101
|
Stepanyuk GA, Golz S, Markova SV, Frank LA, Lee J, Vysotski ES. Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein. FEBS Lett 2005; 579:1008-14. [PMID: 15710383 DOI: 10.1016/j.febslet.2005.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/03/2005] [Accepted: 01/06/2005] [Indexed: 11/20/2022]
Abstract
The bioluminescence spectra from the Ca2+-regulated photoproteins aequorin (lambdamax=469 nm) and obelin (lambdamax=482 nm) differ because aequorin has an H-bond from its Tyr82 to the bound coelenteramide, not present in obelin at the corresponding Phe88. Substitutions of this Phe88 by Tyr, Trp, or His shifted the obelin bioluminescence to shorter wavelength with F88Y having lambdamax=453 nm. Removal of the H-bond by the substitution of Y82F in aequorin shifted its bioluminescence to lambdamax=501 nm. All mutants were stable with good activity and were expressible in mammalian cells, thereby demonstrating potential for monitoring multiple events in cells using multi-color detection.
Collapse
Affiliation(s)
- Galina A Stepanyuk
- Photobiology Laboratory, Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | | | | | | | | | | |
Collapse
|
102
|
Toma S, Chong KT, Nakagawa A, Teranishi K, Inouye S, Shimomura O. The crystal structures of semi-synthetic aequorins. Protein Sci 2005; 14:409-16. [PMID: 15632284 PMCID: PMC2253417 DOI: 10.1110/ps.041067805] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The photoprotein aequorin emits light by an intramolecular reaction in the presence of a trace amount of Ca(2+). Semi-synthetic aequorins, produced by replacing the coelenterazine moiety in aequorin with the analogues of coelenterazine, show widely different sensitivities to Ca(2+). To understand the structural basis of the Ca(2+)-sensitivity, we determined the crystal structures of four semi-synthetic aequorins (cp-, i-, br- and n-aequorins) at resolutions of 1.6-1.8 A. In general, the protein structures of these semi-synthetic aequorins are almost identical to native aequorin. Of the four EF-hand domains in the molecule, EF-hand II does not bind Ca(2+), and the loop of EF-hand IV is clearly deformed. It is most likely that the binding of Ca(2+) with EF-hands I and III triggers luminescence. Although little difference was found in the overall structures of aequorins investigated, some significant differences were found in the interactions between the substituents of coelenterazine moiety and the amino acid residues in the binding pocket. The coelenterazine moieties in i-, br-, and n-aequorins have bulky 2-substitutions, which can interfere with the conformational changes of protein structure that follow the binding of Ca(2+) to aequorin. In cp-aequorin, the cyclopentylmethyl group that substitutes for the original 8-benzyl group does not interact hydrophobically with the protein part, giving the coelenterazine moiety more conformational freedom to promote the light-emitting reaction. The differences of various semi-synthetic aequorins in Ca(2+)-sensitivity and reaction rate are explained by the capability of the involved groups and structures to undergo conformational changes in response to the Ca(2+)-binding.
Collapse
Affiliation(s)
- Sachiko Toma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 2004; 341:73-91. [PMID: 15312764 DOI: 10.1016/j.jmb.2004.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/19/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023]
Abstract
Sso10a is a member of a group of DNA-binding proteins thought to be important in chromatin structure and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus. We have determined the structure of Sso10a to 1.47A resolution directly with unlabelled native crystals by a novel approach using sulfur single-wavelength anomalous scattering (SAS) from a chromium X-ray source. The 95 amino acid residue protein contains a winged helix DNA-binding domain with an extended C-terminal alpha-helix that leads to dimerization by forming a two-stranded, antiparallel coiled-coil rod. The winged helix domains are at opposite ends of the extended coiled coil with two putative DNA-recognition helices separated by 55A and rotated by 83 degrees. Formation of stable dimers in solution is demonstrated by both analytical ultracentrifugation and differential scanning calorimetry. With a T0 of 109 degrees C, Sso10a is one of the most stable two-stranded coiled coils known. The coiled coil contains a rare aspartate residue (D69) in the normally hydrophobic d position of the heptad repeat, with two aspartate-lysine (d-g') interhelical ion pairs in the symmetrical dimer. Mutation of D69 to alanine resulted in an increase in thermal stability, indicating that destabilization resulting from the partially buried aspartate residue cannot be offset by ion pair formation. Possible DNA-binding interactions are discussed on the basis of comparisons to other winged helix proteins. The structure of Sso10a provides insight into the structures of the conserved domain represented by COG3432, a group of more than 20 hypothetical transcriptional regulators coded in the genomic sequences of both crenarchaeota and euryarchaeota.
Collapse
Affiliation(s)
- Liqing Chen
- Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Deng L, Markova SV, Vysotski ES, Liu ZJ, Lee J, Rose J, Wang BC. Crystal Structure of a Ca2+-discharged Photoprotein. J Biol Chem 2004; 279:33647-52. [PMID: 15155735 DOI: 10.1074/jbc.m402427200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+-regulated photoproteins are members of the EF-hand calcium-binding protein family. The addition of Ca2+ produces a blue bioluminescence by triggering a decarboxylation reaction of protein-bound hydroperoxycoelenterazine to form the product, coelenteramide, in an excited state. Based on the spatial structures of aequorin and several obelins, we have postulated mechanisms for the Ca2+ trigger and for generation of the different excited states that are the origin of the different colors of bioluminescence. Here we report the crystal structure of the Ca2+-discharged photoprotein obelin at 1.96-A resolution. The results lend support to the proposed mechanisms and provide new structural insight into details of these processes. Global conformational changes caused by Ca2+ association are typical of the class of calcium signal modulators within the EF-hand protein superfamily. Accommodation of the Ca2+ ions into the loops of the EF-hands is seen to propagate into the active site of the protein now occupied by the coelenteramide where there is a significant repositioning and flipping of the His-175 imidazole ring as crucially required in the trigger hypothesis. Also the H-bonding between His-22 and the coelenterazine found in the active photoprotein is preserved at the equivalent position of coelenteramide, confirming the proposed rapid excited state proton transfer that would lead to the excited state of the phenolate ion pair, which is responsible for the blue emission of bioluminescence.
Collapse
Affiliation(s)
- Lu Deng
- Departments of Chemistry and Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Gorokhovatsky AY, Marchenkov VV, Rudenko NV, Ivashina TV, Ksenzenko VN, Burkhardt N, Semisotnov GV, Vinokurov LM, Alakhov YB. Fusion of Aequorea victoria GFP and aequorin provides their Ca2+-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochem Biophys Res Commun 2004; 320:703-11. [PMID: 15240105 DOI: 10.1016/j.bbrc.2004.06.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 11/26/2022]
Abstract
The bioluminescence emitted by Aequorea victoria jellyfish is greenish while its single bioluminescent photoprotein aequorin emits blue light. This phenomenon may be explained by a bioluminescence resonance energy transfer (BRET) from aequorin chromophore to green fluorescent protein (GFP) co-localized with it. However, a slight overlapping of the aequorin bioluminescence spectrum with the GFP absorption spectrum and the absence of marked interaction between these proteins in vitro pose a question on the mechanism providing the efficient BRET in A. victoria. Here we report the in vitro study of BRET between homologous Ca(2+)-activated photoproteins, aequorin or obelin (Obelia longissima), as bioluminescence energy donors, and GFP, as an acceptor. The fusions containing donor and acceptor proteins linked by a 19 aa peptide were purified after expressing their genes in Escherichia coli cells. It was shown that the GFP-aequorin fusion has a significantly greater BRET efficiency, compared to the GFP-obelin fusion. Two main factors responsible for the difference in BRET efficiency of these fusions were revealed. First, it is the presence of Ca(2+)-induced interaction between the donor and acceptor in the aequorin-containing fusion and the absence of the interaction in the obelin-containing fusion. Second, it is a red shift of GFP absorption toward better overlapping with aequorin bioluminescence induced by the interaction of aequorin with GFP. Since the connection of the two proteins in vitro mimics their proximity in vivo, Ca(2+)-induced interaction between aequorin and GFP may occur in A. victoria jellyfish providing efficient BRET in this organism.
Collapse
Affiliation(s)
- Andrey Yu Gorokhovatsky
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Liu ZJ, Vysotski ES, Deng L, Lee J, Rose J, Wang BC. Atomic resolution structure of obelin: soaking with calcium enhances electron density of the second oxygen atom substituted at the C2-position of coelenterazine. Biochem Biophys Res Commun 2003; 311:433-9. [PMID: 14592432 DOI: 10.1016/j.bbrc.2003.09.231] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The spatial structure of the Ca(2+)-regulated photoprotein obelin has been solved to resolution of 1.1A. Two oxygen atoms are revealed substituted at the C2-position of the coelenterazine in contrast to the obelin structure at 1.73A resolution where one oxygen atom only was disclosed. The electron density of the second oxygen atom was very weak but after exposing the crystals to a trace of Ca(2+), the electron densities of both oxygen atoms became equally intense. In addition, one Ca(2+) was found bound in the loop of the first EF-hand motif. Four of the ligands were provided by protein residues Asp30, Asn32, Asn34, and the main chain oxygen of Lys36. The other two were from water molecules. From a comparison of B-factors for the residues constituting the active site, it is suggested that the variable electron densities observed in various photoprotein structures could be attributed to different mobilities of the peroxy oxygen atoms.
Collapse
Affiliation(s)
- Zhi-Jie Liu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
107
|
Malikova NP, Stepanyuk GA, Frank LA, Markova SV, Vysotski ES, Lee J. Spectral tuning of obelin bioluminescence by mutations of Trp92. FEBS Lett 2003; 554:184-8. [PMID: 14596937 DOI: 10.1016/s0014-5793(03)01166-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ca(2+)-regulated photoprotein obelin was substituted at Trp92 by His, Lys, Glu, and Arg. All mutants fold into stable conformations and produce bimodal bioluminescence spectra with enhanced contribution from a violet emission. The W92R mutant has an almost monomodal bioluminescence (lambdamax=390 nm) and monomodal fluorescence (lambdamax=425 nm) of the product. Results are interpreted by an excited state proton transfer mechanism involving the substituent side group and His22 in the binding cavity.
Collapse
Affiliation(s)
- Natalia P Malikova
- Photobiology Lab, Institute of Biophysics, Russian Academy of Sciences Siberian Branch, Krasnoyarsk 660036, Russia
| | | | | | | | | | | |
Collapse
|
108
|
Masuda H, Takenaka Y, Shikamoto Y, Kagawa M, Mizuno H, Tsuji FI. Chromatography of isoforms of recombinant apoaequorin and method for the preparation of aequorin. Protein Expr Purif 2003; 31:181-7. [PMID: 14550635 DOI: 10.1016/s1046-5928(03)00186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gradient elution chromatography of recombinant apoaequorin carried out in the presence of Ca2+ revealed two isoforms of apoaequorin, reduced and oxidized, whereas in the presence of EDTA 3 isoforms were observed. In a regeneration mixture of apoaequorin, coelenterazine, EDTA, and 2-mercaptoethanol, four isoforms were obtained, of which only one, aequorin, gave light with Ca2+. A method is described for the preparation of highly pure aequorin. The aequorin was stable in solution for approximately 10 days at 4 degrees C and pH 7.6, and then it gradually lost activity with a half-life of about 20 days until it was almost completely inactive on day 30.
Collapse
Affiliation(s)
- Hiromi Masuda
- Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Affiliation(s)
- J Woodland Hastings
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
110
|
Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J Struct Biol 2003; 142:218-31. [PMID: 12718933 DOI: 10.1016/s1047-8477(03)00052-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Counterdiffusion crystallization in capillary is a very simple, cost-effective, and practical procedure for obtaining protein crystals suitable for X-ray data analysis. Its principles have been derived using well-known concepts coupling the ideas of precipitation and diffusion mass transport in a restricted geometry. The counterdiffusion process has been used to simultaneously screen for optimal conditions for protein crystal growth, incorporate strong anomalous scattering atoms, and mix in cryogenic solutions in a single capillary tube. The crystals obtained in the capillary have been used in situ for X-ray analysis. The implementation of this technique linked to the advancement of current crystallography software leads to a powerful structure determination method consolidating crystal growth, X-ray data collection, and ab initio phase determination into one without crystal manipulation. We review the historical progress of counterdiffusion crystallization, its application to X-ray crystallography, and ongoing tool development for high-throughput protein structure determination.
Collapse
|
111
|
Abstract
SOLVE and RESOLVE have shown that it is possible to automate a significant part of the macromolecular X-ray structure determination process. The key elements of seamless and compatible subprograms, scoring algorithms, and error-tolerant software systems have been important in implementing these programs. The principles used in SOLVE and RESOLVE can be applied to other aspects of structure determination as well, suggesting that full automation of the entire structure determination process from scaling diffraction data to a refined model will be possible in the near future.
Collapse
|
112
|
Li S, Finley J, Liu ZJ, Qiu SH, Chen H, Luan CH, Carson M, Tsao J, Johnson D, Lin G, Zhao J, Thomas W, Nagy LA, Sha B, DeLucas LJ, Wang BC, Luo M. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J Biol Chem 2002; 277:48596-601. [PMID: 12221106 DOI: 10.1074/jbc.m208512200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoskeleton-associated proteins (CAPs) are involved in the organization of microtubules and transportation of vesicles and organelles along the cytoskeletal network. A conserved motif, CAP-Gly, has been identified in a number of CAPs, including CLIP-170 and dynactins. The crystal structure of the CAP-Gly domain of Caenorhabditis elegans F53F4.3 protein, solved by single wavelength sulfur-anomalous phasing, revealed a novel protein fold containing three beta-sheets. The most conserved sequence, GKNDG, is located in two consecutive sharp turns on the surface, forming the entrance to a groove. Residues in the groove are highly conserved as measured from the information content of the aligned sequences. The C-terminal tail of another molecule in the crystal is bound in this groove.
Collapse
Affiliation(s)
- Songlin Li
- Southeast Collaboratory for Structural Genomics, University of Georgia, Athens 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Choe J, Suresh S, Wisedchaisri G, Kennedy KJ, Gelb MH, Hol WGJ. Anomalous differences of light elements in determining precise binding modes of ligands to glycerol-3-phosphate dehydrogenase. CHEMISTRY & BIOLOGY 2002; 9:1189-97. [PMID: 12445769 DOI: 10.1016/s1074-5521(02)00243-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pathogenic protozoa such as Trypanosome and Leishmania species cause tremendous suffering worldwide. Because of their dependence on glycolysis for energy, the glycolytic enzymes of these organisms, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. Using the adenine part of NAD as a lead compound, several 2,6-disubstituted purines were synthesized as inhibitors of Leishmania mexicana GPDH (LmGPDH). The electron densities for the inhibitor 2-bromo-6-chloro-purine bound to LmGPDH using a "conventional" wavelength around 1 A displayed a quasisymmetric shape. The anomalous signals from data collected at 1.77 A clearly indicated the positions of the halogen atoms and revealed the multiple binding modes of this inhibitor. Intriguing differences in the observed binding modes of the inhibitor between very similarly prepared crystals illustrate the possibility of crystal-to-crystal variations in protein-ligand complex structures.
Collapse
Affiliation(s)
- Jungwoo Choe
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
The usefulness of X-ray data derived from space-grown protein crystals for calculating a more accurate structure is reviewed here for three model proteins. These include the plant sweetening protein, thaumatin, from Thaumatococcus daniellii; the aspartyl-tRNA synthetase from Thermus thermophilus; and pea lectin from Pisum sativum. In all three cases, X-ray diffraction data collected from protein crystals obtained under reduced gravity lead to better defined initial electron density maps, facilitating model building and improved crystallographic statistics. With thaumatin, the phasing power of the anomalous scattering atom, sulfur, is used to determine protein crystal quality in terms of its usefulness for ab initio structure determination. Thaumatin crystals grown under microgravity provided improved phasing statistics compared to those of Earth-grown crystals. Consequently, generating a de novo protein model of higher quality was facilitated using X-ray diffraction data from space-grown crystals. This lends evidence to the possibility that a microgravity environment can favor protein crystal growth and, subsequently, be more useful for structure determination.
Collapse
Affiliation(s)
- Joseph D Ng
- Laboratory for Structural Biology and the Department of Biological Sciences, University of Alabama in Huntsville, 35899, USA.
| |
Collapse
|
115
|
Deng L, Vysotski ES, Liu ZJ, Markova SV, Malikova NP, Lee J, Rose J, Wang BC. Structural basis for the emission of violet bioluminescence from a W92F obelin mutant. FEBS Lett 2001; 506:281-5. [PMID: 11602262 DOI: 10.1016/s0014-5793(01)02937-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutation of the Trp92 that is known to lie within the active site of the photoprotein obelin from Obelia longissima, results in a shift of the bioluminescence color from blue (lambda(max)=485 nm) to violet. The corrected spectrum shows a new band with lambda(max)=410 nm now contributing equally to the one at longer wavelength. The crystal structure of this W92F obelin determined at 1.72 A resolution shows that there is no significant change in the dimensions of the active site between WT obelin (recombinant Ca2+-regulated photoprotein from Obelia longissima) and the mutant. It is proposed that the bioluminescence spectral shift results from removal of a hydrogen bond from the indole of W92 nearby a hydroxyl belonging to the 6-phenyl substituent of the substrate coelenterazine. Propagation of this change through a conjugated bond system in the excited state of the product coelenteramide affects the coupling of the N1-position and the hydrogen-bonded Y138.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Georgia, Athens 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Haddock SH, Rivers TJ, Robison BH. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sci U S A 2001; 98:11148-51. [PMID: 11572972 PMCID: PMC58698 DOI: 10.1073/pnas.201329798] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the calcium-activated photoprotein aequorin, light is produced by the oxidation of coelenterazine, the luciferin used by at least seven marine phyla. However, despite extensive research on photoproteins, there has been no evidence to indicate the origin of coelenterazine within the phylum Cnidaria. Here we report that the hydromedusa Aequorea victoria is unable to produce its own coelenterazine and is dependent on a dietary supply of this luciferin for bioluminescence. Although they contain functional apophotoproteins, medusae reared on a luciferin-free diet are unable to produce light unless provided with coelenterazine from an external source. This evidence regarding the origins of luciferin in Cnidaria has implications for the evolution of bioluminescence and for the extensive use of coelenterazine among marine organisms.
Collapse
Affiliation(s)
- S H Haddock
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA.
| | | | | |
Collapse
|
117
|
Weiss MS, Sicker T, Hilgenfeld R. Soft X-rays, high redundancy, and proper scaling: a new procedure for automated protein structure determination via SAS. Structure 2001; 9:771-7. [PMID: 11566127 DOI: 10.1016/s0969-2126(01)00647-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- M S Weiss
- Institute of Molecular Biotechnology, Department of Structural Biology and Crystallography, Beutenbergstr. 11, Jena D-07745, Germany.
| | | | | |
Collapse
|
118
|
Metzler DE, Metzler CM, Sauke DJ. Light and Life. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|