101
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
102
|
Meyer N, Harvey AG, Lockley SW, Dijk DJ. Circadian rhythms and disorders of the timing of sleep. Lancet 2022; 400:1061-1078. [PMID: 36115370 DOI: 10.1016/s0140-6736(22)00877-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The daily alternation between sleep and wakefulness is one of the most dominant features of our lives and is a manifestation of the intrinsic 24 h rhythmicity underlying almost every aspect of our physiology. Circadian rhythms are generated by networks of molecular oscillators in the brain and peripheral tissues that interact with environmental and behavioural cycles to promote the occurrence of sleep during the environmental night. This alignment is often disturbed, however, by contemporary changes to our living environments, work or social schedules, patterns of light exposure, and biological factors, with consequences not only for sleep timing but also for our physical and mental health. Characterised by undesirable or irregular timing of sleep and wakefulness, in this Series paper we critically examine the existing categories of circadian rhythm sleep-wake disorders and the role of the circadian system in their development. We emphasise how not all disruption to daily rhythms is driven solely by an underlying circadian disturbance, and take a broader, dimensional approach to explore how circadian rhythms and sleep homoeostasis interact with behavioural and environmental factors. Very few high-quality epidemiological and intervention studies exist, and wider recognition and treatment of sleep timing disorders are currently hindered by a scarcity of accessible and objective tools for quantifying sleep and circadian physiology and environmental variables. We therefore assess emerging wearable technology, transcriptomics, and mathematical modelling approaches that promise to accelerate the integration of our knowledge in sleep and circadian science into improved human health.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Allison G Harvey
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
103
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
104
|
Hu K, Li W, Zhang Y, Chen H, Bai C, Yang Z, Lorenz T, Liu K, Shirai K, Song J, Zhao Q, Zhao Y, Zhang JJ, Wei J, Pan J, Qi J, Ye T, Zeng Y, Yao Y. Association between outdoor artificial light at night and sleep duration among older adults in China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 212:113343. [PMID: 35461841 DOI: 10.1016/j.envres.2022.113343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Light after dusk disrupts the circadian rhythms and shifts the timing of sleep later; but it is unknown whether outdoor artificial light at night (ALAN) affects sleep quality. This study aimed to explore the association between residential outdoor ALAN and sleep duration in a nationally representative sample of Chinese older adults. METHODS We examined the cross-sectional associations of outdoor ALAN with self-reported sleep duration in 13,474 older adults participating in the 2017-2018 wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Outdoor ALAN exposure was estimated at the residence level using satellite images. We applied generalized linear mixed models to investigate the association between ALAN exposure and sleep duration. We performed stratified analyses by age, sex, education, and household income levels. Moreover, we used multi-level logistic regression models to investigate the effects of ALAN on the short sleep duration (≤6 h) and the long sleep duration (>8 h), respectively, in reference to sleep for >6-8 h per day. RESULTS We found a significant association between outdoor ALAN intensity and sleep duration. The highest quartile of ALAN was associated with 17.04 (95% CI: 9.42-24.78) fewer minutes of sleep as compared to the lowest quartile. The reductions in sleep duration per quartile change in ALAN were greater in the young old (≥65-85 years) and in those with higher levels of education, and those with higher household income, respectively. We did not detect a sex difference. In addition, those in the highest quartile of ALAN were more likely to report a 25% (95% CI: 10%-42%) increase in short sleep (<6 h), and a 21% (95% CI: 9%-31%) decrease in long sleep (>8 h). CONCLUSIONS Increasing outdoor nighttime light intensity surrounding residences was associated with shorter sleep duration in older residents in China. This finding implies the importance of urban outdoor artificial light management as a potential means to lower the public health burden of sleep disorders.
Collapse
Affiliation(s)
- Kejia Hu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Wanlu Li
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huashuai Chen
- Business School of Xiangtan University, Xiangtan, 411105, China
| | - Chen Bai
- School of Labor and Human Resources, Renmin University of China, Beijing, 100872, China
| | - Zhenchun Yang
- Global Health Institute and the Nicholas School of Environment, Duke University, Durham, 27708, USA
| | - Thiess Lorenz
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, 20246, Germany
| | - Keyang Liu
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita Shi, Osaka, 565-0871, Japan
| | - Kokoro Shirai
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita Shi, Osaka, 565-0871, Japan
| | - Jinglu Song
- Department of Urban Planning and Design, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, 572000, China
| | - Junfeng Jim Zhang
- Global Health Institute and the Nicholas School of Environment, Duke University, Durham, 27708, USA
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 20742, USA
| | - Jiahao Pan
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Jin Qi
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, 100871, China.
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing, 100191, China.
| |
Collapse
|
105
|
Smidt AM, Blake MJ, Latham MD, Allen NB. Effects of Automated Diurnal Variation in Electronic Screen Temperature on Sleep Quality in Young Adults: A Randomized Controlled Trial. Behav Sleep Med 2022; 20:513-529. [PMID: 34176370 DOI: 10.1080/15402002.2021.1940183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Determine whether automated changes in electronic screen color temperature of personal electronic devices is associated with changes in objective and self-reported indices of sleep and mental health in young adults, as well as determine feasibility and acceptability of the experimental manipulation. PARTICIPANTS A single-blind randomized controlled trial was conducted at a large public university in the Pacific Northwest region of the United States. Fifty-five participants (female=78%, mean age=19.45 years) who reported using a smartphone and/or laptop computer two hours before bedtime were randomized into either an experimental group (EG; n=29) or active control group (ACG; n=26). METHODS Both the EG and ACG had installed on their devices a piece of software that automatically lowers the color temperature of these devices' screens as the day progresses ("f.lux"). However, only the EG had the blue-light-reducing features activated, and participants were blind to condition. Before and after the one-week long experimental manipulation period, participants completed the Pittsburgh Sleep Quality Index (PSQI), Pediatric Daytime Sleepiness Scale (PDSS), Pre-Sleep Arousal Scale (PSAS), and Patient Health Questionnaire (PHQ) and wore an actiwatch for seven consecutive nights. RESULTS Participants in the EG did not show greater improvement in objective sleep, self-reported sleep, or mental health compared to participants in the ACG. Participants in the EG rated the software as more distracting and purposely disabled the software more often compared to participants in the ACG. CONCLUSIONS Automated diurnal variation in electronic screen temperature in personal devices did not improve sleep or mental health in young adults.
Collapse
Affiliation(s)
- Alec M Smidt
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Matthew J Blake
- Melbourne School of Psychological Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa D Latham
- Department of Psychology, VA San Diego Healthcare System, San Diego, California
| | | |
Collapse
|
106
|
Xu YX, Huang Y, Zhou Y, Yu Y, Wan YH, Tao FB, Sun Y. Association between bedroom light exposure at night and allostatic load among Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119671. [PMID: 35752397 DOI: 10.1016/j.envpol.2022.119671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Light at night (LAN) has received increasing attention for its potential health hazards to human and animals. However, to our knowledge, no study has explored the specific effects of bedroom nighttime light exposure on allostatic load (AL). To investigate the association between bedroom individual-level LAN exposure and AL among young adults, an integrative index manifests multiple system dysregulation. Using data from a cohort of 484 Chinese young adults aged 16-22 years. Bedroom light was objectively recorded at 1-min intervals for two nights using a portable illuminance meter. Fasting blood samples were collected at one-year follow-up for the detection of AL parameters. AL score was derived as sum of the top quartile of twelve physiological biomarkers in four systems: metabolic system (BMI, WC, TC, HDL, LDL, TG, HbA1c, INS, GLU); cardiovascular system (SBP, DBP); immune and inflammatory systems (hs-CRP), with HDL was lowest quartile. Univariate and multivariate linear regression models were used to evaluate the association between LAN intensity with AL score and separate AL parameters. The average age of subjects was 18.7 years, 64.3% were female. The mean AL score of LAN group (average LAN intensity ≥ 3lx) was significantly higher than Dim group (3.6 ± 2.6 vs. 2.7 ± 2.1; P = 0.007). For each 1 lx increase of LAN intensity was associated with 0.15-unit increase in AL score (95% CI: 0.06, 0.24; P = 0.001). Moreover, LAN group was associated with increased 1.01-unit in AL score (95% CI: 0.36-1.66; P = 0.003) compared to Dim group. Significant associations between bedroom LAN exposure with allostatic load and separate AL biomarkers were observed in our study. Keeping bedroom darkness at night may be a practicable option to reduce the wear of multiple body systems and improve human cardiometabolic health from early in life.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
107
|
Sletten TL, Sullivan JP, Arendt J, Palinkas LA, Barger LK, Fletcher L, Arnold M, Wallace J, Strauss C, Baker RJS, Kloza K, Kennaway DJ, Rajaratnam SMW, Ayton J, Lockley SW. The role of circadian phase in sleep and performance during Antarctic winter expeditions. J Pineal Res 2022; 73:e12817. [PMID: 35833316 PMCID: PMC9541096 DOI: 10.1111/jpi.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The Antarctic environment presents an extreme variation in the natural light-dark cycle which can cause variability in the alignment of the circadian pacemaker with the timing of sleep, causing sleep disruption, and impaired mood and performance. This study assessed the incidence of circadian misalignment and the consequences for sleep, cognition, and psychological health in 51 over-wintering Antarctic expeditioners (45.6 ± 11.9 years) who completed daily sleep diaries, and monthly performance tests and psychological health questionnaires for 6 months. Circadian phase was assessed via monthly 48-h urine collections to assess the 6-sulphatoxymelatonin (aMT6s) rhythm. Although the average individual sleep duration was 7.2 ± 0.8 h, there was substantial sleep deficiency with 41.4% of sleep episodes <7 h and 19.1% <6 h. Circadian phase was highly variable and 34/50 expeditioners had sleep episodes that occurred at an abnormal circadian phase (acrophase outside of the sleep episode), accounting for 18.8% (295/1565) of sleep episodes. Expeditioners slept significantly less when misaligned (6.1 ± 1.3 h), compared with when aligned (7.3 ± 1.0 h; p < .0001). Performance and mood were worse when awake closer to the aMT6s peak and with increased time awake (all p < .0005). This research highlights the high incidence of circadian misalignment in Antarctic over-wintering expeditioners. Similar incidence has been observed in long-duration space flight, reinforcing the fidelity of Antarctica as a space analog. Circadian misalignment has considerable safety implications, and potentially longer term health risks for other circadian-controlled physiological systems. This increased risk highlights the need for preventative interventions, such as proactively planned lighting solutions, to ensure circadian alignment during long-duration Antarctic and space missions.
Collapse
Affiliation(s)
- Tracey L. Sletten
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
| | - Jason P. Sullivan
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Josephine Arendt
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Lawrence A. Palinkas
- Suzanne Dworak‐Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Laura K. Barger
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lloyd Fletcher
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Malcolm Arnold
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Jan Wallace
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Clive Strauss
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | | | - Kate Kloza
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - David J. Kennaway
- Robinson Research Institute, School of Medicine, Discipline of Obstetrics and GynaecologyUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Shantha M. W. Rajaratnam
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeff Ayton
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
108
|
Pun TB, Phillips CL, Marshall NS, Comas M, Hoyos CM, D’Rozario AL, Bartlett DJ, Davis W, Hu W, Naismith SL, Cain S, Postnova S, Grunstein RR, Gordon CJ. The Effect of Light Therapy on Electroencephalographic Sleep in Sleep and Circadian Rhythm Disorders: A Scoping Review. Clocks Sleep 2022; 4:358-373. [PMID: 35997384 PMCID: PMC9397048 DOI: 10.3390/clockssleep4030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Light therapy is used to treat sleep and circadian rhythm disorders, yet there are limited studies on whether light therapy impacts electroencephalographic (EEG) activity during sleep. Therefore, we aimed to provide an overview of research studies that examined the effects of light therapy on sleep macro- and micro-architecture in populations with sleep and circadian rhythm disorders. We searched for randomized controlled trials that used light therapy and included EEG sleep measures using MEDLINE, PubMed, CINAHL, PsycINFO and Cochrane Central Register of Controlled Trials databases. Five articles met the inclusion criteria of patients with either insomnia or delayed sleep−wake phase disorder (DSWPD). These trials reported sleep macro-architecture outcomes using EEG or polysomnography. Three insomnia trials showed no effect of the timing or intensity of light therapy on total sleep time, wake after sleep onset, sleep efficiency and sleep stage duration compared to controls. Only one insomnia trial reported significantly higher sleep efficiency after evening light therapy (>4000 lx between 21:00−23:00 h) compared with afternoon light therapy (>4000 lx between 15:00−17:00 h). In the only DSWPD trial, six multiple sleep latency tests were conducted across the day (09:00 and 19:00 h) and bright light (2500 lx) significantly lengthened sleep latency in the morning (09:00 and 11:00 h) compared to control light (300 lx). None of the five trials reported any sleep micro-architecture measures. Overall, there was limited research about the effect of light therapy on EEG sleep measures, and studies were confined to patients with insomnia and DSWPD only. More research is needed to better understand whether lighting interventions in clinical populations affect sleep macro- and micro-architecture and objective sleep timing and quality.
Collapse
Affiliation(s)
- Teha B. Pun
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Craig L. Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nathaniel S. Marshall
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Camilla M. Hoyos
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Angela L. D’Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Delwyn J. Bartlett
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Wendy Davis
- School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2008, Australia
| | - Wenye Hu
- School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2008, Australia
| | - Sharon L. Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
| | - Svetlana Postnova
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ron R. Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Sleep and Severe Mental Illness Clinic, CPC-RPA Clinic, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Christopher J. Gordon
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| |
Collapse
|
109
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
110
|
Rahman SA, St. Hilaire MA, Grant LK, Barger LK, Brainard GC, Czeisler CA, Klerman EB, Lockley SW. Dynamic lighting schedules to facilitate circadian adaptation to shifted timing of sleep and wake. J Pineal Res 2022; 73:e12805. [PMID: 35501292 PMCID: PMC11316502 DOI: 10.1111/jpi.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Circadian adaptation to shifted sleep/wake schedules may be facilitated by optimizing the timing, intensity and spectral characteristics of light exposure, which is the principal time cue for mammalian circadian pacemaker, and possibly by strategically timing nonphotic time cues such as exercise. Therefore, circadian phase resetting by light and exercise was assessed in 44 healthy participants (22 females, mean age [±SD] 36.2 ± 9.2 years), who completed 8-day inpatient experiments simulating night shiftwork, which included either an 8 h advance or 8 h delay in sleep/wake schedules. In the advance protocol (n = 18), schedules were shifted either gradually (1.6 h/day across 5 days) or abruptly (slam shift, 8 h in 1 day and maintained across 5 days). Both advance protocols included a dynamic lighting schedule (DLS) with 6.5 h exposure of blue-enriched white light (704 melanopic equivalent daylight illuminance [melEDI] lux) during the day and dimmer blue-depleted light (26 melEDI lux) for 2 h immediately before sleep on the shifted schedule. In the delay protocol (n = 26), schedules were only abruptly delayed but included four different lighting conditions: (1) 8 h continuous room-light control; (2) 8 h continuous blue-enriched light; (3) intermittent (7 × 15 min pulses/8 h) blue-enriched light; (4) 8 h continuous blue-enriched light plus moderate intensity exercise. In the room-light control, participants received dimmer white light for 30 min before bedtime, whereas in the other three delay protocols participants received dimmer blue-depleted light for 30 min before bedtime. Both the slam and gradual advance protocols induced similar shifts in circadian phase (3.28 h ± 0.37 vs. 2.88 h ± 0.31, respectively, p = .43) estimated by the change in the timing of timing of dim light melatonin onset. In the delay protocol, the continuous 8 h blue-enriched exposure induced significantly larger shifts than the room light control (-6.59 h ± 0.43 vs. -4.74 h ± 0.62, respectively, p = .02). The intermittent exposure induced ~60% of the shift (-3.90 h ± 0.62) compared with 8 h blue-enriched continuous light with only 25% of the exposure duration. The addition of exercise to the 8 h continuous blue-enriched light did not result in significantly larger phase shifts (-6.59 h ± 0.43 vs. -6.41 h ± 0.69, p = .80). Collectively, our results demonstrate that, when attempting to adapt to an 8 h overnight work shift, delay shifts are more successful, particularly when accompanied by a DLS with high-melanopic irradiance light stimulus during wake.
Collapse
Affiliation(s)
- Shadab A. Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Melissa A. St. Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Leilah K. Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Laura K. Barger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - George C. Brainard
- Light Research Program, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
111
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
112
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M, Nam S, Veitch JA. luox: validated reference open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2022; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/22/2023] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in vision science, lighting research, chronobiology, sleep research and adjacent fields to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox calculations of CIE quantities and indices have been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- TUM Department of Sport and Health Sciences (TUM SG), Chronobiology & Health, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | | | | | | | | | | | | | - Somang Nam
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| | - Jennifer A. Veitch
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| |
Collapse
|
113
|
Gradisar M, Kahn M, Micic G, Short M, Reynolds C, Orchard F, Bauducco S, Bartel K, Richardson C. Sleep's role in the development and resolution of adolescent depression. NATURE REVIEWS PSYCHOLOGY 2022; 1:512-523. [PMID: 35754789 PMCID: PMC9208261 DOI: 10.1038/s44159-022-00074-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Two adolescent mental health fields - sleep and depression - have advanced largely in parallel until about four years ago. Although sleep problems have been thought to be a symptom of adolescent depression, emerging evidence suggests that sleep difficulties arise before depression does. In this Review, we describe how the combination of adolescent sleep biology and psychology uniquely predispose adolescents to develop depression. We describe multiple pathways and contributors, including a delayed circadian rhythm, restricted sleep duration and greater opportunity for repetitive negative thinking while waiting for sleep. We match each contributor with evidence-based sleep interventions, including bright light therapy, exogenous melatonin and cognitive-behaviour therapy techniques. Such treatments improve sleep and alleviate depression symptoms, highlighting the utility of sleep treatment for comorbid disorders experienced by adolescents.
Collapse
Affiliation(s)
- Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, Australia
- Sleep Cycle AB, Gothenburg, Sweden
| | - Michal Kahn
- School of Psychology, Flinders University, Adelaide, Australia
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gorica Micic
- School of Psychology, Flinders University, Adelaide, Australia
| | - Michelle Short
- School of Psychology, Flinders University, Adelaide, Australia
| | | | - Faith Orchard
- School of Psychology, University of East Sussex, Brighton, United Kingdom
| | - Serena Bauducco
- School of Psychology, Flinders University, Adelaide, Australia
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Kate Bartel
- School of Psychology, Flinders University, Adelaide, Australia
| | - Cele Richardson
- School of Psychological Science, University of Western Australia, Perth, Australia
| |
Collapse
|
114
|
Zeitzer JM, Lok R. Circadian photoreception: The impact of light on human circadian rhythms. PROGRESS IN BRAIN RESEARCH 2022; 273:171-180. [PMID: 35940715 DOI: 10.1016/bs.pbr.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light is the preeminent external influence in determining the position of the internal circadian clock relative to the outside world. In this chapter, we discuss the different parameters of light that impact how it influences the human circadian clock. We detail how the timing (phase), intensity, duration and temporal structure, and spectral composition all can modulate the impact of light on both the timing of the circadian clock as well as its amplitude. The neurobiological underpinnings of the system are briefly discussed in the context of understanding how light can evoke its observed effects on the circadian clock.
Collapse
Affiliation(s)
- Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
115
|
Stone JE, Wiley J, Chachos E, Hand AJ, Lu S, Raniti M, Klerman E, Lockley SW, Carskadon MA, Phillips AJK, Bei B, Rajaratnam SMW. The CLASS Study (Circadian Light in Adolescence, Sleep and School): protocol for a prospective, longitudinal cohort to assess sleep, light, circadian timing and academic performance in adolescence. BMJ Open 2022; 12:e055716. [PMID: 35537785 PMCID: PMC9092183 DOI: 10.1136/bmjopen-2021-055716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND During adolescence, sleep and circadian timing shift later, contributing to restricted sleep duration and irregular sleep-wake patterns. The association of these developmental changes in sleep and circadian timing with cognitive functioning, and consequently academic outcomes, has not been examined prospectively. The role of ambient light exposure in these developmental changes is also not well understood. Here, we describe the protocol for the Circadian Light in Adolescence, Sleep and School (CLASS) Study that will use a longitudinal design to examine the associations of sleep-wake timing, circadian timing and light exposure with academic performance and sleepiness during a critical stage of development. We also describe protocol adaptations to enable remote data collection when required during the COVID-19 pandemic. METHODS Approximately 220 healthy adolescents aged 12-13 years (school Year 7) will be recruited from the general community in Melbourne, Australia. Participants will be monitored at five 6 monthly time points over 2 years. Sleep and light exposure will be assessed for 2 weeks during the school term, every 6 months, along with self-report questionnaires of daytime sleepiness. Circadian phase will be measured via dim light melatonin onset once each year. Academic performance will be measured via national standardised testing (National Assessment Program-Literacy and Numeracy) and the Wechsler Individual Achievement Test-Australian and New Zealand Standardised Third Edition in school Years 7 and 9. Secondary outcomes, including symptoms of depression, anxiety and sleep disorders, will be measured via questionnaires. DISCUSSION The CLASS Study will enable a comprehensive longitudinal assessment of changes in sleep-wake timing, circadian phase, light exposure and academic performance across a key developmental stage in adolescence. Findings may inform policies and intervention strategies for secondary school-aged adolescents. ETHICS AND DISSEMINATION Ethical approval was obtained by the Monash University Human Research Ethics Committee and the Victorian Department of Education. Dissemination plans include scientific publications, scientific conferences, via stakeholders including schools and media. STUDY DATES Recruitment occurred between October 2019 and September 2021, data collection from 2019 to 2023.
Collapse
Affiliation(s)
- Julia E Stone
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Joshua Wiley
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Evangelos Chachos
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Anthony J Hand
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sinh Lu
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Monika Raniti
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary A Carskadon
- Department of Psychiatry & Human Behavior, Chronobiology & Sleep Research Laboratory, EP Bradley Hospital, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Bei Bei
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
116
|
Beyond the limits of circadian entrainment: Non-24-hour sleep-wake disorder, shift work, and social jet lag. J Theor Biol 2022; 545:111148. [PMID: 35513166 DOI: 10.1016/j.jtbi.2022.111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023]
Abstract
While the vast majority of humans are able to entrain their circadian rhythm to the 24-hour light-dark cycle, there are numerous individuals who are not able to do so due to disease or societal reasons. We use computational and mathematical methods to analyze a well-established model of human circadian rhythms to address cases where individuals do not entrain to the 24-hour light-dark cycle, leading to misalignment of their circadian phase. For each case, we provide a mathematically justified strategy for how to minimize circadian misalignment. In the case of non-24-hour sleep-wake disorder, we show why appropriately timed bright light therapy induces entrainment. With regard to shift work, we explain why reentrainment times following transitions between day and night shifts are asymmetric, and how higher light intensity enables unusually rapid reentrainment after certain transitions. Finally, with regard to teenagers who engage in compensatory catch-up sleep on weekends, we propose a rule of thumb for sleep and wake onset times that minimizes circadian misalignment due to this type of social jet lag. In all cases, the primary mathematical approach involves understanding the dynamics of entrainment maps that measure the phase of the entrained rhythm with respect to the daily onset of lights.
Collapse
|
117
|
Lok R, Joyce DS, Zeitzer JM. Impact of daytime spectral tuning on cognitive function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112439. [PMID: 35398657 DOI: 10.1016/j.jphotobiol.2022.112439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Light at night can improve alertness and cognition. Exposure to daytime light, however, has yielded less conclusive results. In addition to direct effects, daytime light may also mitigate the impact of nocturnal light exposure on alertness. To examine the impact of daytime lighting on daytime cognitive performance, and evening alertness, we studied nine healthy individuals using a within subject crossover design. On four visits, participants were exposed to one of four lighting conditions for 10 h (dim fluorescent, room fluorescent, broad-spectrum LED, standard white LED; the latter three conditions were matched for 100 lx) followed by an exposure to bright evening light. Cognitive performance, subjective and objective measures of alertness were regularly obtained. While daytime alertness was not impacted by light exposure, the broad-spectrum LED light improved several aspects of daytime cognition. The impact of evening light on alertness was not mitigated by the pre-exposure to different daytime lighting conditions. Results suggest that daytime exposure to white light with high melanopic efficacy has the potential to improve daytime cognitive function and that such improvements are likely to be direct rather than a consequence of light-induced changes in alertness.
Collapse
Affiliation(s)
- Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America
| | - Daniel S Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America; Department of Psychology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, United States of America.
| |
Collapse
|
118
|
Qian J, Morris CJ, Phillips AJK, Li P, Rahman SA, Wang W, Hu K, Arendt J, Czeisler CA, Scheer FAJL. Unanticipated daytime melatonin secretion on a simulated night shift schedule generates a distinctive 24-h melatonin rhythm with antiphasic daytime and nighttime peaks. J Pineal Res 2022; 72:e12791. [PMID: 35133678 PMCID: PMC8930611 DOI: 10.1111/jpi.12791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.
Collapse
Affiliation(s)
- Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Christopher J Morris
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew JK Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peng Li
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Kun Hu
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Josephine Arendt
- School of Biological Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Frank AJL Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
119
|
Novak JR, Gillis BT. A primer on sleep for MFTs: Implications and practical considerations. JOURNAL OF MARITAL AND FAMILY THERAPY 2022; 48:543-559. [PMID: 33982307 DOI: 10.1111/jmft.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Despite many marriage and family therapists (MFTs) utilizing the Biopsychosocial-Spiritual (BPSS) framework in assessment and treatment, there is still a lack of education on sleep and the implications for mental, emotional, and relational health. Newer research within many fields highlights the far-reaching spillover effects of short or poor-quality sleep that can affect our clients. MFTs need to know how to assess, how to provide proper psychoeducation, how to apply this knowledge in clinical settings, and how to collaborate with other healthcare providers. As such, the purpose of this article is threefold: (a) review the biopsychosocial-spiritual importance of sleep; (b) equip MFTs with information on sleep assessment, how to identify situations for referral, and how to provide psychoeducation on sleep hygiene; and (c) review important considerations for research and practice for MFTs.
Collapse
Affiliation(s)
- Joshua R Novak
- Department of Human Development and Family Science, Auburn University, Auburn, AL, USA
| | - Brian T Gillis
- Department of Human Development and Family Science, Auburn University, Auburn, AL, USA
| |
Collapse
|
120
|
Mason IC, Grimaldi D, Reid KJ, Warlick CD, Malkani RG, Abbott SM, Zee PC. Light exposure during sleep impairs cardiometabolic function. Proc Natl Acad Sci U S A 2022; 119:e2113290119. [PMID: 35286195 PMCID: PMC8944904 DOI: 10.1073/pnas.2113290119] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
SignificanceAmbient nighttime light exposure is implicated as a risk factor for adverse health outcomes, including cardiometabolic disease. However, the effects of nighttime light exposure during sleep on cardiometabolic outcomes and the related mechanisms are unclear. This laboratory study shows that, in healthy adults, one night of moderate (100 lx) light exposure during sleep increases nighttime heart rate, decreases heart rate variability (higher sympathovagal balance), and increases next-morning insulin resistance when compared to sleep in a dimly lit (<3 lx) environment. Moreover, a positive relationship between higher sympathovagal balance and insulin levels suggests that sympathetic activation may play a role in the observed light-induced changes in insulin sensitivity.
Collapse
Affiliation(s)
- Ivy C. Mason
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | - Daniela Grimaldi
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kathryn J. Reid
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chloe D. Warlick
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Roneil G. Malkani
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sabra M. Abbott
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Phyllis C. Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
121
|
Xie Y, Jin Z, Huang H, Li S, Dong G, Liu Y, Chen G, Guo Y. Outdoor light at night and autism spectrum disorder in Shanghai, China: A matched case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152340. [PMID: 34914994 DOI: 10.1016/j.scitotenv.2021.152340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several environmental factors have been identified to be associated with autism spectrum disorder (ASD) over the past decades. However, evidence is limited for the effect of exposure to outdoor light at night (LAN) on ASD in China and even elsewhere in the world. METHODS Participants in this study were from a multi-stage sampling survey on ASD conducted between June 2014 and October 2014 among children aged 3-12 years in Shanghai, China. All participants underwent a two-stage screening of ASD via questionnaire, and then, suspected cases were finally diagnosed by clinical examination. For data analyses, each ASD case was randomly matched with 10 healthy controls by age and sex. The LAN data were extracted from the stable lights product of the US Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) according to geolocation information of residential addresses. Mean levels of exposure to LAN during the 3 years after birth and 1 year before birth were calculated. We used conditional logistic regression models to examine the association between LAN and ASD. RESULTS We investigated 84,934 children from 96 kindergartens, 55 primary schools, and 28 special education schools, and 203 children were diagnosed as ASD cases. A total of 1727 children (157 ASD cases and 1570 healthy controls) were included in the final analyses. Brighter LAN exposures after and before birth were significantly associated with higher risk of ASD. After adjusting for potential covariates, adjusted odd ratios and 95% confidence intervals associated with per unit increase in LAN were 1.066 (1.027, 1.107) during the 3 years after birth and 1.046 (1.018, 1.075) during the 1 year before birth. CONCLUSIONS Results of our study concluded brighter LAN exposure was significantly associated with higher risk of ASD among Chinese children, which suggested that outdoor LAN could be a potential risk factor of ASD.
Collapse
Affiliation(s)
- Yinyu Xie
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhijuan Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Hong Huang
- Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
122
|
Joyce DS, Spitschan M, Zeitzer JM. Duration invariance and intensity dependence of the human circadian system phase shifting response to brief light flashes. Proc Biol Sci 2022; 289:20211943. [PMID: 35259981 PMCID: PMC8905166 DOI: 10.1098/rspb.2021.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
The melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are characterized by a delayed off-time following the cessation of light stimulation. Here, we exploited this unusual physiologic property to characterize the exquisite sensitivity of the human circadian system to flashed light. In a 34 h in-laboratory between-subjects design, we examined phase shifting in response to variable-intensity (3-9500 photopic lux) flashes at fixed duration (2 ms; n = 28 participants) and variable-duration (10 µs-10 s) flashes at fixed intensity (2000 photopic lux; n = 31 participants). Acute melatonin suppression, objective alertness and subjective sleepiness during the flash sequence were also assessed. We find a dose-response relationship between flash intensity and circadian phase shift, with an indication of a possible threshold-like behaviour. We find a slight parametric relationship between flash duration and circadian phase shift. Consistent with prior studies, we observe no dose-response relationship to either flash intensity or duration and the acute impact of light on melatonin suppression, objective alertness or subjective sleepiness. Our findings are consistent with circadian responses to a sequence of flashes being mediated by rod or cone photoreceptors via ipRGC integration.
Collapse
Affiliation(s)
- Daniel S. Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychology, University of Nevada Reno, Reno, NV, USA
| | - Manuel Spitschan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Jamie M. Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
123
|
Mylona I, Floros GD. Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice. J Clin Med 2022; 11:jcm11051380. [PMID: 35268469 PMCID: PMC8911317 DOI: 10.3390/jcm11051380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Recent results from a small number of clinical studies have resulted in the suggestion that the process of blocking the transmission of shorter-wavelength light (‘blue light’ with a wave length of 450 nm to 470 nm) may have a beneficial role in the treatment of bipolar disorder. This critical review will appraise the quality of evidence so far as to these claims, assess the neurobiology that could be implicated in the underlying processes while introducing a common set of research criteria for the field.
Collapse
Affiliation(s)
- Ioanna Mylona
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Georgios D. Floros
- 2nd Department of Psychiatry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-69-4432-4565
| |
Collapse
|
124
|
Hartstein LE, Behn CD, Akacem LD, Stack N, Wright KP, LeBourgeois MK. High sensitivity of melatonin suppression response to evening light in preschool-aged children. J Pineal Res 2022; 72:e12780. [PMID: 34997782 PMCID: PMC8933063 DOI: 10.1111/jpi.12780] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Light at night in adults suppresses melatonin in a nonlinear intensity-dependent manner. In children, bright light of a single intensity before bedtime has a robust melatonin suppressing effect. To our knowledge, whether evening light of different intensities is related to melatonin suppression in young children is unknown. Healthy, good-sleeping children (n = 36; 3.0-4.9 years; 39% male) maintained a stable sleep schedule for 7 days followed by a 29.5-h in-home dim-light circadian assessment (~1.5 lux). On the final night of the protocol, children received a 1-h light exposure (randomized to one of 15 light levels, ranging 5-5000 lux, with ≥2 participants assigned to each light level) in the hour before habitual bedtime. Salivary melatonin was measured to calculate the magnitude of melatonin suppression during light exposure compared with baseline levels from the previous evening, as well as the degree of melatonin recovery 50 min after the end of light exposure. Melatonin levels were suppressed between 69.4% and 98.7% (M = 85.4 ± 7.2%) during light exposure across the full range of intensities examined. Overall, we did not observe a light intensity-dependent melatonin suppression response; however, children exposed to the lowest quartile of light intensities (5-40 lux) had an average melatonin suppression (77.5 ± 7.0%) which was significantly lower than that observed at each of the three higher quartiles of light intensities (86.4 ± 5.6%, 89.2 ± 6.3%, and 87.1 ± 5.0%, respectively). We further found that melatonin levels remained below 50% baseline for at least 50 min after the end of light exposure for the majority (62%) of participants, and recovery was not influenced by light intensity. These findings indicate that preschool-aged children are highly sensitive to light exposure in the hour before bedtime and suggest the lighting environment may play a crucial role in the development and the maintenance of behavioral sleep problems through impacts on the circadian timing system.
Collapse
Affiliation(s)
- Lauren E. Hartstein
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
- Division of Endocrinology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Lameese D. Akacem
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Nora Stack
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | |
Collapse
|
125
|
Brown TM, Brainard GC, Cajochen C, Czeisler CA, Hanifin JP, Lockley SW, Lucas RJ, Münch M, O’Hagan JB, Peirson SN, Price LLA, Roenneberg T, Schlangen LJM, Skene DJ, Spitschan M, Vetter C, Zee PC, Wright KP. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol 2022; 20:e3001571. [PMID: 35298459 PMCID: PMC8929548 DOI: 10.1371/journal.pbio.3001571] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.
Collapse
Affiliation(s)
- Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christian Cajochen
- Centre for Chronobiology, University Psychiatric Clinics Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John P. Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mirjam Münch
- Centre for Chronobiology, University Psychiatric Clinics Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - John B. O’Hagan
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Luke L. A. Price
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Till Roenneberg
- Institutes for Medical Psychology and Occupational, Social and Environmental Medicine, Medical Faculty, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Luc J. M. Schlangen
- Human Technology Interaction Group, Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
- Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Céline Vetter
- Circadian and Sleep Epidemiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Phyllis C. Zee
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kenneth P. Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
126
|
Giménez MC, Stefani O, Cajochen C, Lang D, Deuring G, Schlangen LJM. Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure. J Pineal Res 2022; 72:e12786. [PMID: 34981572 PMCID: PMC9285453 DOI: 10.1111/jpi.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Light-induced melatonin suppression data from 29 peer-reviewed publications was analysed by means of a machine-learning approach to establish which light exposure characteristics (ie photopic illuminance, five α-opic equivalent daylight illuminances [EDIs], duration and timing of the light exposure, and the dichotomous variables pharmacological pupil dilation and narrowband light source) are the main determinants of melatonin suppression. Melatonin suppression in the data set was dominated by four light exposure characteristics: (1) melanopic EDI, (2) light exposure duration, (3) pupil dilation and (4) S-cone-opic EDI. A logistic model was used to evaluate the influence of each of these parameters on the melatonin suppression response. The final logistic model was only based on the first three parameters, since melanopic EDI was the best single (photoreceptor) predictor that was only outperformed by S-cone-opic EDI for (photopic) illuminances below 21 lux. This confirms and extends findings on the importance of the metric melanopic EDI for predicting biological effects of light in integrative (human-centric) lighting applications. The model provides initial and general guidance to lighting practitioners on how to combine spectrum, duration and amount of light exposure when controlling non-visual responses to light, especially melatonin suppression. The model is a starting tool for developing hypotheses on photoreceptors' contributions to light's non-visual responses and helps identifying areas where more data are needed, like on the S-cone contribution at low illuminances.
Collapse
Affiliation(s)
- Marina C. Giménez
- Chronobiology UnitGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Oliver Stefani
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | - Christian Cajochen
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | | | - Gunnar Deuring
- Forensic DepartmentUniversity Psychiatric Clinics BaselBaselSwitzerland
| | - Luc J. M. Schlangen
- Department of Industrial Engineering and Innovation SciencesHuman‐Technology Interaction Group and Intelligent Lighting InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
127
|
Xu YX, Yu Y, Huang Y, Wan YH, Su PY, Tao FB, Sun Y. Exposure to bedroom light pollution and cardiometabolic risk: A cohort study from Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118628. [PMID: 34883146 DOI: 10.1016/j.envpol.2021.118628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Indoor light environment has altered dramatically and exposure to light at night (LAN) potential leads to the progression of cardiometabolic conditions. However, few studies have investigated the effect of bedroom LAN exposure on cardiometabolic risk. To estimate the associations between multi-period bedroom LAN exposure with cardiometabolic risk among Chinese young adults. We objectively measured multi-period bedroom LAN intensity using portable illuminance meter in an ongoing prospective cohort (n = 484). At one-year follow-up, 230 young adults provided fasting blood samples for quantification of cardiometabolic parameters. Cardiometabolic (CM)-risk score was derived as the sum of standardized sex-specific z-scores for waist circumference (WC), mean arterial pressure (MAP), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and homeostasis model assessment for insulin resistance (HOMA-IR), with HDL-C multiplied by - 1. Multivariate and univariable linear regression models were used to examine associations of multi-period bedroom LAN exposure with cardiometabolic risk. Exposure to higher bedroom LAN intensity is associated with 1.47-unit increase in CM-risk score (95% CI: 0.69-2.25; P < 0.001). Besides, post-bedtime light exposure was associated with elevated fasting insulin (PBL-1h: β = 0.06, 95% CI: 0.01-0.10; PBL-4h: β = 0.33, 95% CI: 0.19-0.47) and HOMA-IR (PBL-1h: β = 0.013, 95% CI: 0-0.03; PBL-4h: β = 0.07, 95% CI: 0.04-0.11) while pre-awake light exposure was associated with elevated total cholesterol (PAL-1h: β = 0.03, 95% CI: 0.02-0.04; PAL-2h: β = 0.02, 95% CI: 0.01-0.03), triglyceride (PAL-1h: β = 0.015, 95% CI: 0.01-0.02; PAL-2h: β = 0.01, 95% CI: 0-0.02) and low-density lipoprotein cholesterol (PAL-1h: β = 0.02, 95% CI: 0.01-0.03; PAL-2h: β = 0.02, 95% CI: 0.01-0.03). Among young adults, bedroom LAN exposure was significantly associated with higher cardiometabolic risk. Furthermore, different periods of bedroom light exposure have time-dependent effect on cardiometabolic risk. Further research is needed to confirm our findings and to elucidate potential mechanisms.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
128
|
Hou D, Lin C, Lin Y. Diurnal Circadian Lighting Accumulation Model: A Predictor of the Human Circadian Phase Shift Phenotype. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:50-63. [PMID: 36939753 PMCID: PMC9590583 DOI: 10.1007/s43657-021-00039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/15/2022]
Abstract
Light is an important external factor that affects human circadian rhythms. This study aimed to explore the effects of different dimensions of diurnal light exposure on the physiological circadian phase shift (CPS) of the human body. A strict light exposure experiment with different timing schemes (8:00-12:00, 13:00-17:00, 18:00-22:00), durations (4 h, 8 h) and effective circadian stimulus levels (circadian stimulus: 0.35, 0.55) was performed in an enclosed laboratory. Fourteen participants, including seven males and seven females, with a mean age of 24.29 ± 2.43 (mean ± standard deviation), participated in this experiment and experienced all six lighting schemes. The results showed that both time factor (F 3,40 = 29.079, p < 0.001, the power of the sample size = 0.98) and circadian stimulus levels (T 20 = - 2.415, p = 0.025, the power of sample size = 0.76) significantly affect the CPS. On this basis, a diurnal circadian lighting accumulation (DCLA)-CPS model was proposed in the form of the Boltzmann function, and was validated by experimental data with high correlation (R 2 = 0.9320, RSS = 0.1184), which provides strong support for rationally arranging the light level at different times of the day.
Collapse
Affiliation(s)
- Dandan Hou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438 China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| | - Caixin Lin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438 China
| | - Yandan Lin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| |
Collapse
|
129
|
Processing RGB Color Sensors for Measuring the Circadian Stimulus of Artificial and Daylight Light Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The three main tasks of modern lighting design are to support the visual performance, satisfy color emotion (color quality), and promote positive non-visual outcomes. In view of large-scale applications, the use of simple and inexpensive RGB color sensors to monitor related visual and non-visual illumination parameters seems to be of great promise for the future development of human-centered lighting control systems. In this context, the present work proposes a new methodology to assess the circadian effectiveness of the prevalent lighting conditions for daylight and artificial light sources in terms of the physiologically relevant circadian stimulus (CS) metric using such color sensors. In the case of daylight, the raw sensor readouts were processed in such a way that the CIE daylight model can be applied as an intermediate step to estimate its spectral composition, from which CS can eventually be calculated straightforwardly. Maximal CS prediction errors of less than 0.0025 were observed when tested on real data. For artificial light sources, on the other hand, the CS approximation method of Truong et al. was applied to estimate its circadian effectiveness from the sensor readouts. In this case, a maximal CS prediction error of 0.028 must be reported, which is considerably larger compared to daylight, but still in an acceptable range for typical indoor lighting applications. The use of RGB color sensors is thus shown to be suitable for estimating the circadian effectiveness of both types of illumination with sufficient accuracy for practical applications.
Collapse
|
130
|
Wong PM, Barker D, Roane BM, Van Reen E, Carskadon MA. Sleep regularity and body mass index: findings from a prospective study of first-year college students. SLEEP ADVANCES 2022; 3:zpac004. [PMID: 35187491 PMCID: PMC8851359 DOI: 10.1093/sleepadvances/zpac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Study Objectives
Using data from a large, prospective study of sleep in first-year college students, we examined whether students’ sleep regularity is associated with body mass index (BMI) and BMI change (∆BMI) during their first college semester. In a subset of participants, we also tested whether dim light melatonin onset (DLMO) phase and DLMO-bedtime phase angle are associated with BMI and ∆BMI.
Methods
Analyses included data from 581 students (mean age = 18.7 ± 0.5 years; 58% female; 48% non-white) who had their height and weight assessed at the start of classes (T1) and end of 9 weeks. Participants completed online daily sleep diaries from which total sleep time (TST) and the sleep regularity index (SRI) were calculated. Among participants who completed a DLMO protocol (n = 161), circadian phase was quantified by DLMO and circadian alignment by DLMO-bedtime phase angle. Data were analyzed with linear regressions that controlled for sex and average TST.
Results
Average SRI was 74.1 ± 8.7 (range: 25.7; 91.6). Average BMI at T1 was 22.0 ± 3.5 and participants gained 1.8 ± 2.4 kg (range: −7.2; 11.4); 39% gained 2–5 kg, 8% gained >5 kg. Lower SRI was associated with greater BMI at T1 (B = −0.06 [95% CI: −0.09; −0.02], p = 0.001) but not with ∆BMI (p = 0.062). Average TST was not significantly associated with BMI or ∆BMI, nor were circadian phase and alignment in the subsample (p’s > 0.05).
Conclusions
Sleep regularity is an understudied but relevant sleep dimension associated with BMI during young adulthood. Our findings warrant future work to examine longer-term associations between sleep regularity and weight gain.
Collapse
Affiliation(s)
- Patricia M Wong
- Department of Psychiatry and Human Behavior, Alpert Warren Medical School of Brown University, Providence, RI 02903, USA
- Sleep for Science Research Laboratory of Brown University, Providence, RI 02903, USA
| | - David Barker
- Department of Psychiatry and Human Behavior, Alpert Warren Medical School of Brown University, Providence, RI 02903, USA
| | - Brandy M Roane
- Department of Psychiatry and Human Behavior, Alpert Warren Medical School of Brown University, Providence, RI 02903, USA
- Sleep for Science Research Laboratory of Brown University, Providence, RI 02903, USA
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Eliza Van Reen
- Department of Psychiatry and Human Behavior, Alpert Warren Medical School of Brown University, Providence, RI 02903, USA
- Sleep for Science Research Laboratory of Brown University, Providence, RI 02903, USA
- Circadian Positioning Systems, Inc., Providence, RI 02818, USA
| | - Mary A Carskadon
- Department of Psychiatry and Human Behavior, Alpert Warren Medical School of Brown University, Providence, RI 02903, USA
- Sleep for Science Research Laboratory of Brown University, Providence, RI 02903, USA
- E.P. Bradley Hospital, Sleep Research Laboratory, Providence, RI 02906, USA
| |
Collapse
|
131
|
Sleep Architecture in Response to a Late Evening Competition in Team-Sport Athletes. Int J Sports Physiol Perform 2022; 17:569-575. [DOI: 10.1123/ijspp.2021-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
Purpose: The aim of this study was to assess the effect of a late evening competition on sleep characteristics and perceived recovery in team-sport players using a validated self-applicable and portable polysomnographic device. Methods: Sixteen team-sport players (age: 25.4 [1.4] y; body mass index: 23.6 [0.5] kg/m2) completed the study. Objective and subjective sleep data were collected for 4 consecutive nights: 2 nights before (PRE2 and PRE1) and the 2 nights after an evening match (POST1), performed between 6:00 PM and 9:00 PM. Total quality of recovery values were also collected in the morning. Results: A significantly delayed bedtime (P < .0001; , large) was observed in the first night after the competition (2 h 29 min [1 h 15 min]) compared both to PRE2 (+88 min; P < .0001), PRE1 (+98 min; P < .0001), and POST1 (+100 min; P < .0001), and similar results were observed for wake-up time (P = .033; , large): Players woke up significantly later in evening match (9 h 20 min [1 h 55 min]) compared with PRE2 (+85 min; P = .050) and POST1 (+85 min; P = .049). Conversely, total sleep time; sleep efficiency; sleep onset latency; wake after sleep onset; cortical arousals; N1, N2, N3, and REM (rapid eye movement) percentages; total quality of recovery values; and scores of subjective sleep quality did not vary among the 4 study nights. Conclusions: Team-sport players had delayed bedtime and wake-up time following an evening competition; however, sleep quality, duration, and subjective scores of recovery were not affected by the evening match. The delayed wake-up time seems to protect athletes’ sleep efficiency/duration against the evening-match-induced delayed bedtime.
Collapse
|
132
|
Spitschan M, Santhi N. Individual differences and diversity in human physiological responses to light. EBioMedicine 2022; 75:103640. [PMID: 35027334 PMCID: PMC8808156 DOI: 10.1016/j.ebiom.2021.103640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Exposure to light affects our physiology and behaviour through a pathway connecting the retina to the circadian pacemaker in the hypothalamus - the suprachiasmatic nucleus (SCN). Recent research has identified significant individual differences in the non-visual effects of light,mediated by this pathway. Here, we discuss the fundamentals and individual differences in the non-visual effects of light. We propose a set of actions to improve our evidence database to be more diverse: understanding systematic bias in the evidence base, dedicated efforts to recruit more diverse participants, routine deposition and sharing of data, and development of data standards and reporting guidelines.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany; Department of Experimental Psychology, University of Oxford, United Kingdom.
| | - Nayantara Santhi
- Department of Psychology, Northumbria University, United Kingdom.
| |
Collapse
|
133
|
Guido ME, Marchese NA, Rios MN, Morera LP, Diaz NM, Garbarino-Pico E, Contin MA. Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol 2022; 42:59-83. [PMID: 33231827 PMCID: PMC11441211 DOI: 10.1007/s10571-020-00997-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| | - Natalia A Marchese
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Maximiliano N Rios
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Luis P Morera
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina
| | - Nicolás M Diaz
- Department of Ophthalmology, University of Washington School of Medicine, 750 Republican St., Campus, Box 358058, Seattle, WA, 98109, USA
| | - Eduardo Garbarino-Pico
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - María Ana Contin
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
134
|
Boivin DB, Boudreau P, Kosmadopoulos A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J Biol Rhythms 2021; 37:3-28. [PMID: 34969316 PMCID: PMC8832572 DOI: 10.1177/07487304211064218] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The various non-standard schedules required of shift workers force abrupt changes in the timing of sleep and light-dark exposure. These changes result in disturbances of the endogenous circadian system and its misalignment with the environment. Simulated night-shift experiments and field-based studies with shift workers both indicate that the circadian system is resistant to adaptation from a day- to a night-oriented schedule, as determined by a lack of substantial phase shifts over multiple days in centrally controlled rhythms, such as those of melatonin and cortisol. There is evidence that disruption of the circadian system caused by night-shift work results not only in a misalignment between the circadian system and the external light-dark cycle, but also in a state of internal desynchronization between various levels of the circadian system. This is the case between rhythms controlled by the central circadian pacemaker and clock genes expression in tissues such as peripheral blood mononuclear cells, hair follicle cells, and oral mucosa cells. The disruptive effects of atypical work schedules extend beyond the expression profile of canonical circadian clock genes and affects other transcripts of the human genome. In general, after several days of living at night, most rhythmic transcripts in the human genome remain adjusted to a day-oriented schedule, with dampened group amplitudes. In contrast to circadian clock genes and rhythmic transcripts, metabolomics studies revealed that most metabolites shift by several hours when working nights, thus leading to their misalignment with the circadian system. Altogether, these circadian and sleep-wake disturbances emphasize the all-encompassing impact of night-shift work, and can contribute to the increased risk of various medical conditions. Here, we review the latest scientific evidence regarding the effects of atypical work schedules on the circadian system, sleep and alertness of shift-working populations, and discuss their potential clinical impacts.
Collapse
Affiliation(s)
- Diane B Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anastasi Kosmadopoulos
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
135
|
Brown MR, Sen SK, Mazzone A, Her TK, Xiong Y, Lee JH, Javeed N, Colwell CS, Rakshit K, LeBrasseur NK, Gaspar-Maia A, Ordog T, Matveyenko AV. Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of β cell function. SCIENCE ADVANCES 2021; 7:eabg6856. [PMID: 34910509 PMCID: PMC8673777 DOI: 10.1126/sciadv.abg6856] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/28/2021] [Indexed: 05/30/2023]
Abstract
Circadian rhythm disruption (CD) is associated with impaired glucose homeostasis and type 2 diabetes mellitus (T2DM). While the link between CD and T2DM remains unclear, there is accumulating evidence that disruption of fasting/feeding cycles mediates metabolic dysfunction. Here, we used an approach encompassing analysis of behavioral, physiological, transcriptomic, and epigenomic effects of CD and consequences of restoring fasting/feeding cycles through time-restricted feeding (tRF) in mice. Results show that CD perturbs glucose homeostasis through disruption of pancreatic β cell function and loss of circadian transcriptional and epigenetic identity. In contrast, restoration of fasting/feeding cycle prevented CD-mediated dysfunction by reestablishing circadian regulation of glucose tolerance, β cell function, transcriptional profile, and reestablishment of proline and acidic amino acid–rich basic leucine zipper (PAR bZIP) transcription factor DBP expression/activity. This study provides mechanistic insights into circadian regulation of β cell function and corresponding beneficial effects of tRF in prevention of T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Satish K. Sen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Amelia Mazzone
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tracy K. Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yuning Xiong
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Alexandre Gaspar-Maia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
136
|
Czarnecka K, Błażejczyk K, Morita T. Characteristics of light pollution - A case study of Warsaw (Poland) and Fukuoka (Japan). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118113. [PMID: 34537595 DOI: 10.1016/j.envpol.2021.118113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Artificial light has been present in human life for decades but our knowledge of its effects is still insufficient. Lighting lets us be active longer, gives us a sense of security and provides aesthetic experiences. Despite all of these advantages, in urban areas artificial light also has a negative effects on the environment and human life. Although light pollution is one of the most common forms of anthropogenic environmental change, this phenomenon remains insufficiently investigated. The present work thus focuses on night sky brightness and artificial factors impacting the level of the phenomenon using Warsaw (Poland) and Fukuoka (Japan) as an example. The basis of the study is the new World Atlas of Artificial Night Sky Brightness. Moreover, we used image data from the Visible Infrared Imaging Radiometer Suite Day/Night Band and data from field research to analyse the primary artificial light characteristics in the two cities: illumination, colour temperature, peak wavelength, dominant wavelength, stimulation of photoreceptors, design of lighting fixtures and radiance. The results indicate that Warsaw (area: 517.2 km2; population: 1 777 972) is characterized by higher light pollution than Fukuoka (area: 343.5 km2; population: 1 554 229). Skyglow is primarily influenced by the number of light sources; however, local differentiation of the phenomenon depends on the spectral characteristics and design of lighting fixtures. Moreover, environmental features may affect light pollution through scattering, reflection and absorption. Outdoor lighting in Warsaw was characterized by a higher value of light illumination and greater stimulation of photoreceptors sensitive to long and medium waves. However, the lighting infrastructure in Fukuoka was also unsuitable, as it was characterised by high values of colour temperature and stimulation of photoreceptors sensitive to short waves and ganglion cells, which may be detrimental to the human body.
Collapse
Affiliation(s)
- Kaja Czarnecka
- Polish Academy of Sciences, Institute of Geography and Spatial Organization, Climate Impacts Laboratory, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Krzysztof Błażejczyk
- Polish Academy of Sciences, Institute of Geography and Spatial Organization, Climate Impacts Laboratory, Twarda 51/55, 00-818, Warsaw, Poland
| | - Takeshi Morita
- Professor emeritus, Fukuoka Women's University, 1 Chome-1-1 Kasumigaoka, Higashi Ward, 813-8529, Fukuoka, Japan
| |
Collapse
|
137
|
Choi Y, Nakamura Y, Akazawa N, Park I, Kwak HB, Tokuyama K, Maeda S. Effects of nocturnal light exposure on circadian rhythm and energy metabolism in healthy adults: A randomized crossover trial. Chronobiol Int 2021; 39:602-612. [PMID: 34903129 DOI: 10.1080/07420528.2021.2014517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to continuous light at night, including night-shift work or a nocturnal lifestyle, is emerging as a novel deleterious factor for weight gain and obesity. Here, we examined whether a single bout of bright light (BL) exposure at night affects energy metabolism via changes in circadian rhythm and nocturnal melatonin production. Ten healthy young men were randomized to a two-way crossover experimental design protocol: control (< 50 lux) and BL (approximately 10000 lux) conditions, with at least seven days of interval. The participants were exposed to each condition for 3 h (21:00-24:00) before sleep (0 lux, 00:00-07:00) in a room-type metabolic chamber. On each experimental night (21:00-07:00), energy expenditure, respiratory quotient (RQ), and substrate oxidation were measured to determine the energy metabolism. BL exposure prior to bedtime altered biological rhythms, disrupted the nocturnal decline in body temperature, and suppressed the melatonin level before sleeping, resulting in an increase in sleep latency. Indirect calorimetry data revealed that BL exposure significantly decreased the fat oxidation and increased the RQ, an indicator of the carbohydrate-to-fat oxidation ratio, throughout the whole period (light exposure and sleep). We revealed that acute BL exposure prior to bedtime exacerbated circadian rhythms and substrate oxidations, suggesting that chronic BL exposure at night may lead to obesity risk due to disturbances in circadian rhythms and macronutrient metabolism.
Collapse
Affiliation(s)
- Youngju Choi
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,Institute of Sports & Arts Convergence, Inha University, Incheon, South Korea
| | - Yuki Nakamura
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Akazawa
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Insung Park
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hyo-Bum Kwak
- Institute of Sports & Arts Convergence, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Kumpei Tokuyama
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
138
|
Amdisen L, Daugaard S, Vestergaard JM, Vested A, Bonde JP, Vistisen HT, Christoffersen J, Garde AH, Hansen ÅM, Markvart J, Schlünssen V, Kolstad HA. A longitudinal study of morning, evening, and night light intensities and nocturnal sleep quality in a working population. Chronobiol Int 2021; 39:579-589. [PMID: 34903140 DOI: 10.1080/07420528.2021.2010741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We aimed to investigate whether higher light intensity in the morning is associated with better nocturnal sleep quality and whether higher light intensities in the evening or night have the opposite effect. Light intensity was recorded for 7 consecutive days across the year among 317 indoor and outdoor daytime workers in Denmark (55-56° N) equipped with a personal light recorder. Participants reported sleep quality after each nocturnal sleep. Sleep quality was measured using three parameters; disturbed sleep index, awakening index, and sleep onset latency. Associations between increasing light intensities and sleep quality were analyzed using mixed effects models with participant identity as a random effect. Overall, neither white nor blue light intensities during morning, evening, or night were associated with sleep quality, awakening, or sleep onset latency of the subsequent nocturnal sleep. However, secondary analyses suggested that artificial light during the morning and day contrary to solar light may increase vulnerability to evening light exposure. Altogether, we were not able to confirm that higher morning light intensity significantly improves self-reported sleep quality or that higher evening or night light intensities impair self-reported sleep quality at exposure levels encountered during daily life in a working population in Denmark. This suggests that light intensities alone are not important for sleep quality to a degree that it is distinguishable from other important parameters in daily life settings.
Collapse
Affiliation(s)
- Lau Amdisen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Stine Daugaard
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Medom Vestergaard
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark.,Department of Occupational Medicine, Danish Ramazzini Centre, University Research Clinic, Herning, Denmark
| | - Anne Vested
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Department of Public Health, Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Helene Tilma Vistisen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Christoffersen
- Knowledge Centre for Daylight, Energy and Indoor Climate, Velux A/s, Velux Group, Hørsholm, Denmark
| | - Anne Helene Garde
- Danish Ministry of Employment, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Åse Marie Hansen
- Department of Public Health, Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Danish Ministry of Employment, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jakob Markvart
- Department of the Built Environment, Division of Energy Efficiency, Indoor Climate and Sustainability of Buildings, Aalborg University, Copenhagen, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
139
|
Lee SI, Nishi T, Takahashi M, Higuchi S. Effects of 2-hour nighttime nap on melatonin concentration and alertness during 12-hour simulated night work. INDUSTRIAL HEALTH 2021; 59:393-402. [PMID: 34588379 PMCID: PMC8655743 DOI: 10.2486/indhealth.2020-0245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
A nighttime nap is expected to mitigate melatonin suppression during night work by blocking light input to the retina, but it is unclear. In the present study, we investigated the effects of a nap break on melatonin level, subjective sleepiness, and vigilance performance during simulated night work. Eleven healthy young males (mean ± SD age: 22.2 ± 4.1 years) participated in counterbalanced crossover design experiments with two conditions (nap vs. no nap). The subjects performed 12-hour simulated night work from 21:00 to 09:00 h (illuminance: ~500 lx). Subjects with a nap condition took a nap for 2 hours in a dark room from 03:00, while subjects with a no nap condition continued the simulated night work. The results showed that immediately after the 2-h nap break, the melatonin level at 05:00 h temporarily recovered from light-induced melatonin suppression during the simulated night work but significantly suppressed again at 07:00 and 09:00 h. Subjective alertness and vigilance performance were impaired immediately after the nap break but subsequently enhanced. The results suggest that a single nap break for 2 hours could be a strategy to enhance alertness during the last part of night shift but inadequate for mitigating melatonin suppression.
Collapse
Affiliation(s)
- Sang-Il Lee
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Japan
| | - Takeshi Nishi
- Graduate School of Integrated Frontier Sciences, Kyushu University, Japan
| | | | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Japan
| |
Collapse
|
140
|
Designing Light for Night Shift Workers: Application of Nonvisual Lighting Design Principles in an Industrial Production Line. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronodisruption deteriorates the health and wellbeing of shift workers. Artificial light at night and the lack of light during the day are major contributors to chronodisruption and need to be optimized in shift work scenarios. Here, we present one solution for a lighting and automation system in an industrial production workplace. The setting is a rapidly rotating shift work environment with morning, evening, and night shifts. We describe a procedure to specify the new lighting through a software-agnostic nonvisual lighting simulation for artificial and daylighting scenarios. Through this process, a new luminaire is created, called Drosa, that allows for a large melanopic stimulus range between 412 and 73 lx melanopic equivalent daylight (D65) illuminance vertically at eye level, while maintaining a neutral white illuminance at task level between 1250 and 900 lx, respectively. This is possible through a combination of glare-free spotlights with adjustable areal wing lights. An individually programmed automation system controls the light dosage and timing during the day and night. The work is relevant for other shift work scenarios, where the presented example and the discussed rationale behind the automation might provide insights. The work is further relevant for other lighting scenarios beyond industrial shift work, as the nonvisual lighting simulation process can be adapted to any context.
Collapse
|
141
|
Huang Y, Mayer C, Cheng P, Siddula A, Burgess HJ, Drake C, Goldstein C, Walch O, Forger DB. Predicting circadian phase across populations: a comparison of mathematical models and wearable devices. Sleep 2021; 44:zsab126. [PMID: 34013347 PMCID: PMC8503830 DOI: 10.1093/sleep/zsab126] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
From smart work scheduling to optimal drug timing, there is enormous potential in translating circadian rhythms research results for precision medicine in the real world. However, the pursuit of such effort requires the ability to accurately estimate circadian phase outside of the laboratory. One approach is to predict circadian phase noninvasively using light and activity measurements and mathematical models of the human circadian clock. Most mathematical models take light as an input and predict the effect of light on the human circadian system. However, consumer-grade wearables that are already owned by millions of individuals record activity instead of light, which prompts an evaluation of the accuracy of predicting circadian phase using motion alone. Here, we evaluate the ability of four different models of the human circadian clock to estimate circadian phase from data acquired by wrist-worn wearable devices. Multiple datasets across populations with varying degrees of circadian disruption were used for generalizability. Though the models we test yield similar predictions, analysis of data from 27 shift workers with high levels of circadian disruption shows that activity, which is recorded in almost every wearable device, is better at predicting circadian phase than measured light levels from wrist-worn devices when processed by mathematical models. In those living under normal living conditions, circadian phase can typically be predicted to within 1 h, even with data from a widely available commercial device (the Apple Watch). These results show that circadian phase can be predicted using existing data passively collected by millions of individuals with comparable accuracy to much more invasive and expensive methods.
Collapse
Affiliation(s)
- Yitong Huang
- Department of Mathematics, Dartmouth College, Hanover, NH, USA
| | - Caleb Mayer
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | | | - Alankrita Siddula
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Cathy Goldstein
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia Walch
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
142
|
Vellei M, Chinazzo G, Zitting KM, Hubbard J. Human thermal perception and time of day: A review. Temperature (Austin) 2021; 8:320-341. [PMID: 34901316 PMCID: PMC8654484 DOI: 10.1080/23328940.2021.1976004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/01/2022] Open
Abstract
The circadian clock regulates diurnal variations in autonomic thermoregulatory processes such as core body temperature in humans. Thus, we might expect that similar daily fluctuations also characterize human thermal perception, the ultimate role of which is to drive thermoregulatory behaviors. In this paper, we explore this question by reviewing experimental and observational thermal comfort investigations which include the "time of day" variable. We found only 21 studies considering this factor, and not always as their primary analysis. Due to the paucity of studies and the lack of a specific focus on time-of-day effects, the results are difficult to compare and appear on the whole contradictory. However, we observe a tendency for individuals to prefer higher ambient temperatures in the early evening as compared to the rest of the day, a result in line with the physiological decrease of the core body temperature over the evening. By drawing from literature on the physiology of thermoregulation and circadian rhythms, we outline some potential explanations for the inconsistencies observed in the findings, including a potential major bias due to the intensity and spectrum of the selected light conditions, and provide recommendations for conducting future target studies in highly-controlled laboratory conditions. Such studies are strongly encouraged as confirmed variations of human thermal perceptions over the day would have enormous impact on building operations, thus on energy consumption and occupant comfort. List of abbreviations: TSV: Thermal Sensation Vote; TCV: Thermal Comfort Vote; Tpref: Preferred Temperature; TA: Indoor Air Temperature; RH: Indoor Relative Humidity; Tskin: Skin Temperature; Tty: Tympanic Temperature; Tre: Rectal Temperature; Toral: Oral Temperature.
Collapse
Affiliation(s)
- Marika Vellei
- Laboratory of Engineering Sciences for the Environment (LaSIE) (Umr Cnrs 7356), La Rochelle University, La Rochelle, France
| | - Giorgia Chinazzo
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Ma, USA
| | - Jeffrey Hubbard
- Laboratory of Integrated Performance in Design (Lipid), School of Architecture, Civil and Environmental Engineering (Enac), École Polytechnique Fédérale De Lausanne (Epfl), Lausanne, Switzerland
| |
Collapse
|
143
|
Geneva II, Javaid W. Disruption of the Body Temperature Circadian Rhythm in Hospitalized Patients. Am J Med Sci 2021; 362:578-585. [PMID: 34551353 DOI: 10.1016/j.amjms.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/16/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dysregulation of the circadian rhythm is linked to immune response deficiencies. Diurnal temperature variation-a surrogate for the circadian rhythm, exists in humans, yet its preservation during illness is not well understood. MATERIALS AND METHODS Temperatures measured within one-half hour of 8 am, 12 pm, 4 pm, 8 pm, 12 am, and 4 am from 16,245 hospitalized patients were statistically analyzed. RESULTS Although we found a diurnal pattern when analyzing the ensemble of temperatures from all patients, stratified by measurement site, the trough-to-peak difference was only 0.2°F, while that for healthy volunteers had been in the 0.5°F to 1.9°F range. The peaks occurred at 8 pm for all patients, regardless of age or sex, which is similar to healthy people. However, the troughs were shifted to later times compared with the 6 am in healthy people-for young patients (age 20-30 years) the trough was at 8 am and for elderly patients (age 70-80 years), at 12 pm, again regardless of patients' sex. Analysis of individual patients showed that less than 20% of patients exhibited diurnal variation and among those showing variation, the trend was present only on the minority of hospitalization days. The presence or absence of an infectious process or fever did not influence the proportion of patients showing diurnal variation. CONCLUSIONS Hospitalization is associated with disruption in the circadian rhythm as reflected by patients' body temperature. Since abnormality in body temperature is known to affect patient outcomes, an understanding of the diurnal cycle during hospitalization is the first step towards devising approaches to re-establish the circadian rhythm.
Collapse
Affiliation(s)
- Ivayla I Geneva
- Division of Infectious Diseases, State University of New York Upstate Medical University, Syracuse, New York, USA.
| | - Waleed Javaid
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
144
|
Spitschan M. [(Intrinsically photosensitive retinal ganglion cells. The physiological non-visual effects of light)]. ZEITSCHRIFT FUR PRAKTISCHE AUGENHEILKUNDE & AUGENARZTLICHE FORTBILDUNG : ZPA 2021; 42:431-435. [PMID: 39669977 PMCID: PMC7617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In addition to enabling us to see, light fundamentally impacts on our physiology and behaviour through the non-visual pathways in the brain that control our circadian clock. These effects are largely mediated by the intrisically photosensitive retinal ganglion cells (ipRGCs) which express the short-wavelength-sensitive photopigment melanopsin. The non-visual effects of light and the underlying sensory and central mechanisms are an active and open area of investigation.
Collapse
|
145
|
Song Y, Lv X, Qin W, Dang W, Chen Z, Nie J, Liu B, Dong W. The Effect of Blue-enriched White Light on Cognitive Performances and Sleepiness of Simulated Shift Workers: A Randomized Controlled Trial. J Occup Environ Med 2021; 63:752-759. [PMID: 33901161 DOI: 10.1097/jom.0000000000002241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Shift work is associated with reduced performance and efficiency, the current study aimed at investigating whether blue-enriched white light could improve workers' performance. METHODS The study, which adopted a randomized controlled trial, was conducted among 48 simulated shift workers. The participants performed sustained attention task, working memory task, and sleepiness task during night shift work. The data was analyzed using two-way repeated measure ANOVA. RESULTS The results indicated that, compared to conventional light, participants' correct responses of the sustained attention significantly increased when they were exposed to blue-enriched white light, correspondingly, the commission errors and omission errors declined. Furthermore, the blue-enriched white light had a significant effect on the decrease of sleepiness. However, the working memory was not significantly affected. CONCLUSION Exposing to blue-enriched white light can improve sustained attention and reduce sleepiness.
Collapse
Affiliation(s)
- Yanping Song
- Peking University Sixth Hospital, Peking University, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health National Clinical Research Center for Mental Disorders, Haidian District, Beijing 100191, PR China (Song, Dang, Dong); National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Haidian District, Beijing 100191, PR China (Song, Dang, Dong); School of Public Health, Peking University, Haidian District, Beijing, 100191, PR China (Xinrui, Qin, Liu); School of Physics, Peking University, Haidian District, Beijing 100871, PR China (Chen, Nie)
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Spectral sensitivity of circadian phase resetting, melatonin suppression and acute alerting effects of intermittent light exposure. Biochem Pharmacol 2021; 191:114504. [DOI: 10.1016/j.bcp.2021.114504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
|
147
|
Gabinet NM, Shama H, Portnov BA. Using mobile phones as light at night and noise measurement instruments: a validation test in real world conditions. Chronobiol Int 2021; 39:26-44. [PMID: 34465262 DOI: 10.1080/07420528.2021.1964520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Exposure to noise from road traffic and industries is known to be linked to various health dysfunctions, including hypertension, cardiovascular diseases and hearing loss. Exposure to artificial light at night (ALAN) is also increasingly recognized as being associated with ecosystem damage and various illnesses, including cancers, excessive weight gain and sleep disorders. However, measuring and monitoring these environmental risk factors by professional equipment are laborious and expensive, which impede large-scale research and various citizen science initiatives. In this study, we test a possibility that reliable noise and ALAN exposure estimates can be gathered using smartphones (SPs) sensors. To verify this assumption, we develop a standardized testing protocol, and use Andro-Sensor app, installed on three different Samsung Galaxy SPs - S7, S20FE5G, and SM520F, - to perform measurements of ALAN and noise in real-world conditions while comparing these measurements with measurements performed by professional (type 2) equipment - SL814 for noise and LX-1330B for illumination. The analysis of 3450 measurements, performed in two different locations in Israel, reveals that the SPs measurements and measurements performed by control instruments correlate strongly for noise (r = 0.76-0.94) and are nearly identical for ALAN (r = 0.998-0.999). The association between the two types of measurements is also found to be close to linear, with the slope of the trend line being close to 45° for ALAN and varying between 30° and 45° for noise, depending on the SPs used. Our conclusion is that the level of accuracy of ALAN measurements by SPs is greater for ALAN than for noise, which can make SPs a useful tool for large-scale ALAN studies that do not require the accuracy of professional instruments.
Collapse
Affiliation(s)
- Nahum M Gabinet
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Haifa, Israel
| | - Hassan Shama
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Haifa, Israel
| | - Boris A Portnov
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
148
|
|
149
|
Bartholomew J, Gilligan C, Spence A. Contemporary Variables that Impact Sleep and Development in Female Adolescent Swimmers and Gymnasts. SPORTS MEDICINE - OPEN 2021; 7:57. [PMID: 34373962 PMCID: PMC8353044 DOI: 10.1186/s40798-021-00331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Abstract
The effects of sleep on elite athletes in late adolescence and early adulthood have been well documented in a myriad of sports. However, there is underrepresentation of pre-pubertal and young female adolescent athlete research between the ages of 11-17, and specifically female gymnast and swimmers. Neglecting to understand how high energy demand at a young age relates to sleep and restoration may lead to developmental ramifications for this group, as they display physiological dysfunctions like delayed puberty, amenorrhea and are at risk for the female athlete triad or components of the triad. This review aims to summarize the contemporary variables of blue light emitting screens, social media, and caffeine on quality and quantity of sleep in young athletes while identifying gaps in the literature on how these factors impact the target group of young female swimmers and gymnasts. The implications of this work include sleep hygiene recommendations for increasing duration and quality of sleep, as well as future research with respect to electronic device usage, social media participation, caffeine consumption, and sport engagement in female early adolescent athletes.
Collapse
Affiliation(s)
- Janine Bartholomew
- Department of Biology, Portage Learning, 2521 Darlington Road, Beaver Falls, PA, 15010, USA
| | - Carrie Gilligan
- Carlow University, 3333 Fifth Ave, Pittsburgh, PA, 15237, USA
| | - Ann Spence
- Department of Nursing, Carlow University, 3333 Fifth Ave, Pittsburgh, PA, 15237, USA.
| |
Collapse
|
150
|
Wang X, Hua D, Tang X, Li S, Sun R, Xie Z, Zhou Z, Zhao Y, Wang J, Li S, Luo A. The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders. Nat Sci Sleep 2021; 13:1395-1410. [PMID: 34393534 PMCID: PMC8354730 DOI: 10.2147/nss.s320745] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Postoperative neurocognitive disorder (PND) increases the length of hospital stay, mortality, and risk of long-term cognitive impairment. Perioperative sleep disturbance is prevalent and commonly ignored and may increase the risk of PND. However, the role of perioperative sleep disturbances in PND remains unclear. Nocturnal sleep plays an indispensable role in learning, memory, and maintenance of cerebral microenvironmental homeostasis. Hospitalized sleep disturbances also increase the incidence of postoperative delirium and cognitive dysfunction. This review summarizes the role of perioperative sleep disturbances in PND and elucidates the potential mechanisms underlying sleep-deprivation-mediated PND. Activated neuroinflammation and oxidative stress; impaired function of the blood-brain barrier and glymphatic pathway; decreased hippocampal brain-derived neurotrophic factor, adult neurogenesis, and sirtuin1 expression; and accumulated amyloid-beta proteins are associated with PND in individuals with perioperative sleep disorders. These findings suggest that the improvement of perioperative sleep might reduce the incidence of postoperative delirium and postoperative cognitive dysfunction. Future studies should further investigate the role of perioperative sleep disturbance in PND.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Jintao Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| |
Collapse
|