101
|
Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin-Siris and Nicolaides-Baraitser syndromes. Hum Genet 2015; 134:553-68. [PMID: 25724810 DOI: 10.1007/s00439-015-1535-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
Coffin-Siris syndrome (CSS) and Nicolaides-Baraitser syndrome (NCBRS) are rare intellectual disability/congenital malformation syndromes that represent distinct entities but show considerable clinical overlap. They are caused by mutations in genes encoding members of the BRG1- and BRM-associated factor (BAF) complex. However, there are a number of patients with the clinical diagnosis of CSS or NCBRS in whom the causative mutation has not been identified. In this study, we performed trio-based whole-exome sequencing (WES) in ten previously described but unsolved individuals with the tentative diagnosis of CSS or NCBRS and found causative mutations in nine out of ten individuals. Interestingly, our WES analysis disclosed overlapping differential diagnoses including Wiedemann-Steiner, Kabuki, and Adams-Oliver syndromes. In addition, most likely causative de novo mutations were identified in GRIN2A and SHANK3. Moreover, trio-based WES detected SMARCA2 and SMARCA4 deletions, which had not been annotated in a previous Haloplex target enrichment and next-generation sequencing of known CSS/NCBRS genes emphasizing the advantages of WES as a diagnostic tool. In summary, we discuss the phenotypic and diagnostic challenges in clinical genetics, establish important differential diagnoses, and emphasize the cardinal features and the broad clinical spectrum of BAF complex disorders and other disorders caused by mutations in epigenetic landscapers.
Collapse
|
102
|
The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet 2015; 208:178-91. [PMID: 25794446 DOI: 10.1016/j.cancergen.2015.01.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
The mixed-lineage leukemia family of histone methyltransferases (MLL1-4, or KMT2A-D) were previously linked to cancer through the founding member, MLL1/KMT2A, which is often involved in translocation-associated gene fusion events in childhood leukemias. However, in recent years, a multitude of tumor exome sequencing studies have revealed that orthologues MLL3/KMT2C and MLL2/KMT2D are mutated in a significant percentage of a large variety of malignancies, particularly solid tumors. These unexpected findings necessitate a deeper inspection into the activities and functional differences between the MLL/KMT2 family members. This review provides an overview of this protein family and its relation to cancers, focusing on the recent links between MLL3/KMT2C and MLL2/4/KMT2D and their potential roles as tumor suppressors in an assortment of cell types.
Collapse
|
103
|
Abstract
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) is strongly linked to perturbation of epigenetic mechanisms. The germinal center (GC) B cells from which DLBCLs arise are prone to instability in their cytosine methylation patterns. DLBCLs inherit this epigenetic instability and display variable degrees of epigenetic heterogeneity. Greater epigenetic heterogeneity is linked with poor clinical outcome. Somatic mutations of histone-modifying proteins have also emerged as a hallmark of DLBCL. The effect of these somatic mutations may be to disrupt epigenetic switches that control the GC phenotype and "lock in" certain oncogenic features of GC B cells, resulting in malignant transformation. DNA methyltransferase and histone methyltransferase inhibitors are emerging as viable therapeutic approaches to erase aberrant epigenetic programming, suppress DLBCL growth, and overcome chemotherapy resistance. This review will discuss these recent advances and their therapeutic implications.
Collapse
Affiliation(s)
- Yanwen Jiang
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
104
|
Verhagen JMA, Oostdijk W, Terwisscha van Scheltinga CEJ, Schalij-Delfos NE, van Bever Y. An unusual presentation of Kabuki syndrome: clinical overlap with CHARGE syndrome. Eur J Med Genet 2014; 57:510-2. [PMID: 24862881 DOI: 10.1016/j.ejmg.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Kabuki syndrome is a rare genetic disorder characterized by intellectual disability and multiple congenital anomalies, including short stature, peculiar facial appearance, skeletal anomalies, a variety of visceral malformations and abnormal dermatoglyphic patterns. We describe a case of Kabuki syndrome presenting with atypical features, consisting of bilateral microphthalmia, coloboma, anal atresia and panhypopituitarism, showing considerable phenotypic overlap with CHARGE syndrome. This report demonstrates that clinical follow-up and molecular genetic testing can be useful for establishing the correct diagnosis.
Collapse
Affiliation(s)
- Judith M A Verhagen
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, The Netherlands
| | - Wilma Oostdijk
- Department of Pediatrics, Leiden University Medical Center, The Netherlands
| | | | | | - Yolande van Bever
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
105
|
Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F, Fusco C, De Nittis P, Pellico MT, Mandriani B, Fischetto R, Boccone L, Silengo M, Biamino E, Perria C, Sotgiu S, Serra G, Lapi E, Neri M, Ferlini A, Cavaliere ML, Chiurazzi P, Monica MD, Scarano G, Faravelli F, Ferrari P, Mazzanti L, Pilotta A, Patricelli MG, Bedeschi MF, Benedicenti F, Prontera P, Toschi B, Salviati L, Melis D, Di Battista E, Vancini A, Garavelli L, Zelante L, Merla G. Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients. Hum Mutat 2014; 35:841-50. [PMID: 24633898 PMCID: PMC4234006 DOI: 10.1002/humu.22547] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/05/2014] [Indexed: 12/04/2022]
Abstract
Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6A mutations, three of them are novel. We found that a number of KMT2D truncating mutations result in mRNA degradation through the nonsense-mediated mRNA decay, contributing to protein haploinsufficiency. Furthermore, we demonstrated that the reduction of KMT2D protein level in patients’ lymphoblastoid and skin fibroblast cell lines carrying KMT2D-truncating mutations affects the expression levels of known KMT2D target genes. Finally, we hypothesized that the KS patients may benefit from a readthrough therapy to restore physiological levels of KMT2D and KDM6A proteins. To assess this, we performed a proof-of-principle study on 14 KMT2D and two KDM6A nonsense mutations using specific compounds that mediate translational readthrough and thereby stimulate the re-expression of full-length functional proteins. Our experimental data showed that both KMT2D and KDM6A nonsense mutations displayed high levels of readthrough in response to gentamicin treatment, paving the way to further studies aimed at eventually treating some Kabuki patients with readthrough inducers.
Collapse
Affiliation(s)
- Lucia Micale
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Schulz Y, Freese L, Mänz J, Zoll B, Völter C, Brockmann K, Bögershausen N, Becker J, Wollnik B, Pauli S. CHARGE and Kabuki syndromes: a phenotypic and molecular link. Hum Mol Genet 2014; 23:4396-405. [PMID: 24705355 DOI: 10.1093/hmg/ddu156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding gene CHD7. Kabuki syndrome, another developmental disorder, is characterized by typical facial features in combination with developmental delay, short stature, prominent digit pads and visceral abnormalities. Mutations in the KMT2D gene, which encodes a H3K4 histone methyltransferase, are the major cause of Kabuki syndrome. Here, we report a patient, who was initially diagnosed with CHARGE syndrome based on the spectrum of inner organ malformations like choanal hypoplasia, heart defect, anal atresia, vision problems and conductive hearing impairment. While sequencing and MLPA analysis of all coding exons of CHD7 revealed no pathogenic mutation, sequence analysis of the KMT2D gene identified the heterozygous de novo nonsense mutation c.5263C > T (p.Gln1755*). Thus, our patient was diagnosed with Kabuki syndrome. By using co-immunoprecipitation, immunohistochemistry and direct yeast two hybrid assays, we could show that, like KMT2D, CHD7 interacts with members of the WAR complex, namely WDR5, ASH2L and RbBP5. We therefore propose that CHD7 and KMT2D function in the same chromatin modification machinery, thus pointing out a mechanistic connection, and presenting a probable explanation for the phenotypic overlap between Kabuki and CHARGE syndromes.
Collapse
Affiliation(s)
- Yvonne Schulz
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Luisa Freese
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Johanna Mänz
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Barbara Zoll
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christiane Völter
- Phoniatrics and Pedaudiology, Department of Otorhinolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nina Bögershausen
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jutta Becker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
107
|
Banka S, Lederer D, Benoit V, Jenkins E, Howard E, Bunstone S, Kerr B, McKee S, Lloyd IC, Shears D, Stewart H, White SM, Savarirayan R, Mancini GMS, Beysen D, Cohn RD, Grisart B, Maystadt I, Donnai D. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin Genet 2014; 87:252-8. [PMID: 24527667 DOI: 10.1111/cge.12363] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/08/2023]
Abstract
We describe seven patients with KDM6A (located on Xp11.3 and encodes UTX) mutations, a rare cause of Kabuki syndrome (KS2, MIM 300867) and report, for the first time, germ-line missense and splice-site mutations in the gene. We demonstrate that less than 5% cases of Kabuki syndrome are due to KDM6A mutations. Our work shows that similar to the commoner Type 1 Kabuki syndrome (KS1, MIM 147920) caused by KMT2D (previously called MLL2) mutations, KS2 patients are characterized by hypotonia and feeding difficulties during infancy and poor postnatal growth and short stature. Unlike KS1, developmental delay and learning disability are generally moderate-severe in boys but mild-moderate in girls with KS2. Some girls may have a normal developmental profile. Speech and cognition tend to be more severely affected than motor development. Increased susceptibility to infections, join laxity, heart, dental and ophthalmological anomalies are common. Hypoglycaemia is more common in KS2 than in KS1. Facial dysmorphism with KDM6A mutations is variable and diagnosis on facial gestalt alone may be difficult in some patients. Hypertrichosis, long halluces and large central incisors may be useful clues to an underlying KDM6A mutation in some patients.
Collapse
Affiliation(s)
- S Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre (MAHSC), Manchester, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Shinsky SA, Hu M, Vought VE, Ng SB, Bamshad MJ, Shendure J, Cosgrove MS. A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J Mol Biol 2014; 426:2283-99. [PMID: 24680668 DOI: 10.1016/j.jmb.2014.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 11/17/2022]
Abstract
The mixed lineage leukemia-1 (MLL1) enzyme is a histone H3 lysine 4 (H3K4) monomethyltransferase and has served as a paradigm for understanding the mechanism of action of the human SET1 family of enzymes that include MLL1-MLL4 and SETd1a,b. Dimethylation of H3K4 requires a sub-complex including WRAD (WDR5, RbBP5, Ash2L, and DPY-30), which binds to each SET1 family member forming a minimal core complex that is required for multiple lysine methylation. We recently demonstrated that WRAD is a novel histone methyltransferase that preferentially catalyzes H3K4 dimethylation in a manner that is dependent on an unknown non-active-site surface from the MLL1 SET domain. Recent genome sequencing studies have identified a number of human disease-associated missense mutations that localize to the SET domains of several MLL family members. In this investigation, we mapped many of these mutations onto the three-dimensional structure of the SET domain and noticed that a subset of MLL2 (KMT2D, ALR, MLL4)-associated Kabuki syndrome missense mutations map to a common solvent-exposed surface that is not expected to alter enzymatic activity. We introduced these mutations into the MLL1 SET domain and observed that all are defective for H3K4 dimethylation by the MLL1 core complex, which is associated with a loss of the ability of MLL1 to interact with WRAD or with the RbBP5/Ash2L heterodimer. Our results suggest that amino acids from this surface, which we term the Kabuki interaction surface or KIS, are required for formation of a second active site within SET1 family core complexes.
Collapse
Affiliation(s)
- Stephen A Shinsky
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Hu
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Valarie E Vought
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah B Ng
- Department of Genome Sciences, University of Washington Seattle, Seattle, WA 98105, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington Seattle, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington Seattle, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington Seattle, Seattle, WA 98105, USA
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
109
|
Pietzner V, Weigel JFW, Wand D, Merkenschlager A, Bernhard MK. Low-level hyperinsulinism with hypoglycemic spells in an infant with mosaic Turner syndrome and mild Kabuki-like phenotype: a case report and review of the literature. J Pediatr Endocrinol Metab 2014; 27:165-70. [PMID: 23950569 DOI: 10.1515/jpem-2013-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impaired glucose tolerance and type 2 diabetes are well-known features in patients with Turner syndrome. To the best of our knowledge, there is only one reported case of hyperinsulinemic hypoglycemia associated with a complex mosaic Turner syndrome available in the current literature. PATIENT We report on the case of a 13-month-old girl with a complex mosaic Turner genotype and mild hyperinsulinemic hypoglycemia responsive to diazoxide therapy. RESULTS Cytogenetic analyses showed two or possibly three cell lines. Sixty percent of the cell lines had a 45,X genotype and the rest had 46,XX with a marker ring chromosome. Diagnosis of a mosaic Turner syndrome and mild Kabuki-like phenotype was confirmed. CONCLUSIONS Despite the rareness of this case, clinicians should be aware of the possibility of hyperinsulinemic hypoglycemia in patients with Turner syndrome to prevent further brain damage caused by hypoglycemic episodes and seizures. Although the mechanism leading to hyperinsulinism in this condition is still unknown, the present report discusses this rare presentation and gives an overview on the current literature regarding this case.
Collapse
|
110
|
Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, Mabe H, Watanabe Y, Yoshino M, Matsuishi T, Takanashi JI, Shotelersuk V, Tekin M, Ochi N, Kubota M, Ito N, Ihara K, Hara T, Tonoki H, Ohta T, Saito K, Matsuo M, Urano M, Enokizono T, Sato A, Tanaka H, Ogawa A, Fujita T, Hiraki Y, Kitanaka S, Matsubara Y, Makita T, Taguri M, Nakashima M, Tsurusaki Y, Saitsu H, Yoshiura KI, Matsumoto N, Niikawa N. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A 2013; 161A:2234-43. [PMID: 23913813 DOI: 10.1002/ajmg.a.36072] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Kabuki syndrome is a congenital anomaly syndrome characterized by developmental delay, intellectual disability, specific facial features including long palpebral fissures and ectropion of the lateral third of the lower eyelids, prominent digit pads, and skeletal and visceral abnormalities. Mutations in MLL2 and KDM6A cause Kabuki syndrome. We screened 81 individuals with Kabuki syndrome for mutations in these genes by conventional methods (n = 58) and/or targeted resequencing (n = 45) or whole exome sequencing (n = 5). We identified a mutation in MLL2 or KDM6A in 50 (61.7%) and 5 (6.2%) cases, respectively. Thirty-five MLL2 mutations and two KDM6A mutations were novel. Non-protein truncating-type MLL2 mutations were mainly located around functional domains, while truncating-type mutations were scattered through the entire coding region. The facial features of patients in the MLL2 truncating-type mutation group were typical based on those of the 10 originally reported patients with Kabuki syndrome; those of the other groups were less typical. High arched eyebrows, short fifth finger, and hypotonia in infancy were more frequent in the MLL2 mutation group than in the KDM6A mutation group. Short stature and postnatal growth retardation were observed in all individuals with KDM6A mutations, but in only half of the group with MLL2 mutations.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|