101
|
Pérez-Gamarra S, Hattara L, Batra G, Saviranta P, Lamminmäki U. Array-in-well binding assay for multiparameter screening of phage displayed antibodies. Methods 2016; 116:43-50. [PMID: 27956240 DOI: 10.1016/j.ymeth.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Phage display is a well-established and powerful tool for the development of recombinant antibodies. In a standard phage display selection process using a high quality antibody phage library, a large number of unique antibody clones can be generated in short time. However, the pace of the antibody discovery project eventually depends on the methodologies used in the next screening phase to identify the clones with the most promising binding characteristics e.g., in terms of specificity, affinity and epitope. Here, we report an array-in-well binding assay, a miniaturized and multiplexed immunoassay that integrates the epitope mapping to the evaluation of the binding activity of phage displayed antibody fragments in a single well. The array-in-well assay design used here incorporates a set of partially overlapping 15-mer peptides covering the complete primary sequence of the target antigen, the intact antigen itself and appropriate controls printed as an array with 10×10 layout at the bottom of a well of a 96-well microtiter plate. The streptavidin-coated surface of the well facilitates the immobilization of the biotinylated analytes as well-confined spots. Phage displayed antibody fragments bound to the analyte spots are traced using anti-phage antibody labelled with horseradish peroxidase for tyramide signal amplification based highly sensitive detection. In this study, we generated scFv antibodies against HIV-1 p24 protein using a synthetic antibody phage library, evaluated the binders with array-in-well binding assay and further classified them into epitopic families based on their capacity to recognize linear epitopes. The array-in-well assay enables the integration of epitope mapping to the screening assay for early classification of antibodies with simplicity and speed of a standard ELISA procedure to advance the antibody development projects.
Collapse
Affiliation(s)
- Susan Pérez-Gamarra
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Liisa Hattara
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Gaurav Batra
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 122001, India
| | - Petri Saviranta
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland.
| |
Collapse
|
102
|
Wu J, Mok CK, Chow VTK, Yuan YA, Tan YJ. Biochemical and structural characterization of the interface mediating interaction between the influenza A virus non-structural protein-1 and a monoclonal antibody. Sci Rep 2016; 6:33382. [PMID: 27633136 PMCID: PMC5025888 DOI: 10.1038/srep33382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that a non-structural protein 1 (NS1)-binding monoclonal antibody, termed as 2H6, can significantly reduce influenza A virus (IAV) replication when expressed intracellularly. In this study, we further showed that 2H6 binds stronger to the NS1 of H5N1 than A/Puerto Rico/8/1934(H1N1) because of an amino acid difference at residue 48. A crystal structure of 2H6 fragment antigen-binding (Fab) has also been solved and docked onto the NS1 structure to reveal the contacts between specific residues at the interface of antibody-antigen complex. In one of the models, the predicted molecular contacts between residues in NS1 and 2H6-Fab correlate well with biochemical results. Taken together, residues N48 and T49 in H5N1 NS1 act cooperatively to maintain a strong interaction with mAb 2H6 by forming hydrogen bonds with residues found in the heavy chain of the antibody. Interestingly, the pandemic H1N1-2009 and the majority of seasonal H3N2 circulating in humans since 1968 has N48 in NS1, suggesting that mAb 2H6 could bind to most of the currently circulating seasonal influenza A virus strains. Consistent with the involvement of residue T49, which is well-conserved, in RNA binding, mAb 2H6 was also found to inhibit the interaction between NS1 and double-stranded RNA.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Chee-Keng Mok
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Y Adam Yuan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| |
Collapse
|
103
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. TRIALS IN VACCINOLOGY 2016; 5:71-83. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
104
|
Lennartz F, Bengtsson A, Olsen RW, Joergensen L, Brown A, Remy L, Man P, Forest E, Barfod LK, Adams Y, Higgins MK, Jensen ATR. Mapping the Binding Site of a Cross-Reactive Plasmodium falciparum PfEMP1 Monoclonal Antibody Inhibitory of ICAM-1 Binding. THE JOURNAL OF IMMUNOLOGY 2015; 195:3273-83. [PMID: 26320251 PMCID: PMC4574524 DOI: 10.4049/jimmunol.1501404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/23/2015] [Indexed: 12/29/2022]
Abstract
The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLβ3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLβ3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4–expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLβ3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLβ3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLβ3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLβ3_D4 has previously been shown to contain the ICAM-1 binding site of DBLβ domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1–specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.
Collapse
Affiliation(s)
- Frank Lennartz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anja Bengtsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen 2100, Denmark
| | - Rebecca W Olsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen 2100, Denmark
| | - Louise Joergensen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen 2100, Denmark
| | - Alan Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Louise Remy
- Institut de Biologie Structurale, Grenoble F-38044, France
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 117 20 Prague, Czech Republic; and Faculty of Science, Charles University in Prague, 116 36 Prague, Czech Republic
| | - Eric Forest
- Institut de Biologie Structurale, Grenoble F-38044, France
| | - Lea K Barfod
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen 2100, Denmark
| | - Yvonne Adams
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen 2100, Denmark
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| | - Anja T R Jensen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen 2100, Denmark;
| |
Collapse
|
105
|
Li K, Tang H, Xu W, Chen A, Shi Q, Sun Z, Wang L, Ni Y. Antisera preparation and epitope mapping of a recombinant protein comprising three peptide fragments of the cystic fibrosis transmembrane conductance regulator. Protein Expr Purif 2015; 114:23-9. [PMID: 26087025 DOI: 10.1016/j.pep.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Antibodies targeting a single epitope of the cystic fibrosis transmembrane conductance regulator (CFTR) have been reported to influence the validity of immunological analyses; however, autoimmune mechanisms associated with CFTR epitopes are not well understood. In this study, antiserum raised against a multi-epitope recombinant protein composed of three peptide fragments of CFTR (r-CFTR-3P) was prepared and B cell epitope mapping of the protein was carried out using biosynthetic peptides. The r-CFTR-3P gene was cloned into the pSY621 expression plasmid and the protein was expressed in the BL21 strain of Escherichia coli. The rabbit r-CFTR-3P antiserum recognized the native CFTR antigen extracted from human sperm and the GST188 fusion peptides CFTR(25-36), CFTR(103-117), and CFTR(1387-1480) spanning different regions of CFTR. Four novel r-CFTR-3P B cell epitopes were identified: (29)RQRLEL(34), (104)RIIASY(109), (111)PDN(113), and (1447)VKLF(1450) of CFTR. Other proteins from various species shared sequence homology with the identified epitopes based on NCBI BLAST alignment. This study provides new tools for detecting CFTR protein and insight into the characteristics of minimal B cell epitopes of CFTR and associated immunological mechanisms.
Collapse
Affiliation(s)
- Kun Li
- Unit of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Haiping Tang
- National Population and Family Planning Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Wanxiang Xu
- National Population and Family Planning Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Aijun Chen
- Unit of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Qixian Shi
- Unit of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Zhida Sun
- National Population and Family Planning Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Liyan Wang
- National Population and Family Planning Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ya Ni
- Unit of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China.
| |
Collapse
|
106
|
Akiba H, Tsumoto K. Thermodynamics of antibody–antigen interaction revealed by mutation analysis of antibody variable regions. ACTA ACUST UNITED AC 2015; 158:1-13. [DOI: 10.1093/jb/mvv049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 01/20/2023]
|
107
|
Davidson E, Doranz BJ. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 2014; 143:13-20. [PMID: 24854488 DOI: 10.1111/imm.12323] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023] Open
Abstract
Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs.
Collapse
|
108
|
Marciano DP, Dharmarajan V, Griffin PR. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr Opin Struct Biol 2014; 28:105-11. [PMID: 25179005 DOI: 10.1016/j.sbi.2014.08.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook.
Collapse
Affiliation(s)
- David P Marciano
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | - Patrick R Griffin
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|