101
|
Durlanik S, Thiel A. Requirement of immune system heterogeneity for protective immunity. Vaccine 2015; 33:5308-12. [PMID: 26073012 DOI: 10.1016/j.vaccine.2015.05.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/24/2023]
Abstract
Although our knowledge on the immune system and immunological memory has expanded enormously during the last decades, the development of strategies to induce robust protective memory against infections and tumors remains challenging. Intense efforts and immense resources have been put into the development of vaccines. However, effective tools to assess protective immunity, beyond neutralizing antibody titers and cytotoxic T cell activity, are still missing. Previous trials have primarily focused on individual cell subsets to induce and maintain protection while current research emphasizes the importance of functional heterogeneity and necessity of efficient communication within the immunological network. In this review, established knowledge as well as current perspectives on protective immunological memory will be discussed comprehensively.
Collapse
Affiliation(s)
- Sibel Durlanik
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, CVK, Föhrer Str. 15, Berlin 13353, Germany.
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, CVK, Föhrer Str. 15, Berlin 13353, Germany
| |
Collapse
|
102
|
Greiff V, Bhat P, Cook SC, Menzel U, Kang W, Reddy ST. A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status. Genome Med 2015; 7:49. [PMID: 26140055 PMCID: PMC4489130 DOI: 10.1186/s13073-015-0169-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lymphocyte receptor repertoires are continually shaped throughout the lifetime of an individual in response to environmental and pathogenic exposure. Thus, they may serve as a fingerprint of an individual's ongoing immunological status (e.g., healthy, infected, vaccinated), with far-reaching implications for immunodiagnostics applications. The advent of high-throughput immune repertoire sequencing now enables the interrogation of immune repertoire diversity in an unprecedented and quantitative manner. However, steadily increasing sequencing depth has revealed that immune repertoires vary greatly among individuals in their composition; correspondingly, it has been reported that there are few shared sequences indicative of immunological status ('public clones'). Disconcertingly, this means that the wealth of information gained from repertoire sequencing remains largely unused for determining the current status of immune responses, thereby hampering the implementation of immune-repertoire-based diagnostics. METHODS Here, we introduce a bioinformatics repertoire-profiling framework that possesses the advantage of capturing the diversity and distribution of entire immune repertoires, as opposed to singular public clones. The framework relies on Hill-based diversity profiles composed of a continuum of single diversity indices, which enable the quantification of the extent of immunological information contained in immune repertoires. RESULTS We coupled diversity profiles with unsupervised (hierarchical clustering) and supervised (support vector machine and feature selection) machine learning approaches in order to correlate patients' immunological statuses with their B- and T-cell repertoire data. We could predict with high accuracy (greater than or equal to 80 %) a wide range of immunological statuses such as healthy, transplantation recipient, and lymphoid cancer, suggesting as a proof of principle that diversity profiling can recover a large amount of immunodiagnostic fingerprints from immune repertoire data. Our framework is highly scalable as it easily allowed for the analysis of 1000 simulated immune repertoires; this exceeds the size of published immune repertoire datasets by one to two orders of magnitude. CONCLUSIONS Our framework offers the possibility to advance immune-repertoire-based fingerprinting, which may in the future enable a systems immunogenomics approach for vaccine profiling and the accurate and early detection of disease and infection.
Collapse
Affiliation(s)
- Victor Greiff
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, 4058 Switzerland
| | - Pooja Bhat
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, 4058 Switzerland
| | - Skylar C Cook
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, 4058 Switzerland
| | - Ulrike Menzel
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, 4058 Switzerland
| | - Wenjing Kang
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, 4058 Switzerland
| | - Sai T Reddy
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, 4058 Switzerland
| |
Collapse
|
103
|
Kuchenbecker L, Nienen M, Hecht J, Neumann AU, Babel N, Reinert K, Robinson PN. IMSEQ—a fast and error aware approach to immunogenetic sequence analysis. Bioinformatics 2015; 31:2963-71. [DOI: 10.1093/bioinformatics/btv309] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
|
104
|
Yang X, Liu D, Lv N, Zhao F, Liu F, Zou J, Chen Y, Xiao X, Wu J, Liu P, Gao J, Hu Y, Shi Y, Liu J, Zhang R, Chen C, Ma J, Gao GF, Zhu B. TCRklass: A New K-String–Based Algorithm for Human and Mouse TCR Repertoire Characterization. THE JOURNAL OF IMMUNOLOGY 2014; 194:446-54. [DOI: 10.4049/jimmunol.1400711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
105
|
Weist BJD, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol 2014; 203:395-408. [PMID: 25052009 DOI: 10.1007/s00430-014-0348-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/05/2014] [Indexed: 12/11/2022]
Abstract
Reactivation of polyomavirus BK (BKV) infection represents a severe complication in kidney transplant (KTX) patients. We previously reported an association between a declining BK viral load and the reconstitution of CD4(+) T cell BKV-specific immunity in patients following kidney transplantation. However, the specific contribution of CD4(+) T cells in the regulation of BKV-replication is unknown. Nevertheless, in vitro enrichment of BKV-specific T cells and subsequent adoptive T cell transfer may improve the restoration of immune competence in KTX patients with BKV infection. To date, strategies to capture human BKV-specific T cells with the ensuing expansion to clinically useful numbers are lacking. Here, we demonstrated a comprehensive flow cytometric analysis of the BKV-specific T cell response that permits access to the majority of T cells specific for immunodominant BKV antigens. A full-spectrum evaluation of the BKV-specific T cell response was performed by stimulating peripheral blood mononuclear cells (PBMC) with a mixture of BKV immunodominant peptide pools at varying concentrations and measuring activation marker expression and cytokine secretion. We also examined the effects of co-stimulation and PBMC resting time prior to activation. We defined the narrow range of stimulation conditions that permit the capture and expansion of functional BKV-specific T cell lines. The generated BKV-specific T cell lines showed the highest specificity and functionality when the T cells were captured according to IFNγ-secretion. This study highlights the multifunctional and cytolytic BKV-specific CD4(+) T cells as a dominant population within the generated T cell product. This method offers a novel approach for the generation of BKV-specific T cell lines for adoptive immunotherapy and underscores the critical role of CD4(+) T cells in the clearance of BKV.
Collapse
Affiliation(s)
- B J D Weist
- Department of Nephrology, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
106
|
O'Connell AE, Volpi S, Dobbs K, Fiorini C, Tsitsikov E, de Boer H, Barlan IB, Despotovic JM, Espinosa-Rosales FJ, Hanson IC, Kanariou MG, Martínez-Beckerat R, Mayorga-Sirera A, Mejia-Carvajal C, Radwan N, Weiss AR, Pai SY, Lee YN, Notarangelo LD. Next generation sequencing reveals skewing of the T and B cell receptor repertoires in patients with wiskott-Aldrich syndrome. Front Immunol 2014; 5:340. [PMID: 25101082 PMCID: PMC4102881 DOI: 10.3389/fimmu.2014.00340] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/04/2014] [Indexed: 12/26/2022] Open
Abstract
The Wiskott–Aldrich syndrome (WAS) is due to mutations of the WAS gene encoding for the cytoskeletal WAS protein, leading to abnormal downstream signaling from the T cell and B cell antigen receptors (TCR and BCR). We hypothesized that the impaired signaling through the TCR and BCR in WAS would subsequently lead to aberrations in the immune repertoire of WAS patients. Using next generation sequencing (NGS), the T cell receptor β and B cell immunoglobulin heavy chain (IGH) repertoires of eight patients with WAS and six controls were sequenced. Clonal expansions were identified within memory CD4+ cells as well as in total, naïve and memory CD8+ cells from WAS patients. In the B cell compartment, WAS patient IGH repertoires were also clonally expanded and showed skewed usage of IGHV and IGHJ genes, and increased usage of IGHG constant genes, compared with controls. To our knowledge, this is the first study that demonstrates significant abnormalities of the immune repertoire in WAS patients using NGS.
Collapse
Affiliation(s)
- Amy E O'Connell
- Department of Immunology, Boston Children's Hospital , Boston, MA , USA
| | - Stefano Volpi
- Department of Immunology, Boston Children's Hospital , Boston, MA , USA
| | - Kerry Dobbs
- Department of Immunology, Boston Children's Hospital , Boston, MA , USA
| | - Claudia Fiorini
- Department of Hematology/Oncology, Boston Children's Hospital , Boston, MA , USA
| | - Erdyni Tsitsikov
- Department of Laboratory Medicine, Boston Children's Hospital , Boston, MA , USA
| | - Helen de Boer
- Department of Hematology/Oncology, Boston Children's Hospital , Boston, MA , USA
| | - Isil B Barlan
- Marmara University Medical Center , Istanbul , Turkey
| | | | | | | | | | - Roxana Martínez-Beckerat
- Department of Pediatric Hemato-Oncology, Hospital Mario Catarino Rivas , San Pedro Sula , Honduras
| | | | | | | | | | - Sung-Yun Pai
- Department of Hematology/Oncology, Boston Children's Hospital , Boston, MA , USA
| | - Yu Nee Lee
- Department of Immunology, Boston Children's Hospital , Boston, MA , USA
| | - Luigi D Notarangelo
- Department of Immunology, Boston Children's Hospital , Boston, MA , USA ; Manton Center for Orphan Disease Research, Boston Children's Hospital , Boston, MA , USA
| |
Collapse
|
107
|
Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada KI, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014; 124:2246-59. [PMID: 24667641 DOI: 10.1172/jci73639] [Citation(s) in RCA: 834] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
Collapse
MESH Headings
- Adoptive Transfer
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Female
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Male
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/therapy
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Lymphocyte Activation Gene 3 Protein
Collapse
|
108
|
Landwehr-Kenzel S, Issa F, Luu SH, Schmück M, Lei H, Zobel A, Thiel A, Babel N, Wood K, Volk HD, Reinke P. Novel GMP-compatible protocol employing an allogeneic B cell bank for clonal expansion of allospecific natural regulatory T cells. Am J Transplant 2014; 14:594-606. [PMID: 24467477 DOI: 10.1111/ajt.12629] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/13/2013] [Indexed: 01/25/2023]
Abstract
The adoptive transfer of natural regulatory T cells (nTreg) is a new option to reshape undesired immune reactivity in autoimmunity and transplantation toward "tolerance." The first clinical trials using adoptive transfer of polyclonal nTreg demonstrated safety and hints of efficacy. However, the low frequencies of antigen-specific cells among the pool of polyclonal nTreg and their broad antigen nonspecific suppression are limitations of this approach regarding efficacy and safety. Recently, the isolation and expansion of (allo)antigen-specific nTreg have successfully been achieved by using Treg-specific activation markers but the yield is relatively low. Here, we describe a novel good manufacturing practice (GMP)-compatible expansion protocol of alloantigen-specific nTreg based on the stimulation of nTreg by allogeneic activated B cells. Their functionality and specificity are superior compared to polyclonal nTreg both in vitro and in vivo. Employing an allogeneic B cell bank, designed to cover the majority of HLA types, allows fast GMP-compliant manufacturing for donor-specific nTreg for clinical application in organ and stem cell transplantation. TCR repertoire analyses by next generation sequencing revealed impressive expansion by several log-steps of even very low-abundance alloantigen-specific nTreg clones. This novel method offers a simple approach for expanding antigen-specific nTreg and is characterized by high replicability and easy transferability to full GMP standards.
Collapse
Affiliation(s)
- S Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Newell EW, Davis MM. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat Biotechnol 2014; 32:149-57. [PMID: 24441473 PMCID: PMC4001742 DOI: 10.1038/nbt.2783] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/04/2013] [Indexed: 01/02/2023]
Abstract
Adaptive immune responses often begin with the formation of a molecular complex between a T-cell receptor (TCR) and a peptide antigen bound to a major histocompatibility complex (MHC) molecule. These complexes are highly variable, however, due to the polymorphism of MHC genes, the random, inexact recombination of TCR gene segments, and the vast array of possible self and pathogen peptide antigens. As a result, it has been very difficult to comprehensively study the TCR repertoire or identify and track more than a few antigen-specific T cells in mice or humans. For mouse studies, this had led to a reliance on model antigens and TCR transgenes. The study of limited human clinical samples, in contrast, requires techniques that can simultaneously survey TCR phenotype and function, and TCR reactivity to many T-cell epitopes. Thanks to recent advances in single-cell and cytometry methodologies, as well as high-throughput sequencing of the TCR repertoire, we now have or will soon have the tools needed to comprehensively analyze T-cell responses in health and disease.
Collapse
Affiliation(s)
- Evan W. Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore 138648
| | - Mark M. Davis
- Department of Microbiology and Immunology
- Institute for Immunity, Transplantation and Infection
- The Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
110
|
Matthews PM, Edison P, Geraghty OC, Johnson MR. The emerging agenda of stratified medicine in neurology. Nat Rev Neurol 2013; 10:15-26. [DOI: 10.1038/nrneurol.2013.245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|