101
|
Honaker RW, Dhiman RK, Narayanasamy P, Crick DC, Voskuil MI. DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J Bacteriol 2010; 192:6447-55. [PMID: 20952575 PMCID: PMC3008535 DOI: 10.1128/jb.00978-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023] Open
Abstract
The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions, its induction is controlled by two histidine kinases, DosS and DosT, and recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. Under aerobic conditions, induction of the DosR regulon by DosS, but not DosT, was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating that DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions, regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating that the menaquinone pool is a limiting factor in regulon induction. Taken together, these data demonstrate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS and rescue inhibition of menaquinone synthesis and is less toxic. The menaquinone pool is central to the electron transport system (ETS) and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Although this report demonstrates that DosS responds to a reduced ETS, it does not rule out a role for oxygen in silencing signaling.
Collapse
Affiliation(s)
- Ryan W. Honaker
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Rakesh K. Dhiman
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Prabagaran Narayanasamy
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Dean C. Crick
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Martin I. Voskuil
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| |
Collapse
|
102
|
Intraerythrocytic stages of Plasmodium falciparum biosynthesize menaquinone. FEBS Lett 2010; 584:4761-4768. [PMID: 21036171 DOI: 10.1016/j.febslet.2010.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/23/2022]
Abstract
Herein, we show that intraerythrocytic stages of Plasmodium falciparum have an active pathway for biosynthesis of menaquinone. Kinetic assays confirmed that plasmodial menaquinone acts at least in the electron transport. Similarly to Escherichia coli, we observed increased levels of menaquinone in parasites kept under anaerobic conditions. Additionally, the mycobacterial inhibitor of menaquinone synthesis Ro 48-8071 also suppressed menaquinone biosynthesis and growth of parasites, although off-targets may play a role in this growth-inhibitory effect. Due to its absence in humans, the menaquinone biosynthesis can be considered an important drug target for malaria.
Collapse
|
103
|
Janagama HK, Lamont EA, George S, Bannantine JP, Xu WW, Tu ZJ, Wells SJ, Schefers J, Sreevatsan S. Primary transcriptomes of Mycobacterium avium subsp. paratuberculosis reveal proprietary pathways in tissue and macrophages. BMC Genomics 2010; 11:561. [PMID: 20939887 PMCID: PMC3091710 DOI: 10.1186/1471-2164-11-561] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Mycobacterium avium subsp. paratuberculosis (MAP) persistently infects intestines and mesenteric lymph nodes leading to a prolonged subclinical disease. The MAP genome sequence was published in 2005, yet its transcriptional organization in natural infection is unknown. While prior research analyzed regulated gene sets utilizing defined, in vitro stress related or advanced surgical methods with various animal species, we investigated the intracellular lifestyle of MAP in the intestines and lymph nodes to understand the MAP pathways that function to govern this persistence. Results Our transcriptional analysis shows that 21%, 8% and 3% of the entire MAP genome was represented either inside tissues, macrophages or both, respectively. Transcripts belonging to latency and cell envelope biogenesis were upregulated in the intestinal tissues whereas those belonging to intracellular trafficking and secretion were upregulated inside the macrophages. Transcriptomes of natural infection and in vitro macrophage infection shared genes involved in transcription and inorganic ion transport and metabolism. MAP specific genes within large sequence polymorphisms of ancestral M. avium complex were downregulated exclusively in natural infection. Conclusions We have unveiled common and unique MAP pathways associated with persistence, cell wall biogenesis and virulence in naturally infected cow intestines, lymph nodes and in vitro infected macrophages. This dichotomy also suggests that in vitro macrophage models may be insufficient in providing accurate information on the events that transpire during natural infection. This is the first report to examine the primary transcriptome of MAP at the local infection site (i.e. intestinal tissue). Regulatory pathways that govern the lifecycle of MAP appear to be specified by tissue and cell type. While tissues show a "shut-down" of major MAP metabolic genes, infected macrophages upregulate several MAP specific genes along with a putative pathogenicity island responsible for iron acquisition. Many of these regulatory pathways rely on the advanced interplay of host and pathogen and in order to decipher their message, an interactome must be established using a systems biology approach. Identified MAP pathways place current research into direct alignment in meeting the future challenge of creating a MAP-host interactome.
Collapse
Affiliation(s)
- Harish K Janagama
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Fang M, Langman BM, Palmer DR. A stable analog of isochorismate for the study of MenD and other isochorismate-utilizing enzymes. Bioorg Med Chem Lett 2010; 20:5019-22. [DOI: 10.1016/j.bmcl.2010.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
|
105
|
Johnston JM, Jiang M, Guo Z, Baker EN. Structural and functional analysis of Rv0554 from Mycobacterium tuberculosis: testing a putative role in menaquinone biosynthesis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:909-17. [PMID: 20693690 DOI: 10.1107/s0907444910025771] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/30/2010] [Indexed: 05/26/2023]
Abstract
Mycobacterium tuberculosis, the cause of tuberculosis, is a devastating human pathogen against which new drugs are urgently needed. Enzymes from the biosynthetic pathway for menaquinone are considered to be valid drug targets. The protein encoded by the open reading frame Rv0554 has been expressed, purified and subjected to structural and functional analysis to test for a putative role in menaquinone biosynthesis. The crystal structure of Rv0554 has been solved and refined in two different space groups at 2.35 and 1.9 A resolution. The protein is dimeric, with an alpha/beta-hydrolase monomer fold. In each monomer, a large cavity adjacent to the catalytic triad is enclosed by a helical lid. Dimerization is mediated by the lid regions. Small-molecule additives used in crystallization bind in the active site, but no binding of ligands related to menaquinone biosynthesis could be detected and functional assays failed to support possible roles in menaquinone biosynthesis.
Collapse
Affiliation(s)
- Jodie M Johnston
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
106
|
Mathew R, Kruthiventi AK, Prasad JV, Kumar SP, Srinu G, Chatterji D. Inhibition of Mycobacterial Growth by Plumbagin Derivatives. Chem Biol Drug Des 2010; 76:34-42. [DOI: 10.1111/j.1747-0285.2010.00987.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Kurosu M, Begari E. Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 2010; 15:1531-53. [PMID: 20335999 PMCID: PMC6257245 DOI: 10.3390/molecules15031531] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/11/2010] [Accepted: 03/03/2010] [Indexed: 01/01/2023] Open
Abstract
Aerobic and anaerobic respiratory systems allow cells to transport the electrons to terminal electron acceptors. The quinone (ubiquinone or menaquinone) pool is central to the electron transport chain. In the majority of gram-positive bacteria, vitamin K2 (menaquinone) is the sole quinone in the electron transport chain, and thus, the bacterial enzymes catalyzing the synthesis of menaquinone are potential targets for the development of novel antibacterial drugs. This manuscript reviews the role of vitamin K in bacteria and humans, and especially emphasizes on recent aspects of menaquinones in bacterial electron transport chain and on discoveries of inhibitor molecules targeting bacterial electron transport systems for new antibacterial agents.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682, USA.
| | | |
Collapse
|
108
|
Fang M, Toogood RD, Macova A, Ho K, Franzblau SG, McNeil MR, Sanders DAR, Palmer DRJ. Succinylphosphonate Esters Are Competitive Inhibitors of MenD That Show Active-Site Discrimination between Homologous α-Ketoglutarate-Decarboxylating Enzymes. Biochemistry 2010; 49:2672-9. [DOI: 10.1021/bi901432d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maohai Fang
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - R. Daniel Toogood
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Andrea Macova
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Karen Ho
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois, 833 South Wood Street, Chicago, Illinois 60612
| | - Michael R. McNeil
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
109
|
Westwood IM, Bhakta S, Russell AJ, Fullam E, Anderton MC, Kawamura A, Mulvaney AW, Vickers RJ, Bhowruth V, Besra GS, Lalvani A, Davies SG, Sim E. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell 2010; 1:82-95. [PMID: 21204000 PMCID: PMC4875111 DOI: 10.1007/s13238-010-0006-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023] Open
Abstract
New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules-triazoles-in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved.
Collapse
Affiliation(s)
- Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | | | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Andrew W. Mulvaney
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Richard J. Vickers
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Veemal Bhowruth
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Ajit Lalvani
- Tuberculosis Immunology Group, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Stephen G. Davies
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| |
Collapse
|
110
|
Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2009; 106:20687-92. [PMID: 19933331 PMCID: PMC2791619 DOI: 10.1073/pnas.0907398106] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP124 (Rv2266) that includes demonstration of preferential oxidation of methyl-branched lipids. Spectrophotometric titrations and analysis of reaction products indicate that CYP124 tightly binds and hydroxylates these substrates at the chemically disfavored omega-position. We also report X-ray crystal structures of the ligand-free and phytanic acid-bound protein at a resolution of 1.5 A and 2.1 A, respectively, which provide structural insights into a cytochrome P450 with predominant omega-hydroxylase activity. The structures of ligand-free and substrate-bound CYP124 reveal several differences induced by substrate binding, including reorganization of the I helix and closure of the active site by elements of the F, G, and D helices that bind the substrate and exclude solvent from the hydrophobic active site cavity. The observed regiospecific catalytic activity suggests roles of CYP124 in the physiological oxidation of relevant Mtb methyl-branched lipids. The enzymatic specificity and structures reported here provide a scaffold for the design and testing of specific inhibitors of CYP124.
Collapse
Affiliation(s)
- Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Petrea M. Kells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | | |
Collapse
|