequences distal to the amplified region. The 1q12 pericentromeric heterochromatin region served as both a recurrent breakpoint as well as a fusion point for sister chromatids, and ultimately bracketed both the proximal and distal boundaries of the amplicon. Our findings provide evidence for a novel BFB mechanism involving 1q12 pericentromeric breakage in the amplification of a large number of genes within a 1q12 approximately 23 amplicon.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Zschenker O, Kulkarni A, Miller D, Reynolds GE, Granger-Locatelli M, Pottier G, Sabatier L, Murnane JP. Increased sensitivity of subtelomeric regions to DNA double-strand breaks in a human cancer cell line. DNA Repair (Amst) 2009; 8:886-900. [PMID: 19540174 PMCID: PMC2901176 DOI: 10.1016/j.dnarep.2009.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 12/25/2022]
Abstract
We previously reported that a single DNA double-strand break (DSB) near a telomere in mouse embryonic stem cells can result in chromosome instability. We have observed this same type of instability as a result of spontaneous telomere loss in human tumor cell lines, suggesting that a deficiency in the repair of DSBs near telomeres has a role in chromosome instability in human cancer. We have now investigated the frequency of the chromosome instability resulting from DSBs near telomeres in the EJ-30 human bladder carcinoma cell line to determine whether subtelomeric regions are sensitive to DSBs, as previously reported in yeast. These studies involved determining the frequency of large deletions, chromosome rearrangements, and chromosome instability resulting from I-SceI endonuclease-induced DSBs at interstitial and telomeric sites. As an internal control, we also analyzed the frequency of small deletions, which have been shown to be the most common type of mutation resulting from I-SceI-induced DSBs at interstitial sites. The results demonstrate that although the frequency of small deletions is similar at interstitial and telomeric DSBs, the frequency of large deletions and chromosome rearrangements is much greater at telomeric DSBs. DSB-induced chromosome rearrangements at telomeric sites also resulted in prolonged periods of chromosome instability. Telomeric regions in mammalian cells are therefore highly sensitive to DSBs, suggesting that spontaneous or ionizing radiation-induced DSBs at these locations may be responsible for many of the chromosome rearrangements that are associated with human cancer.
Collapse
Affiliation(s)
- Oliver Zschenker
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Avanti Kulkarni
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Douglas Miller
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Gloria. E. Reynolds
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Marine Granger-Locatelli
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux Roses, France
| | - Géraldine Pottier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux Roses, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux Roses, France
| | - John. P. Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| |
Collapse
|
110
|
Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J 2009; 28:2414-27. [PMID: 19629036 DOI: 10.1038/emboj.2009.196] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/15/2009] [Indexed: 11/08/2022] Open
Abstract
A-type lamins are intermediate filament proteins that provide a scaffold for protein complexes regulating nuclear structure and function. Mutations in the LMNA gene are linked to a variety of degenerative disorders termed laminopathies, whereas changes in the expression of lamins are associated with tumourigenesis. The molecular pathways affected by alterations of A-type lamins and how they contribute to disease are poorly understood. Here, we show that A-type lamins have a key role in the maintenance of telomere structure, length and function, and in the stabilization of 53BP1, a component of the DNA damage response (DDR) pathway. Loss of A-type lamins alters the nuclear distribution of telomeres and results in telomere shortening, defects in telomeric heterochromatin, and increased genomic instability. In addition, A-type lamins are necessary for the processing of dysfunctional telomeres by non-homologous end joining, putatively through stabilization of 53BP1. This study shows new functions for A-type lamins in the maintenance of genomic integrity, and suggests that alterations of telomere biology and defects in DDR contribute to the pathogenesis of lamin-related diseases.
Collapse
|
111
|
Gourronc FA, Robertson MM, Herrig AK, Lansdorp PM, Goldman FD, Klingelhutz AJ. Proliferative defects in dyskeratosis congenita skin keratinocytes are corrected by expression of the telomerase reverse transcriptase, TERT, or by activation of endogenous telomerase through expression of papillomavirus E6/E7 or the telomerase RNA component, TERC. Exp Dermatol 2009; 19:279-88. [PMID: 19558498 DOI: 10.1111/j.1600-0625.2009.00916.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dyskeratosis congenita (DC) is characterized by the triad of reticulate skin pigmentation, nail dystrophy and leukoplakia. Epidermal atrophy, hair growth defects, bone marrow failure and increased risk of cancer are also common in DC patients. DC is caused by mutations in genes encoding for telomerase complex factors. Although there is an association of epidermal abnormalities with DC, epidermal cells from DC donors have not been previously characterized. We have isolated skin keratinocytes from affected members of a family with an autosomal dominant form of DC that is caused by a mutation in the RNA component of telomerase, TERC. Here, we demonstrate that, similar to DC fibroblasts from these donors, DC keratinocytes have short telomeres and a short lifespan. DC keratinocytes also exhibited impaired colony forming efficiency (CFE) and migration capacity. Exogenous expression of the reverse transcriptase (RT) component of telomerase, TERT, activated telomerase levels to half that of TERT expressing normal cells and maintained telomeres at a short length with concomitant extension of lifespan. Unlike fibroblasts, transduction of human papillomavirus type 16 E6/E7 genes into DC keratinocytes activated telomerase to half that of E6/E7 expressing normal cells, and robust proliferation was observed. While expression of TERC has no measurable effect on telomerase in fibroblasts, expression of TERC in keratinocytes upregulated telomerase activity and, rarely, allowed rescue of proliferative defects. Our results point to important differences between DC fibroblasts and keratinocytes and show, for the first time, that expression of TERC can increase the lifespan of primary human epithelial cells.
Collapse
|
112
|
Chen YC, Teng SC, Wu KJ. Phosphorylation of Telomeric Repeat Binding Factor 1 (TRF1) by Akt Causes Telomere Shortening. Cancer Invest 2009; 27:24-8. [DOI: 10.1080/07357900802027081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
113
|
Riley LB, Desai DC. The molecular basis of cancer and the development of targeted therapy. Surg Clin North Am 2009; 89:1-15, vii. [PMID: 19186227 DOI: 10.1016/j.suc.2008.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The sequencing of the human genome and the ability to rapidly identify genes and proteins, both normal and mutant, that are involved in tumorigenesis and malignant phenotypes, have changed the ability to understand malignant cells. Understanding and applying this information to the diagnosis and treatment of cancer are facilitated best with a multidisciplinary team. The cancer surgeon plays a pivotal role in this team. This article briefly summarizes: (1) the clinically relevant applications of molecular biology to the cancer surgeon, (2) the current understanding of the molecular basis for cancer, and (3) the current targeted agents and their clinical applications.
Collapse
Affiliation(s)
- Lee B Riley
- St. Luke's Hospital and Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
114
|
Chavez A, Tsou AM, Johnson FB. Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta Mol Basis Dis 2009; 1792:329-40. [PMID: 19245831 DOI: 10.1016/j.bbadis.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Telomeres play critical roles in protecting genome stability, and their dysfunction contributes to cancer and age-related degenerative diseases. The precise architecture of telomeres, including their single-stranded 3' overhangs, bound proteins, and ability to form unusual secondary structures such as t-loops, is central to their function and thus requires careful processing by diverse factors. Furthermore, telomeres provide unique challenges to the DNA replication and recombination machinery, and are particularly suited for extension by the telomerase reverse transcriptase. Helicases use the energy from NTP hydrolysis to track along DNA and disrupt base pairing. Here we review current findings concerning how helicases modulate several aspects of telomere form and function.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
115
|
XPF/ERCC4 and ERCC1: their products and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19181112 DOI: 10.1007/978-0-387-09599-8_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
ERCC4 is the gene mutated in XPF cells and also in rodent cells representing the mutant complementation groups ERCC4 and ERCC 11. The protein functions principally as a complex with ERCC1 in a diversity of biological pathways that include NER, ICL repair, telomere maintenance and immunoglobulin switching. Sorting out these roles is an exciting and challenging problem and many important questions remain to be answered. The ERCC1/ERCC4 complex is conserved across most species presenting an opportunity to examine some functions in model organisms where mutants can be more readily generated and phenotypes more quickly assessed.
Collapse
|
116
|
Folini M, Gandellini P, Zaffaroni N. Targeting the telosome: therapeutic implications. Biochim Biophys Acta Mol Basis Dis 2009; 1792:309-16. [PMID: 19419699 DOI: 10.1016/j.bbadis.2009.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 12/12/2022]
Abstract
Since telomere integrity is required to guarantee the unlimited replicative potential of cancer cells, telomerase, the enzyme responsible for telomere length maintenance in most human tumors, and lately also telomeres themselves have become extremely attractive targets for new anticancer interventions. At the current status of knowledge, it is still not possible to define the best therapeutic target between telomerase and telomeres. It is noteworthy that interfering with telomeres, through direct targeting of telomeric DNA or proteins involved in the telosome complex, could negatively affect the proliferative potential not only of tumors expressing telomerase activity but also of those that maintain their telomeres through alternative lengthening or still unknown mechanisms. This review presents the different therapeutic approaches proposed thus far and developed in preclinical tumor models and discusses the perspectives for their use in the clinical setting.
Collapse
Affiliation(s)
- Marco Folini
- Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | | | | |
Collapse
|
117
|
Telomere-dependent and telomere-independent origins of endogenous DNA damage in tumor cells. Aging (Albany NY) 2009; 1:212-8. [PMID: 20157510 PMCID: PMC2806003 DOI: 10.18632/aging.100019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/02/2009] [Indexed: 11/25/2022]
Abstract
Human tumors and
cultured cells contain elevated levels of endogenous DNA damage resulting
from telomere dysfunction, replication and transcription errors, reactive
oxygen species, and genome instability. However, the contribution of
telomere-associated versus telomere-independent endogenous DNA lesions to
this damage has never been examined. In this study, we characterized the
relative amounts of these two types of DNA damage in five tumor cell lines
by noting whether γ-H2AX
foci, generally considered to mark DNA double-strand breaks (DSBs), were on
chromosome arms or at chromosome ends. We found that while the numbers of
non-telomeric DSBs were remarkably similar in these cultures, considerable
variation was detected in the level of telomeric damage. The distinct
heterogeneity in the numbers of γ-H2AX foci in these tumor cell lines
was found to be due to foci associated with uncapped telomeres, and the
amount of total telomeric damage also appeared to inversely correlate with
the telomerase activity present in these cells. These results indicate that
damaged telomeres are the major factor accounting for the variability in
the amount of DNA DSB damage in tumor cells. This characterization of DNA
damage in tumor cells helps clarify the contribution of non-telomeric DSBs
and damaged telomeres to major genomic alterations.
Collapse
|
118
|
Spardy N, Duensing A, Hoskins EE, Wells SI, Duensing S. HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res 2009; 68:9954-63. [PMID: 19047177 DOI: 10.1158/0008-5472.can-08-0224] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Expression of the high-risk human papillomavirus (HPV-16) E7 oncoprotein extends the life span of primary human keratinocytes and partially restores telomere length in the absence of telomerase. The molecular basis of this activity is incompletely understood. Here, we show that HPV-16 E7 induces an increased formation of alternative lengthening of telomeres (ALT)-associated promyelocytic leukemia bodies (APBs) in early passage primary human keratinocytes as well as HPV-negative tumor cells. This activity was found to require sequences of HPV-16 E7 involved in degradation of the retinoblastoma tumor suppressor protein as well as regions in the COOH terminus. HPV-16 E7-induced APBs contained ssDNA and several proteins that are involved in the response to DNA replication stress, most notably the Fanconi anemia D2 protein (FANCD2) as well as BRCA2 and MUS81. In line with these results, we found that FANCD2-containing APBs form in an ATR-dependent manner in HPV-16 E7-expressing cells. To directly show a role of FANCD2 in ALT, we provide evidence that knockdown of FANCD2 rapidly causes telomere dysfunction in cells that rely on ALT to maintain telomeres. Taken together, our results suggest a novel link between replication stress and recombination-based telomere maintenance that may play a role in HPV-16 E7-mediated extension of host cell life span and immortalization.
Collapse
Affiliation(s)
- Nicole Spardy
- Biochemistry and Molecular Genetics Graduate Program, and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
119
|
Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia. Proc Natl Acad Sci U S A 2009; 106:1187-92. [PMID: 19147845 DOI: 10.1073/pnas.0807057106] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Loss-of-function mutations in telomerase complex genes can cause bone marrow failure, dyskeratosis congenita, and acquired aplastic anemia, both diseases that predispose to acute myeloid leukemia. Loss of telomerase function produces short telomeres, potentially resulting in chromosome recombination, end-to-end fusion, and recognition as damaged DNA. We investigated whether mutations in telomerase genes also occur in acute myeloid leukemia. We screened bone marrow samples from 133 consecutive patients with acute myeloid leukemia and 198 controls for variations in TERT and TERC genes. An additional 89 patients from a second cohort, selected based on cytogenetic status, and 528 controls were further examined for mutations. A third cohort of 372 patients and 384 controls were specifically tested for one TERT gene variant. In the first cohort, 11 patients carried missense TERT gene variants that were not present in controls (P < 0.0001); in the second cohort, TERT mutations were associated with trisomy 8 and inversion 16. Mutation germ-line origin was demonstrated in 5 patients from whom other tissues were available. Analysis of all 3 cohorts (n = 594) for the most common gene variant (A1062T) indicated a prevalence 3 times higher in patients than in controls (n = 1,110; P = 0.0009). Introduction of TERT mutants into telomerase-deficient cells resulted in loss of enzymatic activity by haploinsufficiency. Inherited mutations in TERT that reduce telomerase activity are risk factors for acute myeloid leukemia. We propose that short and dysfunctional telomeres limit normal stem cell proliferation and predispose for leukemia by selection of stem cells with defective DNA damage responses that are prone to genome instability.
Collapse
|
120
|
Chakraborty S, Sun CL, Francisco L, Sabado M, Li L, Chang KL, Forman S, Bhatia S, Bhatia R. Accelerated telomere shortening precedes development of therapy-related myelodysplasia or acute myelogenous leukemia after autologous transplantation for lymphoma. J Clin Oncol 2009; 27:791-8. [PMID: 19124806 DOI: 10.1200/jco.2008.17.1033] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Therapy-related myelodysplasia or acute myelogenous leukemia (t-MDS/AML) is a lethal complication of autologous hematopoietic stem-cell transplantation (aHCT) for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL). Here, we investigated the hypothesis that accelerated telomere shortening after aHCT could contribute to the development of t-MDS/AML. PATIENTS AND METHODS A prospective longitudinal cohort was constructed to investigate the sequence of cellular and molecular abnormalities leading to development of t-MDS/AML after aHCT for HL/NHL. This cohort formed the sampling frame for a nested case-control study to compare changes in telomere length in serial blood samples from patients who developed t-MDS/AML with matched controls who did not develop t-MDS/AML. RESULTS An initial increase in telomere length at day 100 after aHCT was followed by an accelerated telomere shortening in t-MDS/AML patients when compared with controls. These telomere alterations preceded the onset of t-MDS and were independent of other known risk factors associated with development of t-MDS/AML on multivariate analysis. Additionally, we observed reduced generation of committed progenitors in patients who developed t-MDS/AML, indicating that these telomere alterations were associated with reduced regenerative capacity of hematopoietic stem cells. CONCLUSION The development of t-MDS/AML after aHCT is associated with and preceded by markedly altered telomere dynamics in hematopoietic cells. Accelerated telomere loss in patients developing t-MDS/AML may reflect increased clonal proliferation and/or altered telomere regulation in premalignant cells. Genetic instability associated with shortened telomeres may contribute to leukemic transformation in t-MDS/AML.
Collapse
Affiliation(s)
- Sujata Chakraborty
- Department of Stem Cell and Leukemia Research, Division of Population Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Folini M, Pennati M, Zaffaroni N. RNA interference-mediated validation of genes involved in telomere maintenance and evasion of apoptosis as cancer therapeutic targets. Methods Mol Biol 2009; 487:303-30. [PMID: 19301654 DOI: 10.1007/978-1-60327-547-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of new cancer-related therapeutic targets is mainly based on the identification of genes involved in pathways selectively exploited in cancer cells, including those leading to unlimited replicative potential, evasion of apoptosis, angiogenesis, tissue invasion and metastatic spread. Potentially, a gene--or a gene product--is recognized as a cancer target whether its modulation in experimental models can specifically modify or revert the cancer phenotype. As soon as RNA interference (RNAi)--a natural gene silencing mechanism--was demonstrated in mammalian cells, it rapidly became an essential means for gene knockdown in preclinical models, making it possible to define the role of several human genes and to identify those specifically involved in the onset and progression of cancer. Owing to its powerful gene-silencing properties, RNAi has been proposed as a useful tool to validate new therapeutic targets and to develop innovative anticancer therapies. This chapter summarizes the findings from recent studies relying on the use of RNAi-based approaches to functionally validate therapeutic targets related to two tumor hallmarks: the unlimited replicative potential (i.e., activation of telomere maintenance mechanisms) and evasion of apoptosis (i.e., up-regulation of anti-apoptotic factors).
Collapse
Affiliation(s)
- Marco Folini
- Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | |
Collapse
|
122
|
No attenuation of the ATM-dependent DNA damage response in murine telomerase-deficient cells. DNA Repair (Amst) 2008; 8:347-53. [PMID: 19071232 DOI: 10.1016/j.dnarep.2008.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 11/02/2008] [Accepted: 11/10/2008] [Indexed: 12/19/2022]
Abstract
Inactivation of mammalian telomerase leads to telomere attrition, eventually culminating in uncapped telomeres, which elicit a DNA damage response and cell cycle arrest or death. In some instances, telomerase modulation evokes a response not obviously attributable to changes in telomere length. One such example is the suppression of the DNA damage response (DDR) and changes in histone modification that occur upon repression of the telomerase reverse transcriptase, TERT, in human primary cells [K. Masutomi, R. Possemato, J.M. Wong, J.L. Currier, Z. Tothova, J.B. Manola, S. Ganesan, P.M. Lansdorp, K. Collins and W.C. Hahn, The telomerase reverse transcriptase regulates chromatin state and DNA damage responses, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 8222-8227]. Here, we evaluate the contribution of TERT to the DDR in murine Tert(-/-) cells without critically shortened telomeres. We treated mTert(-/-) embryonic stem (ES) cells and murine embryonic fibroblasts (MEFs) with etoposide and irradiation, and assessed the status of p53(pS15), 53BP1, ATM(pS1981), SMC1(pS957), and gammaH2AX by indirect immunofluorescence or western blotting. In four independently derived mTert(-/-) ES cell lines, there was no significant difference in the induction of gammaH2AX, 53BP1 foci, or the phosphorylation of ATM targets (ATM, SMC1, p53) between wildtype and mTert(-/-) ES cells and MEFs. A slight difference in post-translational modification of histones H3 and H4 was observed in a subset of mTert(-/-) ES cells, however this difference was reflected in the cellular levels of H3 and H4. Thus, in contrast to previous studies in human cells, the absence of Tert does not overtly affect the ATM-dependent response to DNA damage in murine cells.
Collapse
|
123
|
Shammas MA, Qazi A, Batchu RB, Bertheau RC, Wong JYY, Rao MY, Prasad M, Chanda D, Ponnazhagan S, Anderson KC, Steffes CP, Munshi NC, De Vivo I, Beer DG, Gryaznov S, Weaver DW, Goyal RK. Telomere maintenance in laser capture microdissection-purified Barrett's adenocarcinoma cells and effect of telomerase inhibition in vivo. Clin Cancer Res 2008; 14:4971-80. [PMID: 18676772 DOI: 10.1158/1078-0432.ccr-08-0473] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The aims of this study were to investigate telomere function in normal and Barrett's esophageal adenocarcinoma (BEAC) cells purified by laser capture microdissection and to evaluate the effect of telomerase inhibition in cancer cells in vitro and in vivo. EXPERIMENTAL DESIGN Epithelial cells were purified from surgically resected esophagi. Telomerase activity was measured by modified telomeric repeat amplification protocol and telomere length was determined by real-time PCR assay. To evaluate the effect of telomerase inhibition, adenocarcinoma cell lines were continuously treated with a specific telomerase inhibitor (GRN163L) and live cell number was determined weekly. Apoptosis was evaluated by Annexin labeling and senescence by beta-galactosidase staining. For in vivo studies, severe combined immunodeficient mice were s.c. inoculated with adenocarcinoma cells and following appearance of palpable tumors, injected i.p. with saline or GRN163L. RESULTS Telomerase activity was significantly elevated whereas telomeres were shorter in BEAC cells relative to normal esophageal epithelial cells. The treatment of adenocarcinoma cells with telomerase inhibitor, GRN163L, led to loss of telomerase activity, reduction in telomere length, and growth arrest through induction of both the senescence and apoptosis. GRN163L-induced cell death could also be expedited by addition of the chemotherapeutic agents doxorubicin and ritonavir. Finally, the treatment with GRN163L led to a significant reduction in tumor volume in a subcutaneous tumor model. CONCLUSIONS We show that telomerase activity is significantly elevated whereas telomeres are shorter in BEAC and suppression of telomerase inhibits proliferation of adenocarcinoma cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Masood A Shammas
- Department of Surgery, Wayne State University and Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kurabayashi R, Takubo K, Aida J, Honma N, Poon SSS, Kammori M, Izumiyama-Shimomura N, Nakamura KI, Tsuji EI, Matsuura M, Ogawa T, Kaminishi M. Luminal and cancer cells in the breast show more rapid telomere shortening than myoepithelial cells and fibroblasts. Hum Pathol 2008; 39:1647-55. [PMID: 18656239 DOI: 10.1016/j.humpath.2008.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/24/2022]
Abstract
Critically shortened, dysfunctional telomeres may play a role in the genetic instabilities commonly found in cancer. We analyzed 30 surgical specimens of invasive breast carcinoma from women aged 34 to 91 years and estimated telomere lengths as telomere-to-centromere ratio values in the 5 different cell types comprising breast tissue in order to clarify telomere length variations within and between individuals using our tissue quantitative fluorescence in situ hybridization method. We obtained 3 novel findings. (1) In corresponding normal tissues, telomere length decreased in the order myoepithelial cells > normal-appearing fibroblasts > luminal epithelial cells, and telomere lengths were characteristic in these 3 cell types within each individual. (2) As expected, cancer cells had significantly shorter telomeres than myoepithelial cells (P < .0001) and normal-appearing fibroblasts (P = .0161), but there was no significant difference in telomere length between luminal cells and cancer cells (P = .6270). (3) Fibroblasts adjacent to cancer had longer telomeres than normal-appearing fibroblasts distant from cancer (P < .0001). This study, which represents the first reported assessment of telomere length variations in the 5 cell types comprising breast tissue within and between individuals, revealed that normal luminal epithelial cells and cancer cells had the shortest telomeres. Our new findings indicate that telomeres of background luminal cells are as short as those of cancer cells. Tissue quantitative fluorescence in situ hybridization, applicable to analysis of individual cells in tissue sections, is considered to be a powerful technique with considerable promise for studies in oncology.
Collapse
Affiliation(s)
- Rie Kurabayashi
- Division of Metabolic Care and Endocrine Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Meyer DH, Bailis AM. Mating type influences chromosome loss and replicative senescence in telomerase-deficient budding yeast by Dnl4-dependent telomere fusion. Mol Microbiol 2008; 69:1246-54. [PMID: 18627461 DOI: 10.1111/j.1365-2958.2008.06353.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As we age, the majority of our cells gradually lose the capacity to divide because of replicative senescence that results from the inability to replicate the ends of chromosomes. The timing of senescence is dependent on the length of telomeric DNA, which elicits a checkpoint signal when critically short. Critically short telomeres also become vulnerable to deleterious rearrangements, end-degradation and telomere-telomere fusions. Here we report a novel role of non-homologous end-joining (NHEJ), a pathway of double-strand break repair in influencing both the kinetics of replicative senescence and the rate of chromosome loss in telomerase-deficient Saccharomyces cerevisiae. In telomerase-deficient cells, the absence of NHEJ delays replicative senescence, decreases loss of viability during senescence, and suppresses senescence-associated chromosome loss and telomere-telomere fusion. Differences in mating-type gene expression in haploid and diploid cells affect NHEJ function, resulting in distinct kinetics of replicative senescence. These results suggest that the differences in the kinetics of replicative senescence in haploid and diploid telomerase-deficient yeast are determined by changes in NHEJ-dependent telomere fusion, perhaps through the initiation of the breakage-fusion-bridge cycle.
Collapse
Affiliation(s)
- Damon H Meyer
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, and City of Hope Graduate School of Biological Sciences, Duarte, CA 91010-0269, USA
| | | |
Collapse
|
126
|
Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:5432-45. [PMID: 18591251 DOI: 10.1128/mcb.00307-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative DNA damage is likely to be involved in the etiology of cancer and is thought to accelerate tumorigenesis via increased mutation rates. However, the majority of malignant cells acquire a specific type of genomic instability characterized by large-scale genomic rearrangements, referred to as chromosomal instability (CIN). The molecular mechanisms underlying CIN are not entirely understood. We utilized Saccharomyces cerevisiae as a model system to delineate the relationship between genotoxic stress and CIN. It was found that elevated levels of chronic, unrepaired oxidative DNA damage caused chromosomal aberrations at remarkably high frequencies under both selective and nonselective growth conditions. In this system, exceeding the cellular capacity to appropriately manage oxidative DNA damage resulted in a "gain-of-CIN" phenotype and led to profound karyotypic instability. These results illustrate a novel mechanism for genome destabilization that is likely to be relevant to human carcinogenesis.
Collapse
|
127
|
Abstract
Acquired and congenital aplastic anemias recently have been linked molecularly and pathophysiologically by abnormal telomere maintenance. Telomeres are repeated nucleotide sequences that cap the ends of chromosomes and protect them from damage. Telomeres are eroded with cell division, but in hematopoietic stem cells, maintenance of their length is mediated by telomerase. Accelerated telomere shortening is virtually universal in dyskeratosis congenita, caused by mutations in genes encoding components of telomerase or telomere-binding protein (TERT, TERC, DKC1, NOP10, or TINF2). About one-third of patients with acquired aplastic anemia also have short telomeres, which in some cases associate with TERT or TERC mutations. These mutations cause low telomerase activity, accelerated telomere shortening, and diminished proliferative capacity of hematopoietic progenitors. As in other genetic diseases, additional environmental, genetic, and epigenetic modifiers must contribute to telomere erosion and ultimately to disease phenotype. Short telomeres also may cause genomic instability and malignant progression in these marrow failure syndromes. Identification of short telomeres has potential clinical implications: it may be useful in dyskeratosis congenita diagnosis, in suggesting mutations in patients with acquired aplastic anemia, and for selection of suitable hematopoietic stem cell family donors for transplantation in telomerase-deficient patients.
Collapse
|
128
|
Bellon M, Nicot C. Regulation of telomerase and telomeres: human tumor viruses take control. J Natl Cancer Inst 2008; 100:98-108. [PMID: 18182620 DOI: 10.1093/jnci/djm269] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human tumor viruses are responsible for one-fifth of all cancers worldwide. These viruses have evolved multiple strategies to evade immune defenses and to persist in the host by establishing a latent infection. Proliferation is necessary for pretumor cells to accumulate genetic alterations and to acquire a transformed phenotype. However, each cell division is associated with a progressive shortening of the telomeres, which can suppress tumor development by initiating senescence and irreversible cell cycle arrest. Therefore, the ability of virus-infected cells to circumvent the senescence program is essential for the long-term survival and proliferation of infected cells and the likelihood of transformation. We review the multiple strategies used by human DNA and RNA tumor viruses to subvert telomerase functions during cellular transformation and carcinogenesis. Epstein-Barr virus, Kaposi sarcoma-associated herpesvirus, human papillomavirus, hepatitis B virus, hepatitis C virus, and human T-cell leukemia virus-1 each can increase transcription of the telomerase reverse transcriptase. Several viruses appear to mediate cis-activation or enhance epigenetic activation of telomerase transcription. Epstein-Barr virus and human papillomavirus have each developed posttranscriptional mechanisms to regulate the telomerase protein. Finally, some tumor virus proteins can also negatively regulate telomerase transcription or activity. It is likely that, as future studies further expose the strategies used by viruses to deregulate telomerase activity and control of telomere length, novel mechanisms will emerge and underscore the importance of increased telomerase activity in sustaining virus-infected cells and its potential in therapeutic targeting.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kansas Medical Center, 3025 Wahl Hall West, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | |
Collapse
|
129
|
Futami K, Kumagai E, Makino H, Goto H, Takagi M, Shimamoto A, Furuichi Y. Induction of mitotic cell death in cancer cells by small interference RNA suppressing the expression of RecQL1 helicase. Cancer Sci 2007; 99:71-80. [PMID: 17953710 DOI: 10.1111/j.1349-7006.2007.00647.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RecQL1 DNA helicase of the human RecQ helicase family participates in DNA repair and recombination pathways during cell-cycle replication. When we examined the effect of RecQL1 suppression on cell growth, we found that RecQL1 silencing by small interference RNA efficiently prevented proliferation of a wide range of cancer cells by inducing mitotic catastrophe and mitotic cell death. In contrast, such mitotic cell death was not seen in the growing normal fibroblasts used as controls, even if RecQL1 expression was fully downregulated. Our results support the hypothesis that endogenous DNA damage that occurs during DNA replication and remains unrepaired in cancer cells due to RecQL1 silencing induces cancer cell-specific mitotic catastrophe through a less-strict checkpoint in cancer cells than in normal cells. We speculate that normal cells are exempt from such mitotic cell death, despite slow growth, because cell-cycle progression is controlled strictly by a strong checkpoint system that detects DNA damage and arrests progression of the cell cycle until DNA damage is repaired completely. These results suggest that RecQL1 helicase is an excellent molecular target for cancer chemotherapy.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute, 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Ragu S, Faye G, Iraqui I, Masurel-Heneman A, Kolodner RD, Huang ME. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A 2007; 104:9747-52. [PMID: 17535927 PMCID: PMC1887571 DOI: 10.1073/pnas.0703192104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The absence of Tsa1, a key peroxiredoxin that functions to scavenge H(2)O(2) in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations including gross chromosomal rearrangements (GCRs). Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD6 and several key genes involved in DNA double-strand break repair. In the present study we investigated the causes of GCRs and cell death in these mutants. tsa1-associated GCRs were independent of the activity of the translesion DNA polymerases zeta, eta, and Rev1. Anaerobic growth reduced substantially GCR rates of WT and tsa1 mutants and restored the viability of tsa1 rad6, tsa1 rad51, and tsa1 mre11 double mutants. Anaerobic growth also reduced the GCR rate of rad27, pif1, and rad52 mutants, indicating a role of reactive oxygen species in GCR formation in these mutants. In addition, deletion of TSA1 or H(2)O(2) treatment of WT cells resulted in increased formation of Rad52 foci, sites of repair of multiple DNA lesions. H(2)O(2) treatment also induced the GCRs. Our results provide in vivo evidence that oxygen metabolism and reactive oxygen species are important sources of DNA damages that can lead to GCRs and lethal effects in S. cerevisiae.
Collapse
Affiliation(s)
- Sandrine Ragu
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2027, Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay, France; and
| | - Gérard Faye
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2027, Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay, France; and
| | - Ismail Iraqui
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2027, Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay, France; and
| | - Amélie Masurel-Heneman
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2027, Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay, France; and
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, Department of Medicine and Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail: or
| | - Meng-Er Huang
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2027, Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay, France; and
- Ludwig Institute for Cancer Research, Department of Medicine and Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
131
|
Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A 2007; 104:2205-10. [PMID: 17284601 PMCID: PMC1794219 DOI: 10.1073/pnas.0609410104] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Werner syndrome (WS) is a rare human premature aging disease caused by mutations in the gene encoding the RecQ helicase WRN. In addition to the aging features, this disorder is marked by genomic instability, associated with an elevated incidence of cancer. Several lines of evidence suggest that telomere dysfunction is associated with the aging phenotype of the syndrome; however, the origin of the genomic instability observed in WS cells and the reason for the high incidence of cancer in WS have not been established. We previously proposed that WRN helicase activity was necessary to prevent dramatic telomere loss during DNA replication. Here we demonstrate that replication-associated telomere loss is responsible for the chromosome fusions found in WS fibroblasts. Moreover, using metaphase analysis we show that telomere elongation by telomerase can significantly reduce the appearance of new chromosomal aberrations in cells lacking WRN, similar to complementation of WS cells with WRN. Our results suggest that the genome instability in WS cells depends directly on telomere dysfunction, linking chromosome end maintenance to chromosomal aberrations in this disease.
Collapse
Affiliation(s)
- Laure Crabbe
- *Regulatory Biology Department, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037; and
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Colleen M. Naeger
- *Regulatory Biology Department, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037; and
| | - Heidi Holtgreve-Grez
- Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Jan Karlseder
- *Regulatory Biology Department, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|