101
|
Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts? Mol Phylogenet Evol 2010; 54:810-21. [DOI: 10.1016/j.ympev.2009.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/29/2009] [Accepted: 10/31/2009] [Indexed: 11/23/2022]
|
102
|
Mazzon L, Martinez-Sañudo I, Simonato M, Squartini A, Savio C, Girolami V. Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Mol Phylogenet Evol 2010; 56:312-26. [PMID: 20171292 DOI: 10.1016/j.ympev.2010.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/02/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
The Tephritinae is considered the most specialized subfamily of fruit flies, predominantly infesting flowerheads of Asteraceae. Some species are known to host specific non-culturable symbiont bacteria ("Candidatus Stammerula spp.") in the midgut. In this work we (i) examined the phylogenetic relationships among the insect hosts, (ii) investigated the presence of bacteria in other hitherto unexamined species, and (iii) evaluated the phylogenetic congruence between insects and symbionts. A total of 33 Tephritinae species in 17 different genera were analyzed. Two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII) were examined in the insect host, while the 16S was analyzed in the bacteria. From the phylogenetic trees, four of the five tribes considered were statistically supported by each of the clustering methods used. Species belonging to the tribe Noeetini never clustered at significant levels. The phylogenetic COI-tRNALeu-COII tree showed internal nodes more highly supported than the 16S phylogeny. The analysis of the distribution of symbiosis across the subfamily has highlighted the presence of bacteria only in the tribe Tephritini and in the genus Noeeta from the tribe Noeetini. A cophylogenetic analysis revealed a substantial congruence between hosts and symbionts. The interesting exceptions can be justified by events like losses, duplications and hosts switching opportunities, which are likely to arise during the biological cycle of the fly in consideration of the extracellular status of these symbionts.
Collapse
Affiliation(s)
- Luca Mazzon
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova-Agripolis, Padova, Italy
| | | | | | | | | | | |
Collapse
|
103
|
Evidence for cospeciation events in the host–symbiont system involving crinoids (Echinodermata) and their obligate associates, the myzostomids (Myzostomida, Annelida). Mol Phylogenet Evol 2010; 54:357-71. [DOI: 10.1016/j.ympev.2009.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/03/2009] [Accepted: 08/12/2009] [Indexed: 11/21/2022]
|
104
|
Bressan A, Arneodo J, Simonato M, Haines WP, Boudon-Padieu E. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ Microbiol 2009; 11:3265-79. [DOI: 10.1111/j.1462-2920.2009.02055.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Chen CY, Lai CY, Kuo MH. Temperature effect on the growth of Buchnera endosymbiont in Aphis craccivora (Hemiptera: Aphididae). Symbiosis 2009. [DOI: 10.1007/s13199-009-0011-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
106
|
Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, Brune A. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 2009; 12:2120-32. [PMID: 21966907 DOI: 10.1111/j.1462-2920.2009.02080.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The surface of many termite gut flagellates is colonized with a dense layer of bacteria, yet little is known about the evolutionary relationships of such ectosymbionts and their hosts. Here we investigated the molecular phylogenies of devescovinid flagellates (Devescovina spp.) and their symbionts from a wide range of dry-wood termites (Kalotermitidae). From species-pure flagellate suspensions isolated with micropipettes, we obtained SSU rRNA gene sequences of symbionts and host. Phylogenetic analysis showed that the Devescovina spp. present in many species of Kalotermitidae form a monophyletic group, which includes also the unique devescovinid flagellate Caduceia versatilis. All members of this group were consistently associated with a distinct lineage of Bacteroidales, whose location on the cell surface was confirmed by fluorescence in situ hybridization. The well-supported congruence of the phylogenies of devescovinids and their ectosymbionts documents a strict cospeciation. In contrast, the endosymbionts of the same flagellates ('Endomicrobia') were clearly polyphyletic and must have been acquired independently by horizontal transfer from other flagellate lineages. Also the Bacteroidales ectosymbionts of Oxymonas flagellates present in several Kalotermitidae belonged to several distantly related lines of descent, underscoring the general perception that the evolutionary history of flagellate-bacteria symbioses in the termite gut is complex.
Collapse
Affiliation(s)
- Mahesh S Desai
- Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Karl-von-Frisch-Straße, 35043 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
SUMMARYEven the most generalist parasites usually occur in only a subset of potential host species, a tendency which reflects overriding environmental constraints on their distributions in nature. The periodic shifting of these limitations represented by host-switches may have been an important process in the evolution of many host-parasite assemblages. To study such events, however, it must first be established where and when they have occurred. Past host-switches within a group of parasites are usually inferred from a comparison of the parasite phylogeny with that of the hosts. Congruence between the phylogenies is often attributed to a history of association by descent with cospeciation, and incongruence to host-switching or extinction in ‘duplicated’ parasite lineages (which diverged without a corresponding branching of the host tree). The inference of host-switching from incongrucnt patterns is discussed. Difficulties arise because incongruence can frequently be explained by different combinations of biologically distinct events whose relative probabilities are uncertain. Also, the models of host parasite relationships implicit in historical reconstructions may often not allow for plausible sources of incongruence other than host-switching or duplication/extinction, or for the possibility that colonization could, in some circumstances, be disguised by ‘false’ congruence.
Collapse
|
108
|
The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha. PLoS One 2009; 4:e6577. [PMID: 19668363 PMCID: PMC2719052 DOI: 10.1371/journal.pone.0006577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/01/2009] [Indexed: 12/02/2022] Open
Abstract
Background For the majority of microbial eukaryotes (protists, algae), there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites. Methodology/Principal Findings Using single-cell isolation and environmental PCR, we have used a barcoding approach to characterize the diversity of Coronympha and Metacoronympha symbionts in four species of Incisitermes termites, which were also examined using scanning electron microscopy and light microcopy. Despite the fact that these genera are significantly different in morphological complexity and structural organisation, we find they are two life history stages of the same species. At the same time, we show that the symbionts from different termite hosts show an equal or greater level of sequence diversity than do the hosts, despite the fact that the symbionts are all classified as one species. Conclusions/Significance The morphological information used to describe the diversity of these microbial symbionts is misleading at both the genus and species levels, and led to an underestimate of species level diversity as well as an overestimate of genus level diversity. The genus ‘Metacoronympha’ is invalid and appears to be a life history stage of Coronympha, while the single recognized species of Coronympha octonaria inhabiting these four termites is better described as four distinct species.
Collapse
|
109
|
Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 2009; 9:143. [PMID: 19619300 PMCID: PMC2724383 DOI: 10.1186/1471-2180-9-143] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Arsenophonus is a group of symbiotic, mainly insect-associated bacteria with rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic relationships varying from parasitic son-killers to coevolving mutualists.The present study extends the currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic relationships within the genus. RESULTS The analysis of 110 Arsenophonus sequences (incl. Riesia and Phlomobacter), provides a robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, unstable inner topology indicates that complete understanding of Arsenophonus evolution cannot be achieved with 16S rDNA. Moreover, taxonomically restricted Sampling matrices prove sensitivity of the phylogenetic signal to sampling; in some cases, Arsenophonus monophyly is disrupted by other symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-symbiont evolution and the haphazard association of the symbionts with distant hosts. A further conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this incongruence could be caused by methodological artifacts, such as intragenomic variability. CONCLUSION The sample of currently available molecular data presents the genus Arsenophonus as one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches between entirely different life styles. Due to these properties, the genus should play an important role in the studies of evolutionary trends in insect intracellular symbionts. However, under the current practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to various methodological artifacts that may even lead to description of new Arsenophonus lineages as independent genera (e.g. Riesia and Phlomobacter). The resolution of the evolutionary questions encountered within the Arsenophonus clade will thus require identification of new molecular markers suitable for the low-level phylogenetics.
Collapse
Affiliation(s)
- Eva Nováková
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia and Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Nancy A Moran
- Department of Ecology and Evolutionary Biology, The University of Arizona, 1041 E. Lowell St, Tucson, Arizona 85721-0088, USA
| |
Collapse
|
110
|
Populations, hybrids and the systematic concepts of species and subspecies in Chagas disease triatomine vectors inferred from nuclear ribosomal and mitochondrial DNA. Acta Trop 2009; 110:112-36. [PMID: 19073132 DOI: 10.1016/j.actatropica.2008.10.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/12/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
In Chagas disease, triatomine vectors are the main target for control measures because of the absence of effective drugs. The broad usefulness of nuclear rDNA and mtDNA sequences explains why triatomine studies using these markers have increased so pronouncedly in recent years. This indicates the appropriateness of an updated review about these molecular markers, concentrating on aspects useful for research on Chagas disease vectors. A comparative analysis is presented on the efficiency, weight of their different characteristics, limitations and problems of each of the different DNA markers in the light of the results obtained in studies on populations, hybrids, subspecies and species of the subfamily Triatominae. The use of a standardized composite haplotype code nomenclature for both nuclear rDNA and mtDNA markers is strongly encouraged to avoid difficulties in comparative studies. Triatomine aspects related to concerted evolution, microsatellites, minisatellites and insertions/deletions in nuclear rDNA and silent/non-silent mutations, pseudogenes and weaknesses of partial sequences in mtDNA are analysed. Introgression and hybrids, nuclear and mitochondrial DNA strengths, and compared evolutionary rates of nuclear rDNA and mtDNA in triatomines are discussed. Many conclusions are obtained thanks to the availability, for the first time in triatomines, of a complete sequence of a protein-coding mtDNA gene as ND1 from very numerous triatomine species covering from different populations of a species up to members belonging to different tribes. The evolutionary rates of each nuclear rDNA marker and mtDNA marker are analysed by comparison at subspecies level (intrapopulational, interpopulational, between morphs, and between subspecies) and species level (close and distant species of the same genus, species of different genera, and species of different tribes). Weaknesses of mtDNA for systematic-taxonomic purposes detected recently and newly in insects and triatomines, respectively, are discussed in detail. Emphasis is given to taxonomic units and biological entities presenting well-known problematics, both from the systematic-taxonomic and/or epidemiological-control points of view, as well as to molecular situations which can give rise to erroneous conclusions. All these aspects constitute the background on which the key question about the systematic concepts of species and subspecies in triatomines is focused. The global purpose is to facilitate future work on triatomines by highlighting present gaps, how better choice the appropriate markers, and marker aspects which should be taken into account. Key characteristics as alpha, CI and transformation rate matrices ought to be obtained and noted to get appropriate results and allow correct interpretations. The main aim is to offer a baseline for future fundamental research on triatomines and applied research on transmission, epidemiology and control measures related to Chagas disease vectors.
Collapse
|
111
|
Jousselin E, Desdevises Y, Coeur d'acier A. Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc Biol Sci 2009; 276:187-96. [PMID: 18782748 DOI: 10.1098/rspb.2008.0679] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aphids harbour an obligatory symbiont, Buchnera aphidicola, providing essential amino acids not supplied by their diet. These bacteria are transmitted vertically and phylogenic analyses suggest that they have 'cospeciated' with their hosts. We investigated this cospeciation phenomenon at a fine taxonomic level, within the aphid genus Brachycaudus. We used DNA-based methods of species delimitation in both organisms, to avoid biases in the definition of aphid and Buchnera species and to infer association patterns without the presumption of a specific interaction. Our results call into question certain 'taxonomic' species of Brachycaudus and suggest that B. aphidicola has diversified into independently evolving entities, each specific to a 'phylogenetic' Brachycaudus species. We also found that Buchnera and their hosts simultaneously diversified, in parallel. These results validate the use of Buchnera DNA data for inferring the evolutionary history of their host. The Buchnera genome evolves rapidly, making it the perfect tool for resolving ambiguities in aphid taxonomy. This study also highlights the usefulness of species delimitation methods in cospeciation studies involving species difficult to conceptualize--as is the case for bacteria--and in cases in which the taxonomy of the interacting organisms has not been determined independently and species definition depends on host association.
Collapse
Affiliation(s)
- Emmanuelle Jousselin
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France.
| | | | | |
Collapse
|
112
|
Ikeda-Ohtsubo W, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'. Mol Ecol 2009; 18:332-42. [PMID: 19192183 DOI: 10.1111/j.1365-294x.2008.04029.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Symbiotic flagellates play a major role in the digestion of lignocellulose in the hindgut of lower termites. Many termite gut flagellates harbour a distinct lineage of bacterial endosymbionts, so-called Endomicrobia, which belong to the candidate phylum Termite Group 1. Using an rRNA-based approach, we investigated the phylogeny of Trichonympha, the predominant flagellates in a wide range of termite species, and of their Endomicrobia symbionts. We found that Trichonympha species constitute three well-supported clusters in the Parabasalia tree. Endomicrobia were detected only in the apical lineage (Cluster I), which comprises flagellates present in the termite families Termopsidae and Rhinotermitidae, but apparently absent in the basal lineages (Clusters II and III) consisting of flagellates from other termite families and from the wood-feeding cockroach, Cryptocercus punctulatus. The endosymbionts of Cluster I form a monophyletic group distinct from many other lineages of Endomicrobia and seem to have cospeciated with their flagellate host. The distribution pattern of the symbiotic pairs among different termite species indicates that cospeciation of flagellates and endosymbionts is not simply the result of a spatial separation of the flagellate lineages in different termite species, but that Endomicrobia are inherited among Trichonympha species by vertical transmission. We suggest extending the previously proposed candidatus name 'Endomicrobium trichonymphae' to all Endomicrobia symbionts of Trichonympha species, and estimate that the acquisition by an ancestor of Trichonympha Cluster I must have occurred about 40-70 million years ago, long after the flagellates entered the termites.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
113
|
Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts. C R Biol 2009; 332:149-58. [DOI: 10.1016/j.crvi.2008.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022]
|
114
|
Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 2009; 7:2. [PMID: 19146674 PMCID: PMC2637841 DOI: 10.1186/1741-7007-7-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 01/15/2009] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. RESULTS Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the gamma-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host lineages. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. CONCLUSION Comprehensive studies of the acanthosomatid bacterial symbiosis provide new insights into the genomic evolution of extracellular symbiotic bacteria: host-symbiont co-speciation and drastic genome reduction can occur not only in endocellular symbiotic associations but also in extracellular ones. We suggest that many more such cases might be discovered in future surveys.
Collapse
Affiliation(s)
- Yoshitomo Kikuchi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takahiro Hosokawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Naruo Nikoh
- Division of Natural Sciences, The Open University of Japan, Chiba 261-8586, Japan
| | - Xian-Ying Meng
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yoichi Kamagata
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| |
Collapse
|
115
|
PECCOUD J, FIGUEROA CC, SILVA AX, RAMIREZ CC, MIEUZET L, BONHOMME J, STOECKEL S, PLANTEGENEST M, SIMON JC. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol Ecol 2008; 17:4608-18. [DOI: 10.1111/j.1365-294x.2008.03949.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
116
|
Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 2008; 63:165-83. [PMID: 18826448 DOI: 10.1111/j.1558-5646.2008.00533.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Wolbachia are maternally inherited bacteria that infect a large number of insects and are responsible for different reproductive alterations of their hosts. One of the key features of Wolbachia biology is its ability to move within and between host species, which contributes to the impressive diversity and range of infected hosts. Using multiple Wolbachia genes, including five developed for Multi-Locus Sequence Typing (MLST), the diversity and modes of movement of Wolbachia within the wasp genus Nasonia were investigated. Eleven different Wolbachia were found in the four species of Nasonia, including five newly identified infections. Five infections were acquired by horizontal transmission from other insect taxa, three have been acquired by hybridization between two Nasonia species, which resulted in a mitochondrial-Wolbachia sweep from one species to the other, and at least three have codiverged during speciation of their hosts. The results show that a variety of transfer mechanisms of Wolbachia are possible even within a single host genus. Codivergence of Wolbachia and their hosts is uncommon and provides a rare opportunity to investigate long-term Wolbachia evolution within a host lineage. Using synonymous divergence among codiverging infections and host nuclear genes, we estimate Wolbachia mutation rates to be approximately one-third that of the nuclear genome.
Collapse
|
117
|
Light JE, Hafner MS. Codivergence in Heteromyid Rodents (Rodentia: Heteromyidae) and Their Sucking Lice of the Genus Fahrenholzia (Phthiraptera: Anoplura). Syst Biol 2008; 57:449-65. [DOI: 10.1080/10635150802169610] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jessica E. Light
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University
Baton Rouge, LA 70803, USA
- Florida Museum of Natural History, University of Florida
Gainesville, FL, 32611, USA; E-mail:
| | - Mark S. Hafner
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University
Baton Rouge, LA 70803, USA
| |
Collapse
|
118
|
Sorfová P, Skeríková A, Hypsa V. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Syst Appl Microbiol 2008; 31:88-100. [PMID: 18485654 DOI: 10.1016/j.syapm.2008.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
The genes of ribosomal RNA are the most popular and frequently used markers for bacterial phylogeny and reconstruction of insect-symbiont coevolution. In primary symbionts, such as Buchnera and Wigglesworthia, genome economization leads to the establishment of a single copy of these sequences. In phylogenetic studies, they provide sufficient information and yield phylogenetic trees congruent with host evolution. In contrast, other symbiotic lineages (e.g., the genus Arsenophonus) carry a higher number of rRNA copies in their genomes, which may have serious consequences for phylogenetic inference. In this study, we show that in Arsenophonus triatominarum the degree of heterogeneity can affect reconstruction of phylogenetic relationships and mask possible coevolution between the symbiont and its host. Phylogenetic arrangement of individual rRNA copies was used, together with a calculation of their divergence time, to demonstrate that the incongruent 16S rDNA trees and low nucleotide diversity in the secondary symbiont could be reconciled with the coevolutionary scenario.
Collapse
Affiliation(s)
- Pavlína Sorfová
- Faculty of Science, University of South Bohemia, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic
| | | | | |
Collapse
|
119
|
Evolutionary relationships of "Candidatus endobugula" bacterial symbionts and their Bugula bryozoan hosts. Appl Environ Microbiol 2008; 74:3605-9. [PMID: 18390670 DOI: 10.1128/aem.02798-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal gene sequences were obtained from bryozoans in the genus Bugula and their bacterial symbionts; analyses of host and symbiont phylogenetic trees did not support a history of strict cospeciation. Symbiont-derived compounds known to defend host larvae from predation were only detected in two out of four symbiotic Bugula species.
Collapse
|
120
|
Thornhill DJ, Wiley AA, Campbell AL, Bartol FF, Teske A, Halanych KM. Endosymbionts of Siboglinum fiordicum and the phylogeny of bacterial endosymbionts in Siboglinidae (Annelida). THE BIOLOGICAL BULLETIN 2008; 214:135-144. [PMID: 18400995 DOI: 10.2307/25066670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Siboglinid worms are a group of gutless marine annelids that are nutritionally dependent upon endosymbiotic bacteria. Four major groups of siboglinids are known-vestimentiferans, moniliferans, Osedax spp. and frenulates. Although endosymbionts of vestimentiferans and Osedax spp. have been previously characterized, little is currently known about endosymbiotic bacteria associated with frenulate and moniliferan siboglinids. This is particularly surprising given that frenulates are the most diverse and widely distributed group of siboglinids. Here, we molecularly characterize endosymbiotic bacteria associated with the frenulate siboglinid Siboglinum fiordicum by using 16S rDNA ribotyping in concert with laser-capture microdissection (LCM). Phylogenetic analysis indicates that at least three major clades of endosymbiotic gamma-proteobacteria associate with siboglinid annelids, with each clade corresponding to a major siboglinid group. S. fiordicum endosymbionts are a group of gamma-proteobacteria that are divergent from bacteria associated with vestimentiferan or Osedax hosts. Interestingly, symbionts of S. fiordicum, from Norway, are most closely related to symbionts of the frenulate Oligobrachia mashikoi from Japan, suggesting that symbionts of frenulates may share common evolutionary history or metabolic features.
Collapse
Affiliation(s)
- Daniel J Thornhill
- Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers. Mol Phylogenet Evol 2007; 45:997-1013. [DOI: 10.1016/j.ympev.2007.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/20/2007] [Accepted: 09/04/2007] [Indexed: 11/21/2022]
|
122
|
Nelsen MP, Gargas A. Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). THE NEW PHYTOLOGIST 2007; 177:264-275. [PMID: 17944828 DOI: 10.1111/j.1469-8137.2007.02241.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lichenized fungi of the genus Lepraria lack ascomata and conidiomata, and symbionts codisperse by soredia. Here, it is determined whether algal symbionts associated with Lepraria are monophyletic, and whether fungal and algal phylogenies are congruent, both of which are indicative of a long-term, continuous association between symbionts. The internal transcribed spacer (ITS) and part of the actin type I locus were sequenced from algae associated with Lepraria, and the fungal ITS and mitochondrial small subunit (mtSSU) were sequenced from fungal symbionts. Phylogenetic analyses tested for monophyly of algal symbionts and congruence between algal and fungal phylogenies. Algae associated with Lepraria were not monophyletic, and identical algae associated with different Lepraria individuals and species. Algal and fungal phylogenies were not congruent, suggesting a lack of strict codiversification. This study suggests that associations between symbionts are not strictly maintained over evolutionary time. The ability to switch partners may provide benefits similar to genetic recombination, which may have helped this lineage persist.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706-1381, USA
- Present address: Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA
| | | |
Collapse
|
123
|
Poulsen M, Erhardt DP, Molinaro DJ, Lin TL, Currie CR. Antagonistic bacterial interactions help shape host-symbiont dynamics within the fungus-growing ant-microbe mutualism. PLoS One 2007; 2:e960. [PMID: 17896000 PMCID: PMC1978530 DOI: 10.1371/journal.pone.0000960] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 09/03/2007] [Indexed: 11/18/2022] Open
Abstract
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.
Collapse
Affiliation(s)
- Michael Poulsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | |
Collapse
|
124
|
Hypsa V, Krízek J. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (phthiraptera, anoplura). MICROBIAL ECOLOGY 2007; 54:242-51. [PMID: 17345136 DOI: 10.1007/s00248-006-9194-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 05/14/2023]
Abstract
Based on 16S rDNA analyses, the primary symbionts of sucking lice were found to form a polyphyletic assemblage of several distant lineages that have arisen several times within Enterobacteriaceae and at least once within Legionellaceae. Another independent lineage of endosymbiotic enterobacteria inhabits a sister group of the sucking lice, Rhynchophthirina. The inspection of 16S rDNA supports the symbiotic nature of the investigated bacteria; they display a typical trait of degenerative processes, an increased AT content (Adenine-Thymine content) in comparison with free-living bacteria. The calculation of divergence time between the closest anopluran and rhynchophthirine symbionts further support their independent origin. The results shown here, together with evidence from other groups, indicate that the significance of primary symbionts for blood-feeding insects should be reconsidered.
Collapse
Affiliation(s)
- Václav Hypsa
- Faculty of Biological Sciences, Ceské Budejovice, Czech Republic.
| | | |
Collapse
|
125
|
Hughes J, Kennedy M, Johnson KP, Palma RL, Page RDM. Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst Biol 2007; 56:232-51. [PMID: 17464880 DOI: 10.1080/10635150701311370] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Lice in the genus Pectinopygus parasitize a single order of birds (Pelecaniformes). To examine the degree of congruence between the phylogenies of 17 Pectinopygus species and their pelecaniform hosts, sequences from mitochondrial 12S rRNA, 16S rRNA, COI, and nuclear wingless and EF1-alpha genes (2290 nucleotides) and from mitochondrial 12S rRNA, COI, and ATPases 8 and 6 genes (1755 nucleotides) were obtained for the lice and the birds, respectively. Louse data partitions were analyzed for evidence of incongruence and evidence of long-branch attraction prior to cophylogenetic analyses. Host-parasite coevolution was studied by different methods: TreeFitter, TreeMap, ParaFit, likelihood-ratio test, data-based parsimony method, and correlation of coalescence times. All methods agree that there has been extensive cospeciation in this host-parasite system, but the results are sensitive to the selection of different phylogenetic hypotheses and analytical methods for evaluating cospeciation. Perfect congruence between phylogenies is not found in this association, probably as a result of occasional host switching by the lice. Errors due to phylogenetic reconstruction methods, incorrect or incomplete taxon sampling, or to different loci undergoing different evolutionary histories cannot be rejected, thus emphasizing the need for improved cophylogenetic methodologies.
Collapse
Affiliation(s)
- Joseph Hughes
- Department of Environmental and Evolutionary Biology, University of Glasgow, UK.
| | | | | | | | | |
Collapse
|
126
|
Jaenike J, Polak M, Fiskin A, Helou M, Minhas M. Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 2007; 3:23-5. [PMID: 17443956 PMCID: PMC2373825 DOI: 10.1098/rsbl.2006.0577] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The occurrence of closely related strains of maternally transmitted endosymbionts in distantly related insect species indicates that these infections can colonize new host species by lateral transfer, although the mechanisms by which this occurs are unknown. We investigated whether ectoparasitic mites, which feed on insect haemolymph, can serve as interspecific vectors of Spiroplasma poulsonii, a male-killing endosymbiont of Drosophila. Using Spiroplasma-specific primers for PCR, we found that mites can pick up Spiroplasma from infected Drosophila nebulosa females and subsequently transfer the infection to Drosophila willistoni. Some of the progeny of the recipient D. willistoni were infected, indicating successful maternal transmission of the Spiroplasma within the new host species. However, the transmission rate of the infection from recipient flies to their offspring was low, perhaps due to low Spiroplasma density in the recipient flies.
Collapse
Affiliation(s)
- John Jaenike
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | |
Collapse
|
127
|
McLeish MJ, Crespi BJ, Chapman TW, Schwarz MP. Parallel diversification of Australian gall-thrips on Acacia. Mol Phylogenet Evol 2007; 43:714-25. [PMID: 17467300 DOI: 10.1016/j.ympev.2007.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
The diversification of gall-inducing Australian Kladothrips (Insecta: Thysanoptera) on Acacia has produced a pair of sister-clades, each of which includes a suite of lineages that utilize virtually the same set of 15 closely related host plant species. This pattern of parallel insect-host plant radiation may be driven by cospeciation, host-shifting to the same set of host plants, or some combination of these processes. We used molecular-phylogenetic data on the two gall-thrips clades to analyze the degree of concordance between their phylogenies, which is indicative of parallel divergence. Analyses of phylogenetic concordance indicate statistically-significant similarity between the two clades. Their topologies also fit with a hypothesis of some degree of host-plant tracking. Based on phylogenetic and taxonomic information regarding the phylogeny of the Acacia host plants in each clade, one or more species has apparently shifted to more-divergent Acacia host-plant species, and in each case these shifts have resulted in notable divergence in aspects of the phenotype including morphology, life history and behaviour. Our analyses indicate that gall-thrips on Australian Acacia have undergone parallel diversification as a result of some combination of cospeciation, highly restricted host-plant shifting, or both processes, but that the evolution of novel phenotypic diversity in this group is a function of relatively few shifts to divergent host plants. This combination of ecologically restricted and divergent radiation may represent a microcosm for the macroevolution of host plant relationships and phenotypic diversity among other phytophagous insects.
Collapse
Affiliation(s)
- M J McLeish
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, Cape Town, South Africa.
| | | | | | | |
Collapse
|
128
|
Klimov PB, O'Connor BM, Knowles LL. MUSEUM SPECIMENS AND PHYLOGENIES ELUCIDATE ECOLOGY'S ROLE IN COEVOLUTIONARY ASSOCIATIONS BETWEEN MITES AND THEIR BEE HOSTS. Evolution 2007; 61:1368-79. [PMID: 17542846 DOI: 10.1111/j.1558-5646.2007.00119.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coevolutionary associations between hosts and symbionts (or parasites) are often reflected in correlated patterns of divergence as a consequence of limitations on dispersal and establishment on new hosts. Here we show that a phylogenetic correlation is observed between chaetodactylid mites and their hosts, the long-tongued bees; however, this association manifests itself in an atypical fashion. Recently derived mites tend to be associated with basal bee lineages, and vice versa, ruling out a process of cospeciation, and the existence of mites on multiple hosts also suggests ample opportunity for host shifts. An extensive survey of museum collections reveals a pattern of infrequent host shifts at a higher taxonomic level, and yet, frequent shifts at a lower level, which suggests that ecological constraints structure the coevolutionary history of the mites and bees. Certain bee traits, particularly aspects of their nesting behavior, provide a highly predictive framework for the observed pattern of host use, with 82.1% of taxa correctly classified. Thus, the museum survey and phylogenetic analyses provide a unique window into the central role ecology plays in this coevolutionary association. This role is apparent from two different perspectives--as (a) a constraining force evident in the historical processes underlying the significant correlation between the mite and bee phylogenies, as well as (b) by the highly nonrandom composition of bee taxa that serve as hosts to chaetodactylid mites.
Collapse
Affiliation(s)
- Pavel B Klimov
- University of Michigan, Museum of Zoology, Ann Arbor, MI 48109-1079, USA.
| | | | | |
Collapse
|
129
|
Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol Phylogenet Evol 2007; 44:267-80. [PMID: 17400002 DOI: 10.1016/j.ympev.2007.01.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 01/19/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes endosymbionts and with other similar sequences identified by BLAST searches. Although the endosymbionts of armored scales are only distantly related to the endosymbionts of the other sternorrhynchan insects, they are closely related to bacteria associated with eriococcid and margarodid scale insects, to cockroach and auchenorrynchan endosymbionts (Blattabacterium and Sulcia), and to male-killing endosymbionts of ladybird beetles. We propose the name "Candidatus Uzinura diaspidicola" for the primary endosymbionts of armored scale insects.
Collapse
|
130
|
Abstract
Co-evolution has produced many intriguing adaptations and made significant contributions to biodiversity through the co-adaptive radiations of interacting groups, such as pollinating insects and flowering plants or hosts and endosymbionts. New methods from molecular genetics and comparative genomics, in conjunction with advances in evolutionary genetic theory, are for the first time providing tools for detecting, investigating and understanding the genetic bases of the co-adaptive process and co-speciation. Advances in the emerging field of community genetics, which integrates genetics and community ecology, could revolutionize how co-evolution is studied, how genes are functionally annotated and how conservation geneticists implement preservation strategies.
Collapse
Affiliation(s)
- Michael J Wade
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana 47405-3700, USA.
| |
Collapse
|
131
|
Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 2007; 4:e337. [PMID: 17032065 PMCID: PMC1592312 DOI: 10.1371/journal.pbio.0040337] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/16/2006] [Indexed: 11/22/2022] Open
Abstract
Host-symbiont cospeciation and reductive genome evolution have been identified in obligate endocellular insect symbionts, but no such example has been identified from extracellular ones. Here we first report such a case in stinkbugs of the family Plataspidae, wherein a specific gut bacterium is vertically transmitted via “symbiont capsule.” In all of the plataspid species, females produced symbiont capsules upon oviposition and their gut exhibited specialized traits for capsule production. Phylogenetic analysis showed that the plataspid symbionts constituted a distinct group in the γ-Proteobacteria, whose sister group was the aphid obligate endocellular symbionts Buchnera. Removal of the symbionts resulted in retarded growth, mortality, and sterility of the insects. The host phylogeny perfectly agreed with the symbiont phylogeny, indicating strict host-symbiont cospeciation despite the extracellular association. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. These findings suggest that not the endocellular conditions themselves but the population genetic attributes of the vertically transmitted symbionts are probably responsible for the peculiar genetic traits of these insect symbionts. We proposed the designation “Candidatus Ishikawaella capsulata” for the plataspid symbionts. The plataspid stinkbugs, wherein the host-symbiont associations can be easily manipulated, provide a novel system that enables experimental approaches to previously untouched aspects of the insect-microbe mutualism. Furthermore, comparative analyses of the sister groups, the endocellular Buchnera and the extracellular Ishikawaella, would lead to insights into how the different symbiotic lifestyles have affected their genomic evolution. Evidence of host-symbiont cospeciation in an insect gut symbiont suggests that long-term vertical transmission and population structure are central forces driving the genomic changes characteristic of insect nutritional symbionts.
Collapse
Affiliation(s)
- Takahiro Hosokawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Systems Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Yoshitomo Kikuchi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Naruo Nikoh
- Division of Natural Sciences, University of the Air, Chiba, Japan
| | - Masakazu Shimada
- Department of Systems Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Takema Fukatsu
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
132
|
Gerardo NM, Mueller UG, Currie CR. Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis. BMC Evol Biol 2006; 6:88. [PMID: 17083733 PMCID: PMC1635738 DOI: 10.1186/1471-2148-6-88] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/03/2006] [Indexed: 11/18/2022] Open
Abstract
Background The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies have explored cophylogenetic patterns between these symbionts at the recent phylogenetic levels necessary to address whether these parasites are occasionally switching to novel hosts or whether they are diversifying with their hosts as a consequence of long-term host fidelity. Results Here, a more extensive phylogenetic analysis of Escovopsis lineages infecting the gardens of Apterostigma ants demonstrates that these pathogens display patterns of phylogenetic congruence with their fungal hosts. Particular clades of Escovopsis track particular clades of cultivated fungi, and closely-related Escovopsis generally infect closely-related hosts. Discordance between host and parasite phylogenies, however, provides the first evidence for occasional host-switches or acquisitions of novel infections from the environment. Conclusion The fungus-growing ant-microbe association has a complex coevolutionary history. Though there is clear evidence of host-specificity on the part of diverse Escovopsis lineages, these pathogens have switched occasionally to novel host fungi. Such switching is likely to have profound effects on how these host and parasites adapt to one another over evolutionary time scales and may impact how disease spreads over ecological time scales.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
- Department of Ecology and Evolutionary Biology, P.O. Box 210088, University of Arizona, Tucson, AZ, USA
| | - Ulrich G Mueller
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
| | - Cameron R Currie
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA
| |
Collapse
|
133
|
Kelchner SA, Thomas MA. Model use in phylogenetics: nine key questions. Trends Ecol Evol 2006; 22:87-94. [PMID: 17049674 DOI: 10.1016/j.tree.2006.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/19/2006] [Accepted: 10/05/2006] [Indexed: 11/16/2022]
Abstract
Models of character evolution underpin all phylogeny estimations, thus model adequacy remains a crucial issue for phylogenetics and its many applications. Although progress has been made in selecting appropriate models for phylogeny estimation, there is still concern about their purpose and proper use. How do we interpret models in a phylogenetic context? What are their effects on phylogeny estimation? How can we improve confidence in the models that we choose? That the phylogenetics community is asking such questions denotes an important stage in the use of explicit models. Here, we examine these and other common questions and draw conclusions about how the community is using and choosing models, and where this process will take us next.
Collapse
Affiliation(s)
- Scot A Kelchner
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA.
| | | |
Collapse
|
134
|
Haine ER, Martin J, Cook JM. Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evol Biol 2006; 6:83. [PMID: 17040562 PMCID: PMC1626083 DOI: 10.1186/1471-2148-6-83] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Figs and fig-pollinating wasps are obligate mutualists that have coevolved for ca. 90 million years. They have radiated together, but do not show strict cospeciation. In particular, it is now clear that many fig species host two wasp species, so there is more wasp speciation than fig speciation. However, little is known about how fig wasps speciate. RESULTS We studied variation in 71 fig-pollinating wasps from across the large geographic range of Ficus rubiginosa in Australia. All wasps sampled belong to one morphological species (Pleistodontes imperialis), but we found four deep mtDNA clades that differed from each other by 9-17% nucleotides. As these genetic distances exceed those normally found within species and overlap those (10-26%) found between morphologically distinct Pleistodontes species, they strongly suggest cryptic fig wasp species. mtDNA clade diversity declines from all four present in Northern Queensland to just one in Sydney, near the southern range limit. However, at most sites multiple clades coexist and can be found in the same tree or even the same fig fruit and there is no evidence for parallel sub-division of the host fig species. Both mtDNA data and sequences from two nuclear genes support the monophyly of the "P. imperialis complex" relative to other Pleistodontes species, suggesting that fig wasp divergence has occurred without any host plant shift. Wasps in clade 3 were infected by a single strain (W1) of Wolbachia bacteria, while those in other clades carried a double infection (W2+W3) of two other strains. CONCLUSION Our study indicates that cryptic fig-pollinating wasp species have developed on a single host plant species, without the involvement of host plant shifts, or parallel host plant divergence. Despite extensive evidence for coevolution between figs and fig wasps, wasp speciation may not always be linked strongly with fig speciation.
Collapse
Affiliation(s)
- Eleanor R Haine
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Joanne Martin
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - James M Cook
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
135
|
Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G, Roeser-Mueller K, Strohm E. 'Candidatus Streptomyces philanthi', an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 2006; 56:1403-1411. [PMID: 16738121 DOI: 10.1099/ijs.0.64117-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic interactions with bacteria are essential for the survival and reproduction of many insects. The European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) engages in a highly specific association with bacteria of the genus Streptomyces that appears to protect beewolf offspring against infection by pathogens. Using transmission and scanning electron microscopy, the bacteria were located in the antennal glands of female wasps, where they form dense cell clusters. Using genetic methods, closely related streptomycetes were found in the antennae of 27 Philanthus species (including two subspecies of P. triangulum from distant localities). In contrast, no endosymbionts could be detected in the antennae of other genera within the subfamily Philanthinae (Aphilanthops, Clypeadon and Cerceris). On the basis of morphological, genetic and ecological data, 'Candidatus Streptomyces philanthi' is proposed. 16S rRNA gene sequence data are provided for 28 ecotypes of 'Candidatus Streptomyces philanthi' that reside in different host species and subspecies of the genus Philanthus. Primers for the selective amplification of 'Candidatus Streptomyces philanthi' and an oligonucleotide probe for specific detection by fluorescence in situ hybridization (FISH) are described.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- University of Würzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, D-97074 Würzburg, Germany
| | - Wolfgang Goettler
- University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany
- University of Würzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, D-97074 Würzburg, Germany
| | - Colin Dale
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | | - Gudrun Herzner
- University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany
| | - Kerstin Roeser-Mueller
- University of Würzburg, Department for Animal Ecology and Tropical Biology, Am Hubland, D-97074 Würzburg, Germany
| | - Erhard Strohm
- University of Regensburg, Department of Zoology, D-93040 Regensburg, Germany
| |
Collapse
|
136
|
Mikheyev AS, Mueller UG, Abbot P. Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 2006; 103:10702-6. [PMID: 16815974 PMCID: PMC1502295 DOI: 10.1073/pnas.0601441103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fungus-growing ants have long provided a spectacular example of coevolutionary integration. Their ecological success is thought to depend largely on the evolutionary alignment of reproductive interests between ants and fungi after vertical transmission and the ancient suppression of fungal sexuality. In the present study we test these assumptions and provide the first evidence of recombination in attine cultivars, contradicting widely held perceptions of obligate clonality. In addition, we document long-distance horizontal transmission of symbionts between leaf-cutter ant species on mainland Central America and South America and those endemic to Cuba, suggesting both lack of pairwise coevolutionary specificity in ant/cultivar interactions and dispersal of symbionts independent of their ant hosts. The coevolution between leaf-cutters and their fungal symbionts is thus not reciprocally pairwise. Rather, a single widespread and sexual fungal symbiont species is engaged in multiple interactions with divergent ant lineages. Strict fungal clonality and vertical transmission evidently have not played a critical role in the long-term evolutionary or ecological success of this well known mutualism.
Collapse
Affiliation(s)
| | - Ulrich G. Mueller
- *Section of Integrative Biology, University of Texas, Austin, TX 78712; and
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
137
|
Stireman JO, Nason JD, Heard SB, Seehawer JM. Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proc Biol Sci 2006; 273:523-30. [PMID: 16537122 PMCID: PMC1560066 DOI: 10.1098/rspb.2005.3363] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extraordinary diversity of phytophagous insects may be attributable to their narrow specialization as parasites of plants, with selective tradeoffs associated with alternate host plants driving genetic divergence of host-associated forms via ecological speciation. Most phytophagous insects in turn are attacked by parasitoid insects, which are similarly specialized and may also undergo host-associated differentiation (HAD). A particularly interesting possibility is that HAD by phytophagous insects might lead to HAD in parasitoids, as parasitoids evolve divergent lineages on the new host plant-specific lineages of their phytophagous hosts. We call this process 'cascading host-associated differentiation' (cascading HAD). We tested for cascading HAD in parasitoids of two phytophagous insects, each of which consists of genetically distinct host-associated lineages on the same pair of goldenrods (Solidago). Each parasitoid exhibited significant host-associated genetic divergence, and the distribution and patterns of divergence are consistent with divergence in sympatry. Although evidence for cascading HAD is currently limited, our results suggest that it could play an important role in the diversification of parasitoids attacking phytophagous insects. The existence of cryptic host-associated lineages also suggests that the diversity of parasitoids may be vastly underestimated.
Collapse
Affiliation(s)
- John O Stireman
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011-1020, USA.
| | | | | | | |
Collapse
|
138
|
Huyse T, Volckaert FAM. Comparing Host and Parasite Phylogenies: Gyrodactylus Flatworms Jumping from Goby to Goby. Syst Biol 2005; 54:710-8. [PMID: 16195215 DOI: 10.1080/10635150500221036] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The combination of exceptionally high species diversity, high host specificity, and a complex reproduction system raises many questions about the underlying mechanisms triggering speciation in the flatworm genus Gyrodactylus. The coevolutionary history with their goby hosts was investigated using both topology- and distance-based approaches; phylogenies were constructed of the V4 region of the 18S rRNA and the complete ITS rDNA region for the parasites, and 12S and 16S mtDNA fragments for the hosts. The overall fit between both trees was significant according to the topology-based programs (TreeMap 1.0, 2.0 beta and TreeFitter), but not according to the timed analysis in TreeMap 2.0 beta and the distance-based method (ParaFit). An absolute timing of speciation events in host and parasite ruled out the possibility of synchronous speciation for the gill parasites, favouring the distance-based result. Based on this information together with the biological background of host and parasite, the following TreeMap solution was selected. The group of gill parasites evolved from a host switch from G. arcuatus, parasitizing the three-spined stickleback onto the gobies, followed by several host-switching events among the respective goby hosts. The timing of these events is estimated to date back to the Late Pleistocene, suggesting a role for refugia-mediated mixing of parasite species. In contrast, it is suggested that co-speciation in the fin-parasites resulted in several host-associated species complexes. This illustrates that phylogenetically conserved host-switching mimics the phylogenetic signature of co-speciation, confounding topology-based programs.
Collapse
Affiliation(s)
- Tine Huyse
- Katholieke Universiteit Leuven, Laboratory of Aquatic Ecology, Ch. De Bériotstraat 32, Leuven B-3000, Belgium.
| | | |
Collapse
|
139
|
Huyse T, Poulin R, Théron A. Speciation in parasites: a population genetics approach. Trends Parasitol 2005; 21:469-75. [PMID: 16112615 DOI: 10.1016/j.pt.2005.08.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/04/2005] [Accepted: 08/03/2005] [Indexed: 11/24/2022]
Abstract
Parasite speciation and host-parasite coevolution should be studied at both macroevolutionary and microevolutionary levels. Studies on a macroevolutionary scale provide an essential framework for understanding the origins of parasite lineages and the patterns of diversification. However, because coevolutionary interactions can be highly divergent across time and space, it is important to quantify and compare the phylogeographic variation in both the host and the parasite throughout their geographical range. Furthermore, to evaluate demographic parameters that are relevant to population genetics structure, such as effective population size and parasite transmission, parasite populations must be studied using neutral genetic markers. Previous emphasis on larger-scale studies means that the connection between microevolutionary and macroevolutionary events is poorly explored. In this article, we focus on the spatial fragmentation of parasites and the population genetics processes behind their diversification in an effort to bridge the micro- and macro-scales.
Collapse
Affiliation(s)
- Tine Huyse
- Parasitic Worms Division, Department of Zoology, The Natural History Museum, Cromwell Road, London, UK, SW7 5BD.
| | | | | |
Collapse
|
140
|
Stewart FJ, Newton ILG, Cavanaugh CM. Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. Trends Microbiol 2005; 13:439-48. [PMID: 16054816 DOI: 10.1016/j.tim.2005.07.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/30/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
Chemosynthetic endosymbioses occur ubiquitously at oxic-anoxic interfaces in marine environments. In these mutualisms, bacteria living directly within the cell of a eukaryotic host oxidize reduced chemicals (sulfur or methane), fueling their own energetic and biosynthetic needs, in addition to those of their host. In habitats such as deep-sea hydrothermal vents, chemosynthetic symbioses dominate the biomass, contributing substantially to primary production. Although these symbionts have yet to be cultured, physiological, biochemical and molecular approaches have provided insights into symbiont genetics and metabolism, as well as into symbiont-host interactions, adaptations and ecology. Recent studies of endosymbiont biology are reviewed, with emphasis on a conceptual model of thioautotrophic metabolism and studies linking symbiont physiology with the geochemical environment. We also discuss current and future research directions, focusing on the use of genome analyses to reveal mechanisms that initiate and sustain the symbiont-host interaction.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
141
|
Using parasites to infer host population history: a new rationale for parasite conservation. Anim Conserv 2005. [DOI: 10.1017/s1367943005001915] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
142
|
Wernegreen JJ, Funk DJ. Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome. J Mol Evol 2005; 59:849-58. [PMID: 15599516 DOI: 10.1007/s00239-003-0192-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (AT-->GC vs. GC-->AT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 AT-->GC:GC-->AT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of AT-->GC and GC-->AT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced N(e) in the molecular evolution of bacterial endosymbionts.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology & Evolution, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
143
|
Abstract
Tight interactions between unrelated organisms such as is seen in plant-insect, host-parasite, or host-symbiont associations may lead to speciation of the smaller partners when their hosts speciate. Totally congruent phylogenies of interacting taxa have not been observed often but a number of studies have provided evidence that various hemipteran insect taxa and their primary bacterial endosymbionts share phylogenetic histories. Like other hemipterans, mealybugs (Pseudococcidae) harbour multiple intracellular bacterial symbionts, which are thought to be strictly vertically inherited, implying codivergence of hosts and symbionts. Here, robust estimates of phylogeny were generated from four fragments of three nuclear genes for mealybugs of the subfamily Pseudococcinae, and a substantial fragment of the 16S-23S rDNA of their P-endosymbionts. Phylogenetic congruence was highly significant, with 75% of nodes on the two trees identical, and significant correlation of branch lengths indicated coincident timing of cladogenesis. It is suggested that the low level of observed incongruence was influenced by uncertainty in phylogenetic estimation, but evolutionary outcomes other than congruence, including host shifts, could not be rejected.
Collapse
Affiliation(s)
- D A Downie
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.
| | | |
Collapse
|
144
|
Goodisman MAD, Hahn DA. BREEDING SYSTEM, COLONY STRUCTURE, AND GENETIC DIFFERENTIATION IN THE CAMPONOTUS FESTINATUS SPECIES COMPLEX OF CARPENTER ANTS. Evolution 2005. [DOI: 10.1554/04-672.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
145
|
Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 2004; 70:3401-6. [PMID: 15184137 PMCID: PMC427722 DOI: 10.1128/aem.70.6.3401-3406.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) are plant sap-sucking insects that harbor prokaryotic primary endosymbionts (P-endosymbionts) within specialized cells located in their body cavity. Four-kilobase DNA fragments containing 16S-23S ribosomal DNA (rDNA) were amplified from the P-endosymbiont of 24 whiteflies from 22 different species of 2 whitefly subfamilies. In addition, 3-kb DNA fragments containing mitochondrial cytB, nd1, and large-subunit rDNA (LrDNA) were amplified from 17 whitefly species. Comparisons of the P-endosymbiont (16S-23S rDNA) and host (cytB-nd1-LrDNA) phylogenetic trees indicated overall congruence consistent with a single infection of a whitefly ancestor with a bacterium and subsequent cospeciation (cocladogenesis) of the host and the P-endosymbiont. On the basis of both the P-endosymbiont and host trees, the whiteflies could be subdivided into at least five clusters. The major subdivision was between the subfamilies Aleyrodinae and Aleurodicinae. Unlike the P-endosymbionts of may other insects, the P-endosymbionts of whiteflies were related to Pseudomonas and possibly to the P-endosymbionts of psyllids. The lineage consisting of the P-endosymbionts of whiteflies is given the designation "Candidatus Portiera" gen. nov., with a single species, "Candidatus Portiera aleyrodidarum" sp. nov.
Collapse
Affiliation(s)
- MyLo Ly Thao
- Microbiology Section, University of California, Davis, 95616-8665, USA
| | | |
Collapse
|
146
|
|
147
|
|
148
|
Subbotin SA, Krall EL, Riley IT, Chizhov VN, Staelens A, De Loose M, Moens M. Evolution of the gall-forming plant parasitic nematodes (Tylenchida: Anguinidae) and their relationships with hosts as inferred from Internal Transcribed Spacer sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 2004; 30:226-35. [PMID: 15022772 DOI: 10.1016/s1055-7903(03)00188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phylogenetic relationships among gall-forming plant parasitic nematodes of the subfamily Anguininae are reconstructed by maximum parsimony and maximum likelihood analyses. Sequences of the ITS of rDNA from 53 populations and species of gall-forming nematodes and five populations of the Ditylenchus dipsaci species complex were analysed. The phylogenetic trees strongly support monophyly of the genus Anguina and show nonmonophyly for the genera Mesoanguina and Heteroanguina. Morphological and biological characters are generally congruent with the anguinid groups identified in the rDNA phylogeny. Analyses of evolution of different gall types among anguinids reveal that there are apparent evolutionary trends in gall evolution: from abnormal swelling and growth of infested plant organs toward small localised galls, and from infestation of vegetative toward generative organs. Our study demonstrates that the main anguinid groups are generally associated with host plants belonging to the same or related systematic groups. The comparison of the ITS phylogenies of anguinids parasitising Poaceae and their host grasses shows a high level of cospeciation events.
Collapse
Affiliation(s)
- Sergei A Subbotin
- Institute of Parasitology of Russian Academy of Sciences, Leniskii prospect 33, Moscow 117091, Russia.
| | | | | | | | | | | | | |
Collapse
|
149
|
Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus blochmannia. Syst Biol 2004; 53:95-110. [PMID: 14965905 DOI: 10.1080/10635150490264842] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Bacterial endosymbionts are widespread across several insect orders and are involved in interactions ranging from obligate mutualism to reproductive parasitism. Candidatus Blochmannia gen. nov. (Blochmannia) is an obligate bacterial associate of Camponotus and related ant genera (Hymenoptera: Formicidae). The occurrence of Blochmannia in all Camponotus species sampled from field populations and its maternal transmission to host offspring suggest that this bacterium is engaged in a long-term, stable association with its ant hosts. However, evidence for cospeciation in this system is equivocal because previous phylogenetic studies were based on limited gene sampling, lacked statistical analysis of congruence, and have even suggested host switching. We compared phylogenies of host genes (the nuclear EF-1alphaF2 and mitochondrial COI/II) and Blochmannia genes (16S ribosomal DNA [rDNA], groEL, gidA, and rpsB), totaling more than 7 kilobases for each of 16 Camponotus species. Each data set was analyzed using maximum likelihood and Bayesian phylogenetic reconstruction methods. We found minimal conflict among host and symbiont phylogenies, and the few areas of discordance occurred at deep nodes that were poorly supported by individual data sets. Concatenated protein-coding genes produced a very well-resolved tree that, based on the Shimodaira-Hasegawa test, did not conflict with any host or symbiont data set. Correlated rates of synonymous substitution (d(S)) along corresponding branches of host and symbiont phylogenies further supported the hypothesis of cospeciation. These findings indicate that Blochmannia-Camponotus symbiosis has been evolutionarily stable throughout tens of millions of years. Based on inferred divergence times among the ant hosts, we estimated rates of sequence evolution of Blochmannia to be approximately 0.0024 substitutions per site per million years (s/s/MY) for the 16S rDNA gene and approximately 0.1094 s/s/MY at synonymous positions of the genes sampled. These rates are several-fold higher than those for related bacteria Buchnera aphidicola and Escherichia coli. Phylogenetic congruence among Blochmannia genes indicates genome stability that typifies primary endosymbionts of insects.
Collapse
Affiliation(s)
- Patrick H Degnan
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
150
|
Lin CP, Danforth BN. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol 2004; 30:686-702. [PMID: 15012948 DOI: 10.1016/s1055-7903(03)00241-0] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 06/03/2003] [Indexed: 11/19/2022]
Abstract
We analyzed 12 combined mitochondrial and nuclear gene datasets in seven orders of insects using both equal weights parsimony (to evaluate phylogenetic utility) and Bayesian methods (to investigate substitution patterns). For the Bayesian analyses we used relatively complex models (e.g., general time reversible models with rate variation) that allowed us to quantitatively compare relative rates among genes and codon positions, patterns of rate variation among genes, and substitution patterns within genes. Our analyses indicate that nuclear and mitochondrial genes differ in a number of important ways, some of which are correlated with phylogenetic utility. First and most obviously, nuclear genes generally evolve more slowly than mitochondrial genes (except in one case), making them better markers for deep divergences. Second, nuclear genes showed universally high values of CI and (generally) contribute more to overall tree resolution than mitochondrial genes (as measured by partitioned Bremer support). Third, nuclear genes show more homogeneous patterns of among-site rate variation (higher values of alpha than mitochondrial genes). Finally, nuclear genes show more symmetrical transformation rate matrices than mitochondrial genes. The combination of low values of alpha and highly asymmetrical transformation rate matrices may explain the overall poor performance of mitochondrial genes when compared to nuclear genes in the same analysis. Our analyses indicate that some parameters are highly correlated. For example, A/T bias was positively and significantly associated with relative rate and CI was positively and significantly associated with alpha (the shape of the gamma distribution). These results provide important insights into the substitution patterns that might characterized high quality genes for phylogenetic analysis: high values of alpha, unbiased base composition, and symmetrical transformation rate matrices. We argue that insect molecular systematists should increasingly focus on nuclear rather than mitochondrial gene datasets because nuclear genes do not suffer from the same substitutional biases that characterize mitochondrial genes.
Collapse
Affiliation(s)
- Chung-Ping Lin
- Department of Biological Sciences, College of Arts and Science, Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|