101
|
Abstract
Cell migration is a fundamental process that controls morphogenesis and inflammation. Its deregulation causes or is part of many diseases, including autoimmune syndromes, chronic inflammation, mental retardation, and cancer. Cell migration is an integral part of the cell biology, embryology, immunology, and neuroscience fields; as such, it has benefited from quantum leaps in molecular biology, biochemistry, and imaging techniques, and the emergence of the genomic and proteomic era. Combinations of these techniques have revealed new and exciting insights that explain how cells adhere and move, how the migration of multiple cells are coordinated and regulated, and how the cells interact with neighboring cells and/or react to changes in their microenvironment. This introduction provides a primer of the molecular and cellular insights, particularly the signaling networks, which control the migration of individual cells as well as collective migrations. The rest of the chapters are devoted to describe in detail some of the most salient technical advances that have illuminated the field of cell migration in recent years.
Collapse
|
102
|
Wei JH, Seemann J. Nakiterpiosin targets tubulin and triggers mitotic catastrophe in human cancer cells. Mol Cancer Ther 2010; 9:3375-85. [PMID: 21139045 DOI: 10.1158/1535-7163.mct-10-0305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agents that interfere with mitotic progression by perturbing microtubule dynamics are commonly used for cancer chemotherapy. Here, we identify nakiterpiosin as a novel antimitotic drug that targets microtubules. Nakiterpiosin induces mitotic arrest and triggers mitotic catastrophe in human cancer cells by impairing bipolar spindle assembly. At higher concentration, it alters the interphase microtubule network and suppresses microtubule dynamics. In the presence of nakiterpiosin, microtubules are no longer arranged in a centrosomal array and centrosome-mediated microtubule regrowth after cold depolymerization is inhibited. However, centrosome organization, the ultrastructure of Golgi stacks, and protein secretion are not affected, suggesting that the drug has minimal toxicity toward other cellular functions. Nakiterpiosin interacts directly with tubulin, inhibits microtubule polymerization in vitro, and decreases polymer mass in cells. Furthermore, it enhances tubulin acetylation and reduces viability of paclitaxel-resistant cancer cells. In conclusion, nakiterpiosin exerts antiproliferative activity by perturbing microtubule dynamics during mitosis that activates the spindle assembly checkpoint and triggers cell death. These findings suggest the potential use of nakiterpiosin as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
103
|
Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 2010; 20:R528-37. [PMID: 20620909 DOI: 10.1016/j.cub.2010.05.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microtubules are cytoskeletal elements that are essential for a large number of intracellular processes, including mitosis, cell differentiation and migration, and vesicle transport. In many cells, the microtubule network is organized in a radial manner, with one end of a microtubule (the minus end) embedded near the nucleus and the other end (the plus end) exploring cytoplasmic space, switching between episodes of growth and shrinkage. Mammalian plus-end-tracking proteins (+TIPs) localize to the ends of growing microtubules and regulate both the dynamic behavior of microtubules as well as the interactions of microtubules with other cellular components. Because of these crucial roles, +TIPs and the mechanisms underlying their association with microtubule ends have been intensively investigated. Results indicate that +TIPs reach microtubule ends by motor-mediated transport or diffusion. Individual +TIP molecules exchange rapidly on microtubule end-binding sites that are formed during microtubule polymerization and that have a slower turnover. Most +TIPs associate with the end-binding (EB) proteins, and appear to require these 'core' +TIPs for localization at microtubule ends. Accumulation of +TIPs may also involve structural features of the microtubule end and interactions with other +TIPs. This complexity makes it difficult to assign discrete roles to specific +TIPs. Given that +TIPs concentrate at microtubule ends and that each +TIP binds in a conformationally distinct manner, I propose that the ends of growing microtubules are 'nano-platforms' for productive interactions between selected proteins and that these interactions might persist and be functional elsewhere in the cytoplasm than at the microtubule end at which they originated.
Collapse
Affiliation(s)
- Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
104
|
Park EC. Identification of Binding Proteins inXenopus laevisby MALDI-TOF/TOF Mass Spectrometry. J Anal Sci Technol 2010. [DOI: 10.5355/jast.2010.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
105
|
Gupta T, Marlow FL, Ferriola D, Mackiewicz K, Dapprich J, Monos D, Mullins MC. Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 2010; 6:e1001073. [PMID: 20808893 PMCID: PMC2924321 DOI: 10.1371/journal.pgen.1001073] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 07/15/2010] [Indexed: 11/23/2022] Open
Abstract
Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg. How the axes of the embryo are established is an important question in developmental biology. In many organisms, the axes of the embryo are established during oogenesis through the generation of a polarized egg. Very little is known regarding the mechanisms of polarity establishment and maintenance in vertebrate oocytes and eggs. We have identified a zebrafish mutant called magellan, which displays a defect in egg polarity. The gene disrupted in the magellan mutant encodes the cytoskeletal linker protein microtubule actin crosslinking factor 1 (macf1). In vertebrates, it can take years to identify the molecular nature of a mutation. We used a new technique to identify the magellan mutation, which allowed us to rapidly isolate genomic DNA linked to the mutation and sequence it. Our results describe an important new function for macf1 in polarizing the oocyte and egg and demonstrate the feasibility of this new technique for the efficient identification of mutations.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Deborah Ferriola
- Generation Biotech, Lawrenceville, New Jersey, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Katarzyna Mackiewicz
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Johannes Dapprich
- Generation Biotech, Lawrenceville, New Jersey, United States of America
| | - Dimitri Monos
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
106
|
Hotta A, Kawakatsu T, Nakatani T, Sato T, Matsui C, Sukezane T, Akagi T, Hamaji T, Grigoriev I, Akhmanova A, Takai Y, Mimori-Kiyosue Y. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta. ACTA ACUST UNITED AC 2010; 189:901-17. [PMID: 20513769 PMCID: PMC2878951 DOI: 10.1083/jcb.200910095] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A newly discovered interaction between LL5s, laminins, and integrins reveals how the extracellular matrix directs microtubule polarity in epithelial tissues. LL5β has been identified as a microtubule-anchoring factor that attaches EB1/CLIP-associating protein (CLASP)–bound microtubule plus ends to the cell cortex. In this study, we show that LL5β and its homologue LL5α (LL5s) colocalize with autocrine laminin-5 and its receptors, integrins α3β1 and α6β4, at the basal side of fully polarized epithelial sheets. Depletion of both laminin receptor integrins abolishes the cortical localization of LL5s, whereas LL5 depletion reduces the amount of integrin α3 at the basal cell cortex. Activation of integrin α3 is sufficient to initiate LL5 accumulation at the cell cortex. LL5s form a complex with the cytoplasmic tails of these integrins, but their interaction might be indirect. Analysis of the three-dimensional distribution of microtubule growth by visualizing EB1-GFP in epithelial sheets in combination with RNA interference reveals that LL5s are required to maintain the density of growing microtubules selectively at the basal cortex. These findings reveal that signaling from laminin–integrin associations attaches microtubule plus ends to the epithelial basal cell cortex.
Collapse
Affiliation(s)
- Azusa Hotta
- KAN Research Institute, Inc., Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Stepanova T, Smal I, van Haren J, Akinci U, Liu Z, Miedema M, Limpens R, van Ham M, van der Reijden M, Poot R, Grosveld F, Mommaas M, Meijering E, Galjart N. History-Dependent Catastrophes Regulate Axonal Microtubule Behavior. Curr Biol 2010; 20:1023-8. [DOI: 10.1016/j.cub.2010.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022]
|
108
|
Smyth JW, Shaw RM. Forward trafficking of ion channels: what the clinician needs to know. Heart Rhythm 2010; 7:1135-40. [PMID: 20621620 DOI: 10.1016/j.hrthm.2010.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Each heartbeat requires precisely orchestrated action potential propagation through the myocardium, achieved by coordination of about a million ion channels on the surface of each cardiomyocyte. Specific ion channels must occur within discrete subdomains of the sarcolemma to exert their electrophysiological effects with highest efficiency (e.g., voltage-gated Ca(2+) channels at T-tubules and gap junctions at intercalated discs). Regulation of ion channel movement to their appropriate membrane subdomain is an exciting research frontier with opportunity for novel therapeutic manipulation of ion channels in the treatment of heart disease. Although much research has generally focused on internalization and subsequent degradation of ion channels, the field of forward trafficking of de novo ion channels from the cell interior to the sarcolemma has now emerged as a key regulatory step in cardiac electrophysiological function. In this brief review, we provide an overview of the current understanding of the cellular biology governing the forward trafficking of ion channels.
Collapse
Affiliation(s)
- James W Smyth
- Cardiovascular Research Institute and Department of Medicine, University of California San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
109
|
Parallel genetic and proteomic screens identify Msps as a CLASP-Abl pathway interactor in Drosophila. Genetics 2010; 185:1311-25. [PMID: 20498300 DOI: 10.1534/genetics.110.115626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of cytoskeletal structure and dynamics is essential for multiple aspects of cellular behavior, yet there is much to learn about the molecular machinery underlying the coordination between the cytoskeleton and its effector systems. One group of proteins that regulate microtubule behavior and its interaction with other cellular components, such as actin-regulatory proteins and transport machinery, is the plus-end tracking proteins (MT+TIPs). In particular, evidence suggests that the MT+TIP, CLASP, may play a pivotal role in the coordination of microtubules with other cellular structures in multiple contexts, although the molecular mechanism by which it functions is still largely unknown. To gain deeper insight into the functional partners of CLASP, we conducted parallel genetic and proteome-wide screens for CLASP interactors in Drosophila melanogaster. We identified 36 genetic modifiers and 179 candidate physical interactors, including 13 that were identified in both data sets. Grouping interactors according to functional classifications revealed several categories, including cytoskeletal components, signaling proteins, and translation/RNA regulators. We focused our initial investigation on the MT+TIP Minispindles (Msps), identified among the cytoskeletal effectors in both genetic and proteomic screens. Here, we report that Msps is a strong modifier of CLASP and Abl in the retina. Moreover, we show that Msps functions during axon guidance and antagonizes both CLASP and Abl activity. Our data suggest a model in which CLASP and Msps converge in an antagonistic balance in the Abl signaling pathway.
Collapse
|
110
|
Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristán C, Victora GD, Zanin-Zhorov A, Dustin ML. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 2010; 28:79-105. [PMID: 19968559 DOI: 10.1146/annurev-immunol-030409-101308] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward.
Collapse
Affiliation(s)
- David R Fooksman
- Department of Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Skube SB, Chaverri JM, Goodson HV. Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo. Cytoskeleton (Hoboken) 2010; 67:1-12. [PMID: 19701929 DOI: 10.1002/cm.20409] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
EB1 is a microtubule plus-end tracking protein that plays a central role in the regulation of microtubule (MT) dynamics. GFP-tagged EB1 constructs are commonly used to study EB1 itself and also as markers of dynamic MT plus ends. To properly interpret these studies, it is important to understand the impact of tags on the behavior of EB1 and other proteins in vivo. To address this problem and improve understanding of EB1 function, we surveyed the localization of expressed EB1 fragments and investigated whether GFP tags alter these localizations. We found that neither N-terminal nor C-terminal tags are benign: tagged EB1 and EB1 fragments generally behave differently from their untagged counterparts. N-terminal tags significantly compromise the ability of expressed EB1 proteins to bind MTs and/or track MT plus ends, although they leave some MT-binding ability intact. C-terminally tagged EB1 constructs have localizations similar to the untagged constructs, initially suggesting that they are benign. However, most constructs tagged at either end cause CLIP-170 to disappear from MT plus ends. This effect is opposite to that of untagged full-length EB1, which recruits CLIP-170 to MTs. These observations demonstrate that although EB1-GFP can be a powerful tool for studying microtubule dynamics, it should be used carefully because it may alter the system that it is being used to study. In addition, some untagged fragments had unexpected localizations. In particular, an EB1 construct lacking the coiled-coil tracks MT plus ends, though weakly, providing evidence against the idea that EB1 +TIP behavior requires dimerization.
Collapse
Affiliation(s)
- Susan B Skube
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
112
|
Blake-Hodek KA, Cassimeris L, Huffaker TC. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol Biol Cell 2010; 21:2013-23. [PMID: 20392838 PMCID: PMC2883945 DOI: 10.1091/mbc.e10-02-0083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bim1 promotes microtubule assembly in vitro, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. These proteins interact to form a complex that affects microtubule dynamics in much the same way as Bim1 alone. Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.
Collapse
|
113
|
Smal I, Loog M, Niessen W, Meijering E. Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:282-301. [PMID: 19556194 DOI: 10.1109/tmi.2009.2025127] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Quantitative analysis of biological image data generally involves the detection of many subresolution spots. Especially in live cell imaging, for which fluorescence microscopy is often used, the signal-to-noise ratio (SNR) can be extremely low, making automated spot detection a very challenging task. In the past, many methods have been proposed to perform this task, but a thorough quantitative evaluation and comparison of these methods is lacking in the literature. In this paper, we evaluate the performance of the most frequently used detection methods for this purpose. These include seven unsupervised and two supervised methods. We perform experiments on synthetic images of three different types, for which the ground truth was available, as well as on real image data sets acquired for two different biological studies, for which we obtained expert manual annotations to compare with. The results from both types of experiments suggest that for very low SNRs ( approximately 2), the supervised (machine learning) methods perform best overall. Of the unsupervised methods, the detectors based on the so-called h -dome transform from mathematical morphology or the multiscale variance-stabilizing transform perform comparably, and have the advantage that they do not require a cumbersome learning stage. At high SNRs ( > 5), the difference in performance of all considered detectors becomes negligible.
Collapse
Affiliation(s)
- Ihor Smal
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
114
|
Dixit R, Ross JL. Studying plus-end tracking at single molecule resolution using TIRF microscopy. Methods Cell Biol 2010; 95:543-54. [PMID: 20466152 DOI: 10.1016/s0091-679x(10)95027-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The highly dynamic microtubule plus-ends are key sites of regulation that impact the organization and function of the microtubule cytoskeleton. Much of this regulation is performed by the microtubule plus-end tracking (+TIP) family of proteins. +TIPs are a structurally diverse group of proteins that bind to and track with growing microtubule plus-ends in cells. +TIPs regulate microtubule dynamics as well as mediate interactions between microtubule tips and other cellular structures. Most +TIPs can directly bind to microtubules in vitro; however, the mechanisms for their plus-end specificity are not fully understood. Cellular studies of +TIP activity are complicated by the fact that members of the +TIP family of proteins interact with each other to form higher-order protein assemblies. Development of an in vitro system, using minimal components, to study +TIP activity is therefore critical to unequivocally understand the behavior of individual +TIP proteins. Coupled with single molecule imaging, this system provides a powerful tool to study the molecular properties that are important for +TIP function. In this chapter, we describe a detailed protocol for in vitro reconstitution of +TIP activity at single molecule resolution using total internal reflection fluorescence microscopy.
Collapse
Affiliation(s)
- Ram Dixit
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
115
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
116
|
|
117
|
Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, Simpson PC, Stainier DYR, Chi NC, Shaw RM. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest 2009; 120:266-79. [PMID: 20038810 DOI: 10.1172/jci39740] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 11/11/2009] [Indexed: 12/25/2022] Open
Abstract
Gap junctions form electrical conduits between adjacent myocardial cells, permitting rapid spatial passage of the excitation current essential to each heartbeat. Arrhythmogenic decreases in gap junction coupling are a characteristic of stressed, failing, and aging myocardium, but the mechanisms of decreased coupling are poorly understood. We previously found that microtubules bearing gap junction hemichannels (connexons) can deliver their cargo directly to adherens junctions. The specificity of this delivery requires the microtubule plus-end tracking protein EB1. We performed this study to investigate the hypothesis that the oxidative stress that accompanies acute and chronic ischemic disease perturbs connexon forward trafficking. We found that EB1 was displaced in ischemic human hearts, stressed mouse hearts, and isolated cells subjected to oxidative stress. As a result, we observed limited microtubule interaction with adherens junctions at intercalated discs and reduced connexon delivery and gap junction coupling. A point mutation within the tubulin-binding domain of EB1 reproduced EB1 displacement and diminished connexon delivery, confirming that EB1 displacement can limit gap junction coupling. In zebrafish hearts, oxidative stress also reduced the membrane localization of connexin and slowed the spatial spread of excitation. We anticipate that protecting the microtubule-based forward delivery apparatus of connexons could improve cell-cell coupling and reduce ischemia-related cardiac arrhythmias.
Collapse
Affiliation(s)
- James W Smyth
- Cardiovascular Research Institute, Department of Medicine, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 2009; 22:104-11. [PMID: 20031384 DOI: 10.1016/j.ceb.2009.11.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 01/15/2023]
Abstract
Microtubules are highly dynamic structures whose regulation is crucial for cell division, cell polarity, cell migration, or neuronal differentiation. Because they contribute to most cellular functions, they must be regulated in response to extracellular and intracellular signals. The parameters of microtubule dynamics are numerous and complex and the connection between signaling pathways and regulation of microtubule dynamics remain obscure. Recent observations reveal key players that can both integrate the diversity of signaling cascades and directly influence microtubule dynamics. I review here how modifications of the tubulin dimer, tubulin modifying enzymes, and microtubule-associated proteins are directly involved in the regulation of microtubule behavior and functions.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur, Cell Polarity and Migration Group and CNRS URA 2582, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
119
|
Bellett G, Carter JM, Keynton J, Goldspink D, James C, Moss DK, Mogensen MM. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells. ACTA ACUST UNITED AC 2009; 66:893-908. [PMID: 19479825 DOI: 10.1002/cm.20393] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apico-basal polarisation of epithelial cells involves a dramatic reorganisation of the microtubule cytoskeleton. The classic radial array of microtubules focused on a centrally located centrosome typical of many animal cells is lost or greatly reduced and a non-centrosomal apico-basal array develops. The molecules and mechanisms responsible for the assembly and positioning of these non-centrosomal microtubules have not been fully elucidated. Using a Nocodazole induced regrowth assay in invitro culture (MDCK) and in situ epithelial (cochlear Kolliker's) cell models we establish that the apico-basal array originates from the centrosome and that the non-centrosomal microtubule minus-end anchoring sites do not contribute significantly to their nucleation. Confocal and electron microscopy revealed that an extended radial array assembles with microtubule plus-ends targeting cadheren sites at adherens junctions and EB1 and CLIP-170 co-localising with beta-catenin and dynein clusters at the junction sites. The extended radial array is likely to be a vital intermediate step in the assembly process with cortical anchored dynein providing the mechanical force required for microtubule release, translocation and capture. Ultrastructural analyses of the apico-basal arrays in fully polarised MDCK and Kolliker's cells revealed microtubule minus-end association with the most apical adherens junction (Zonula adherens). We propose that a release and capture model involving both microtubule plus- and minus-end capture at adherens junctions is responsible for the generation of non-centrosomal apico-basal arrays in most centrosome containing polarised epithelial cells.
Collapse
Affiliation(s)
- Gemma Bellett
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
+TIPs (plus-end tracking proteins) are an increasing group of molecules that localize preferentially to the end of growing microtubules. +TIPs regulate microtubule dynamics and contribute to the organization of the microtubular network within the cell. Thus they participate in a wide range of cellular processes including cell division, motility and morphogenesis. EB1 (end-binding 1) is a highly conserved key member of the +TIP group that has been shown to modulate microtubule dynamics both in vitro and in cells. EB1 is involved in accurate chromosome segregation during mitosis and in the polarization of the microtubule cytoskeleton in migrating cells. Here, we review recent in vitro studies that have started to reveal a regulating activity of EB1, and its yeast orthologue Mal3p, on microtubule structure. In particular, we examine how EB1-mediated changes in the microtubule architecture may explain its effects on microtubule dynamics.
Collapse
|
121
|
Zanic M, Stear JH, Hyman AA, Howard J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS One 2009; 4:e7585. [PMID: 19851462 PMCID: PMC2761489 DOI: 10.1371/journal.pone.0007585] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/29/2009] [Indexed: 11/23/2022] Open
Abstract
Plus-end-tracking proteins (+TIPs) are localized at the fast-growing, or plus end, of microtubules, and link microtubule ends to cellular structures. One of the best studied +TIPs is EB1, which forms comet-like structures at the tips of growing microtubules. The molecular mechanisms by which EB1 recognizes and tracks growing microtubule ends are largely unknown. However, one clue is that EB1 can bind directly to a microtubule end in the absence of other proteins. Here we use an in vitro assay for dynamic microtubule growth with two-color total-internal-reflection-fluorescence imaging to investigate binding of mammalian EB1 to both stabilized and dynamic microtubules. We find that under conditions of microtubule growth, EB1 not only tip tracks, as previously shown, but also preferentially recognizes the GMPCPP microtubule lattice as opposed to the GDP lattice. The interaction of EB1 with the GMPCPP microtubule lattice depends on the E-hook of tubulin, as well as the amount of salt in solution. The ability to distinguish different nucleotide states of tubulin in microtubule lattice may contribute to the end-tracking mechanism of EB1.
Collapse
Affiliation(s)
- Marija Zanic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeffrey H. Stear
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathon Howard
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
122
|
Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt WD, Wehland J, Aktories K. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 2009; 5:e1000626. [PMID: 19834554 PMCID: PMC2757728 DOI: 10.1371/journal.ppat.1000626] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 09/21/2009] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 µm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host–pathogen interactions. Clostridium difficile is responsible for ∼20 percent of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. The pathogens produce two protein toxins (toxins A and B), which inactivate Rho-GTPases of host cells by glucosylation. Recently emerging hypervirulent strains of C. difficile release higher amounts of toxins A and B, are resistant towards fluoroquinolones and produce an additional protein toxin called C. difficile transferase (CDT). CDT is a binary toxin, which modifies G-actin by ADP-ribosylation, thereby inhibiting actin polymerization. So far the pathogenetic role of CDT is not clear. Here we studied the effects of CDT on human colon carcinoma cells and show that the toxin causes rearrangement of microtubules and formation of long cellular protrusions. The microtubule-based protrusions form a dense meshwork at the cell surface, which wrap and embed Clostridia, thereby increasing adherence of the pathogens. We observed similar effects with other members of the family of binary actin-ADP-ribosylating toxins like C. botulinum C2 toxin and C. perfringens iota toxin. Our findings show a novel type of microtubule structures induced by actin-ADP-ribosylating toxins and propose an important role of these toxins in host–pathogen interactions by their effects on adherence and colonization of Clostridia.
Collapse
Affiliation(s)
- Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bärbel Stecher
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH Zürich, Zürich, Switzerland
| | - Tina Tzivelekidis
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Marco van Ham
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Wolf-Dietrich Hardt
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH Zürich, Zürich, Switzerland
| | - Jürgen Wehland
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
123
|
Abstract
Microtubules are rigid cytoskeletal filaments, and their mechanics affect cell morphology and cellular processes. For instance, microtubules for the support structures for extended morphologies, such as axons and cilia. Further, microtubules act as tension rods to pull apart chromosomes during cellular division. Unlike other cytoskeletal filaments (e.g., actin) that work as large networks, microtubules work individually or in small groups, so their individual mechanical properties are quite important to their cellular function. In this review, we explore the past work on the mechanics of individual microtubules, which have been studied for over a quarter of a century. We also present some prospective on future endeavors to determine the molecular mechanisms that control microtubule rigidity.
Collapse
|
124
|
Lomakin AJ, Semenova I, Zaliapin I, Kraikivski P, Nadezhdina E, Slepchenko BM, Akhmanova A, Rodionov V. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev Cell 2009; 17:323-33. [PMID: 19758557 DOI: 10.1016/j.devcel.2009.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/20/2009] [Accepted: 07/02/2009] [Indexed: 02/06/2023]
Abstract
Cytoplasmic microtubules (MTs) continuously grow and shorten at free plus ends. During mitosis, this dynamic behavior allows MTs to capture chromosomes to initiate their movement to the spindle poles; however, the role of MT dynamics in capturing organelles for transport in interphase cells has not been demonstrated. Here we use Xenopus melanophores to test the hypothesis that MT dynamics significantly contribute to the efficiency of MT minus-end directed transport of membrane organelles. We demonstrate that initiation of transport of membrane-bounded melanosomes (pigment granules) to the cell center involves their capture by MT plus ends, and that inhibition of MT dynamics or loss of the MT plus-end tracking protein CLIP-170 from MT tips dramatically inhibits pigment aggregation. We conclude that MT dynamics are required for the initiation of MT transport of membrane organelles in interphase cells, and that +TIPs such as CLIP-170 play an important role in this process.
Collapse
Affiliation(s)
- Alexis J Lomakin
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhu ZC, Gupta KK, Slabbekoorn AR, Paulson BA, Folker ES, Goodson HV. Interactions between EB1 and microtubules: dramatic effect of affinity tags and evidence for cooperative behavior. J Biol Chem 2009; 284:32651-61. [PMID: 19778897 DOI: 10.1074/jbc.m109.013466] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plus end tracking proteins (+TIPs) are a unique group of microtubule binding proteins that dynamically track microtubule (MT) plus ends. EB1 is a highly conserved +TIP with a fundamental role in MT dynamics, but it remains poorly understood in part because reported EB1 activities have differed considerably. One reason for this inconsistency could be the variable presence of affinity tags used for EB1 purification. To address this question and establish the activity of native EB1, we have measured the MT binding and tubulin polymerization activities of untagged EB1 and EB1 fragments and compared them with those of His-tagged EB1 proteins. We found that N-terminal His tags directly influence the interaction between EB1 and MTs, significantly increasing both affinity and activity, and that small amounts of His-tagged proteins act synergistically with larger amounts of untagged proteins. Moreover, the binding ratio between EB1 and tubulin can exceed 1:1, and EB1-MT binding curves do not fit simple binding models. These observations demonstrate that EB1 binding is not limited to the MT seam, and they suggest that EB1 binds cooperatively to MTs. Finally, we found that removal of tubulin C-terminal tails significantly reduces EB1 binding, indicating that EB1-tubulin interactions are mediated in part by the same tubulin acidic tails utilized by other MAPs. These binding relationships are important for helping to elucidate the complex of proteins at the MT tip.
Collapse
Affiliation(s)
- Zhiqing C Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
126
|
Sanchez-Soriano N, Travis M, Dajas-Bailador F, Gonçalves-Pimentel C, Whitmarsh AJ, Prokop A. Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. J Cell Sci 2009; 122:2534-42. [PMID: 19571116 DOI: 10.1242/jcs.046268] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth.
Collapse
Affiliation(s)
- Natalia Sanchez-Soriano
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
127
|
Daire V, Giustiniani J, Leroy-Gori I, Quesnoit M, Drevensek S, Dimitrov A, Perez F, Poüs C. Kinesin-1 regulates microtubule dynamics via a c-Jun N-terminal kinase-dependent mechanism. J Biol Chem 2009; 284:31992-2001. [PMID: 19759393 DOI: 10.1074/jbc.m109.007906] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.
Collapse
Affiliation(s)
- Vanessa Daire
- Faculté de Pharmacie, Université Paris-Sud 11, JE2493, IFR141, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 2009; 122:3531-41. [PMID: 19737819 DOI: 10.1242/jcs.046813] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of a class II histone deacetylase, HDAC6, known to function as a potent alpha-tubulin deacetylase, in the regulation of microtubule dynamics. Treatment of cells with the class I and II histone deacetylase inhibitor TSA, as well as the selective HDAC6 inhibitor tubacin, increased microtubule acetylation and significantly reduced velocities of microtubule growth and shrinkage. siRNA-mediated knockdown of HDAC6 also increased microtubule acetylation but, surprisingly, had no effect on microtubule growth velocity. At the same time, HDAC6 knockdown abolished the effect of tubacin on microtubule growth, demonstrating that tubacin influences microtubule dynamics via specific inhibition of HDAC6. Thus, the physical presence of HDAC6 with impaired catalytic activity, rather than tubulin acetylation per se, is the factor responsible for the alteration of microtubule growth velocity in HDAC6 inhibitor-treated cells. In support of this notion, HDAC6 mutants bearing inactivating point mutations in either of the two catalytic domains mimicked the effect of HDAC6 inhibitors on microtubule growth velocity. In addition, HDAC6 was found to be physically associated with the microtubule end-tracking protein EB1 and a dynactin core component, Arp1, both of which accumulate at the tips of growing microtubules. We hypothesize that inhibition of HDAC6 catalytic activity may affect microtubule dynamics by promoting the interaction of HDAC6 with tubulin and/or with other microtubule regulatory proteins.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
129
|
Vale RD, Spudich JA, Griffis ER. Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J Cell Biol 2009; 186:727-38. [PMID: 19720876 PMCID: PMC2742194 DOI: 10.1083/jcb.200902083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/27/2009] [Indexed: 12/22/2022] Open
Abstract
Signals from the mitotic spindle during anaphase specify the location of the actomyosin contractile ring during cytokinesis, but the detailed mechanism remains unresolved. Here, we have imaged the dynamics of green fluorescent protein-tagged myosin filaments, microtubules, and Kinesin-6 (which carries activators of Rho guanosine triphosphatase) at the cell cortex using total internal reflection fluorescence microscopy in flattened Drosophila S2 cells. At anaphase onset, Kinesin-6 relocalizes to microtubule plus ends that grow toward the cortex, but refines its localization over time so that it concentrates on a subset of stable microtubules and along a diffuse cortical band at the equator. The pattern of Kinesin-6 localization closely resembles where new myosin filaments appear at the cortex by de novo assembly. While accumulating at the equator, myosin filaments disappear from the poles of the cell, a process that also requires Kinesin-6 as well as possibly other signals that emanate from the elongating spindle. These results suggest models for how Kinesin-6 might define the position of cortical myosin during cytokinesis.
Collapse
Affiliation(s)
- Ronald D Vale
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
130
|
Zimniak T, Stengl K, Mechtler K, Westermann S. Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p. ACTA ACUST UNITED AC 2009; 186:379-91. [PMID: 19667128 PMCID: PMC2728395 DOI: 10.1083/jcb.200901036] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
EB1 (end binding 1) proteins have emerged as central regulators of microtubule (MT) plus ends in all eukaryotes, but molecular mechanisms controlling the activity of these proteins are poorly understood. In this study, we show that the budding yeast EB1 protein Bim1p is regulated by Aurora B/Ipl1p-mediated multisite phosphorylation. Bim1p forms a stable complex with Ipl1p and is phosphorylated on a cluster of six Ser residues in the flexible linker connecting the calponin homology (CH) and EB1 domains. Using reconstitution of plus end tracking in vitro and total internal reflection fluorescence microscopy, we show that dimerization of Bim1p and the presence of the linker domain are both required for efficient tip tracking and that linker phosphorylation removes Bim1p from static and dynamic MTs. Bim1 phosphorylation occurs during anaphase in vivo, and it is required for normal spindle elongation kinetics and an efficient disassembly of the spindle midzone. Our results define a mechanism for the use and regulation of CH domains in an EB1 protein.
Collapse
Affiliation(s)
- Tomasz Zimniak
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
131
|
Ban R, Matsuzaki H, Akashi T, Sakashita G, Taniguchi H, Park SY, Tanaka H, Furukawa K, Urano T. Mitotic regulation of the stability of microtubule plus-end tracking protein EB3 by ubiquitin ligase SIAH-1 and Aurora mitotic kinases. J Biol Chem 2009; 284:28367-28381. [PMID: 19696028 DOI: 10.1074/jbc.m109.000273] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) control microtubule dynamics in fundamental processes such as cell cycle, intracellular transport, and cell motility, but how +TIPs are regulated during mitosis remains largely unclear. Here we show that the endogenous end-binding protein family EB3 is stable during mitosis, facilitates cell cycle progression at prometaphase, and then is down-regulated during the transition to G(1) phase. The ubiquitin-protein isopeptide ligase SIAH-1 facilitates EB3 polyubiquitination and subsequent proteasome-mediated degradation, whereas SIAH-1 knockdown increases EB3 stability and steady-state levels. Two mitotic kinases, Aurora-A and Aurora-B, phosphorylate endogenous EB3 at Ser-176, and the phosphorylation triggers disruption of the EB3-SIAH-1 complex, resulting in EB3 stabilization during mitosis. Our results provide new insight into a regulatory mechanism of +TIPs in cell cycle transition.
Collapse
Affiliation(s)
- Reiko Ban
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550.
| | - Hideki Matsuzaki
- Institute for Enzyme Research, University of Tokushima, 3-15-18 Kuramoto, Tokushima 770-8503
| | - Tomohiro Akashi
- Division of Molecular Mycology and Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, 3-15-18 Kuramoto, Tokushima 770-8503
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045
| | - Hirofumi Tanaka
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Koichi Furukawa
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550.
| |
Collapse
|
132
|
Ca(2+) regulates the subcellular localization of adenomatous polyposis coli tumor suppressor protein. Biochem Biophys Res Commun 2009; 388:12-6. [PMID: 19638276 DOI: 10.1016/j.bbrc.2009.07.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 11/23/2022]
Abstract
Microtubule (MT) plus-end tracking proteins (+TIPs) are involved in the regulation of MT plus-end dynamics and stabilization. It was reported previously that an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by disruption of the plasma membrane stimulates rearrangement of MTs [T. Togo, Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site, J. Cell Sci. 119 (2006) 2780-2786], suggesting that some +TIPs are regulated by Ca(2+). In the present study, the behavior of adenomatous polyposis coli (APC) following an increase in [Ca(2+)](i) was observed using Xenopus A6 epithelial cell expressing GFP-tagged APC. An increase in [Ca(2+)](i) by cell membrane disruption or by ionomycin treatment induced dissociation of APC without depolymerizing MTs. Inhibition of a tyrosine kinase and GSK-3beta suppressed APC dissociation upon an increase in [Ca(2+)](i). Western blotting analysis showed that Ca(2+) transients activated GSK-3beta through a tyrosine kinase. These results suggest that Ca(2+) stimulates redistribution of APC through a tyrosine kinase- and GSK-3beta-dependent pathway.
Collapse
|
133
|
Kollins KM, Bell RL, Butts M, Withers GS. Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Dev 2009; 4:26. [PMID: 19602271 PMCID: PMC2717962 DOI: 10.1186/1749-8104-4-26] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background Dendrites differ from axons in patterns of growth and development, as well as in morphology. Given that microtubules are key structural elements in cells, we assessed patterns of microtubule stability and polymerization during hippocampal neuron development in vitro to determine if these aspects of microtubule organization could distinguish axons from dendrites. Results Quantitative ratiometric immunocytochemistry identified significant differences in microtubule stability between axons and dendrites. Most notably, regardless of developmental stage, there were high levels of dynamic microtubules throughout the dendritic arbor, whereas dynamic microtubules were predominantly concentrated in the distal end of axons. Analysis of microtubule polymerization using green fluorescent protein-tagged EB1 showed both developmental and regional differences in microtubule polymerization between axons and dendrites. Early in development (for example, 1 to 2 days in vitro), polymerization events were distributed equally in both the anterograde and retrograde directions throughout the length of both axons and dendrites. As development progressed, however, polymerization became biased, with a greater number of polymerization events in distal than in proximal and middle regions. While polymerization occurred almost exclusively in the anterograde direction for axons, both anterograde and retrograde polymerization was observed in dendrites. This is in agreement with predicted differences in microtubule polarity within these compartments, although fewer retrograde events were observed in dendrites than expected. Conclusion Both immunocytochemical and live imaging analyses showed that newly formed microtubules predominated at the distal end of axons and dendrites, suggesting a common mechanism that incorporates increased microtubule polymerization at growing process tips. Dendrites had more immature, dynamic microtubules throughout the entire arbor than did axons, however. Identifying these differences in microtubule stability and polymerization is a necessary first step toward understanding how they are developmentally regulated, and may reveal novel mechanisms underlying neuron maturation and dendritic plasticity that extend beyond the initial specification of polarity.
Collapse
|
134
|
Bottenberg W, Sanchez-Soriano N, Alves-Silva J, Hahn I, Mende M, Prokop A. Context-specific requirements of functional domains of the Spectraplakin Short stop in vivo. Mech Dev 2009; 126:489-502. [PMID: 19409984 DOI: 10.1016/j.mod.2009.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 10/25/2022]
Abstract
Spectraplakins are large multifunctional cytoskeletal interacting molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. It has been speculated that the various functional domains and regions found in Spectraplakins are used in context-specific manners, a model which would provide a crucial explanation for the multifunctional nature of Spectraplakins. Here we tested this possibility by studying domain requirements of the Drosophila Spectraplakin Short stop (Shot) in three different cellular contexts in vivo: (1) neuronal growth, which requires dynamic actin-microtubule interaction; (2) formation and maintenance of tendon cells, which depends on highly stabilised arrays of actin filaments and microtubules, and (3) compartmentalisation in neurons, which is likely to involve cortical F-actin networks. Using these cellular contexts for rescue experiments with Shot deletion constructs in shot mutant background, a number of differential domain requirements were uncovered. First, binding of Shot to F-actin through the first Calponin domain is essential in neuronal contexts but dispensable in tendon cells. This finding is supported by our analyses of shot(kakP2) mutant embryos, which produce only endogenous isoforms lacking the first Calponin domain. Thus, our data demonstrate a functional relevance for these isoforms in vivo. Second, we provide the first functional role for the Plakin domain of Shot, which has a strong requirement for compartmentalisation in neurons and axonal growth, demonstrating that Plakin domains of long Spectraplakin isoforms are of functional relevance. Like the Calponin domain, also the Plakin domain is dispensable in tendon cells, and the currently assumed role of Shot as a linker of microtubules to the tendon cell surface may have to be reconsidered. Third, we demonstrate a function of Shot as an actin-microtubule linker in dendritic growth, thus shedding new light into principal growth mechanisms of this neurite type. Taken together, our data clearly support the view that Spectraplakins function in tissue-specific modes in vivo, and even domains believed to be crucial for Spectraplakin function can be dispensable in specific contexts.
Collapse
Affiliation(s)
- Wolfgang Bottenberg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | | | | | | | | | | |
Collapse
|
135
|
Abeyweera TP, Chen X, Rotenberg SA. Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells. J Biol Chem 2009; 284:17648-56. [PMID: 19406749 PMCID: PMC2719404 DOI: 10.1074/jbc.m902005200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Indexed: 11/06/2022] Open
Abstract
Engineered overexpression of protein kinase Calpha (PKCalpha) was previously shown to endow nonmotile MCF-10A human breast cells with aggressive motility. A traceable mutant of PKCalpha (Abeyweera, T. P., and Rotenberg, S. A. (2007) Biochemistry 46, 2364-2370) revealed that alpha6-tubulin is phosphorylated in cells expressing traceable PKCalpha and in vitro by wild type PKCalpha. Gain-of-function, single site mutations (Ser-->Asp) were constructed at each PKC consensus site in alpha6-tubulin (Ser158, Ser165, Ser241, and Thr337) to simulate phosphorylation. Following expression of each construct in MCF-10A cells, motility assays identified Ser165 as the only site in alpha6-tubulin whose pseudophosphorylation reproduced the motile behavior engendered by PKCalpha. Expression of a phosphorylation-resistant mutant (S165N-alpha6-tubulin) resulted in suppression of MCF-10A cell motility stimulated either by expression of PKCalpha or by treatment with PKCalpha-selective activator diacylglycerol-lactone. MCF-10A cells treated with diacylglycerol-lactone showed strong phosphorylation of endogenous alpha-tubulin that could be blocked when S165N-alpha6-tubulin was expressed. The S165N mutant also inhibited intrinsically motile human breast tumor cells that express high endogenous PKCalpha levels (MDA-MB-231 cells) or lack PKCalpha and other conventional isoforms (MDA-MB-468 cells). Comparison of Myc-tagged wild type alpha6-tubulin and S165N-alpha6-tubulin expressed in MDA-MB-468 cells demonstrated that Ser165 is also a major site of phosphorylation for endogenously active, nonconventional PKC isoforms. PKC-stimulated motility of MCF-10A cells was nocodazole-sensitive, thereby implicating microtubule elongation in the mechanism. These findings support a model in which PKC phosphorylates alpha-tubulin at Ser165, leading to microtubule elongation and motility.
Collapse
Affiliation(s)
- Thushara P. Abeyweera
- From the Department of Chemistry and Biochemistry of Queens College and
- the Graduate Center of the City University of New York, Flushing, New York 11367
| | - Xiangyu Chen
- From the Department of Chemistry and Biochemistry of Queens College and
- the Graduate Center of the City University of New York, Flushing, New York 11367
| | | |
Collapse
|
136
|
Fong KW, Hau SY, Kho YS, Jia Y, He L, Qi RZ. Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. Mol Biol Cell 2009; 20:3660-70. [PMID: 19553473 DOI: 10.1091/mbc.e09-01-0009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2-EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2-EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics.
Collapse
Affiliation(s)
- Ka-Wing Fong
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Microtubule-binding drugs (MBD) are widely used in cancer chemotherapy and also have clinically relevant antiangiogenic and vascular-disrupting properties. These antivascular actions are due in part to direct effects on endothelial cells, and all MBDs (both microtubule-stabilizing and microtubule-destabilizing) inhibit endothelial cell proliferation, migration, and tube formation in vitro, actions that are thought to correspond to therapeutic antiangiogenic actions. In addition, the microtubule-destabilizing agents cause prominent changes in endothelial cell morphology, an action associated with rapid vascular collapse in vivo. The effects on endothelial cells occur in vitro at low drug concentrations, which do not affect microtubule gross morphology, do not cause microtubule bundling or microtubule loss and do not induce cell cycle arrest, apoptosis, or cell death. Rather, it has been hypothesized that, at low concentrations, MBDs produce more subtle effects on microtubule dynamics, block critical cell signaling pathways, and prevent the microtubules from properly interacting with transient subcellular assemblies (focal adhesions and adherens junctions) whose subsequent stabilization and/or maturation are required for cell motility and cell-cell interactions. This review will focus on recent studies to define the molecular mechanisms for the antivascular actions of the MBDs, information that could be useful in the identification or design of agents whose actions more selectively target the tumor vasculature.
Collapse
Affiliation(s)
- Edward L Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York 10467, USA.
| |
Collapse
|
138
|
Kumar P, Lyle KS, Gierke S, Matov A, Danuser G, Wittmann T. GSK3beta phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment. ACTA ACUST UNITED AC 2009; 184:895-908. [PMID: 19289791 PMCID: PMC2699158 DOI: 10.1083/jcb.200901042] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polarity of the microtubule (MT) cytoskeleton is essential for many cell functions. Cytoplasmic linker–associated proteins (CLASPs) are MT-associated proteins thought to organize intracellular MTs and display a unique spatiotemporal regulation. In migrating epithelial cells, CLASPs track MT plus ends in the cell body but bind along MTs in the lamella. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) directly phosphorylates CLASPs at multiple sites in the domain required for MT plus end tracking. Although complete phosphorylation disrupts both plus end tracking and association along lamella MTs, we show that partial phosphorylation of the identified GSK3β motifs determines whether CLASPs track plus ends or associate along MTs. In addition, we find that expression of constitutively active GSK3β destabilizes lamella MTs by disrupting lateral MT interactions with the cell cortex. GSK3β-induced lamella MT destabilization was partially rescued by expression of CLASP2 with mutated phosphorylation sites. This indicates that CLASP-mediated stabilization of peripheral MTs, which likely occurs in the vicinity of focal adhesions, may be regulated by local GSK3β inactivation.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Cell and Tissue Biology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
139
|
Lewkowicz E, Herit F, Le Clainche C, Bourdoncle P, Perez F, Niedergang F. The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. ACTA ACUST UNITED AC 2009; 183:1287-98. [PMID: 19114595 PMCID: PMC2606960 DOI: 10.1083/jcb.200807023] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microtubule dynamics are modulated by regulatory proteins that bind to their plus ends (+TIPs [plus end tracking proteins]), such as cytoplasmic linker protein 170 (CLIP-170) or end-binding protein 1 (EB1). We investigated the role of +TIPs during phagocytosis in macrophages. Using RNA interference and dominant-negative approaches, we show that CLIP-170 is specifically required for efficient phagocytosis triggered by αMβ2 integrin/complement receptor activation. This property is not observed for EB1 and EB3. Accordingly, whereas CLIP-170 is dynamically enriched at the site of phagocytosis, EB1 is not. Furthermore, we observe that CLIP-170 controls the recruitment of the formin mDia1, an actin-nucleating protein, at the onset of phagocytosis and thereby controls actin polymerization events that are essential for phagocytosis. CLIP-170 directly interacts with the formin homology 2 domain of mDia1. The interaction between CLIP-170 and mDia1 is negatively regulated during αMβ2-mediated phagocytosis. Our results unravel a new microtubule/actin cooperation that involves CLIP-170 and mDia1 and that functions downstream of αMβ2 integrins.
Collapse
Affiliation(s)
- Elodie Lewkowicz
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
140
|
Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di Stefano P, Demmers J, Krugers H, Defilippi P, Akhmanova A, Hoogenraad CC. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 2009; 61:85-100. [PMID: 19146815 DOI: 10.1016/j.neuron.2008.11.013] [Citation(s) in RCA: 495] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 08/18/2008] [Accepted: 11/06/2008] [Indexed: 11/27/2022]
Abstract
Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.
Collapse
Affiliation(s)
- Jacek Jaworski
- Department of Neuroscience, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103:387-402. [PMID: 19106179 PMCID: PMC2707338 DOI: 10.1093/aob/mcn248] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA
- For correspondence. E-mail:
| |
Collapse
|
142
|
Establishing new sites of polarization by microtubules. Curr Biol 2009; 19:83-94. [PMID: 19147354 DOI: 10.1016/j.cub.2008.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Microtubules (MTs) participate in the spatial regulation of actin-based processes such as cytokinesis and cell polarization. The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that exhibits polarized cell growth at cell tips. MT plus ends contact and shrink from the cell tips and contribute to polarity regulation. RESULTS Here, we investigate the effects of changing cell shape on MTs and cell-polarization machinery. We physically bend fission yeast cells by forcing them into microfabricated femtoliter chambers. In these bent cells, MTs maintain a straight axis and contact and shrink from cortical sites at the sides of cells. At these ectopic sites, polarity factors such as bud6p, for3p (formin), and cdc42p are recruited and assemble actin cables in a MT-dependent manner. MT contact at the cortex induces the appearance of a bud6p dot within seconds. The accumulation of polarity factors leads to cell growth at these sites, when the MT-associated polarity factor tea1p is absent. This process is dependent on MTs, mal3p (EB1), moe1p (an EB1-binding protein), and for3p but, surprisingly, is independent of the tea1p-tea4p pathway. CONCLUSIONS These studies provide a direct demonstration for how MTs induce actin assembly at specific locations on the cell cortex and begin to identify a new pathway involved in this process. MT interactions with the cortex may be regulated by cortical-attachment sites. These findings highlight the crosstalk between cell shape, polarity mechanisms, and MTs responsible for cell morphogenesis.
Collapse
|
143
|
Abstract
Microtubules are polarized polymers that exhibit dynamic instability, with alternating phases of elongation and shortening, particularly at the more dynamic plus-end. Microtubule plus-end tracking proteins (+TIPs) localize to and track with growing microtubule plus-ends in the cell. +TIPs regulate microtubule dynamics and mediate interactions with other cellular components. The molecular mechanisms responsible for the +TIP tracking activity are not well understood, however. We reconstituted the +TIP tracking of mammalian proteins EB1 and CLIP-170 in vitro at single-molecule resolution using time-lapse total internal reflection fluorescence microscopy. We found that EB1 is capable of dynamically tracking growing microtubule plus-ends. Our single-molecule studies demonstrate that EB1 exchanges rapidly at microtubule plus-ends with a dwell time of <1 s, indicating that single EB1 molecules go through multiple rounds of binding and dissociation during microtubule polymerization. CLIP-170 exhibits lattice diffusion and fails to selectively track microtubule ends in the absence of EB1; the addition of EB1 is both necessary and sufficient to mediate plus-end tracking by CLIP-170. Single-molecule analysis of the CLIP-170-EB1 complex also indicates a short dwell time at growing plus-ends, an observation inconsistent with the copolymerization of this complex with tubulin for plus-end-specific localization. GTP hydrolysis is required for +TIP tracking, because end-specificity is lost when tubulin is polymerized in the presence of guanosine 5'-[alpha,beta-methylene]triphosphate (GMPCPP). Together, our data provide insight into the mechanisms driving plus-end tracking by mammalian +TIPs and suggest that EB1 specifically recognizes the distinct lattice structure at the growing microtubule end.
Collapse
|
144
|
|
145
|
Barral Y, Liakopoulos D. Role of spindle asymmetry in cellular dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:149-213. [PMID: 19815179 DOI: 10.1016/s1937-6448(09)78004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitotic spindle is mostly perceived as a symmetric structure. However, in many cell divisions, the two poles of the spindle organize asters with different dynamics, associate with different biomolecules or subcellular domains, and perform different functions. In this chapter, we describe some of the most prominent examples of spindle asymmetry. These are encountered during cell-cycle progression in budding and fission yeast and during asymmetric cell divisions of stem cells and embryos. We analyze the molecular mechanisms that lead to generation of spindle asymmetry and discuss the importance of spindle-pole differentiation for the correct outcome of cell division.
Collapse
Affiliation(s)
- Yves Barral
- Institute of Biochemistry, ETH Hönggerberg, HPM, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
146
|
Bieling P, Kandels-Lewis S, Telley IA, van Dijk J, Janke C, Surrey T. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. ACTA ACUST UNITED AC 2008; 183:1223-33. [PMID: 19103809 PMCID: PMC2606963 DOI: 10.1083/jcb.200809190] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.
Collapse
Affiliation(s)
- Peter Bieling
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
147
|
Meunier B, Quaranta M, Daviet L, Hatzoglou A, Leprince C. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170). Eur J Cell Biol 2008; 88:91-102. [PMID: 19004523 DOI: 10.1016/j.ejcb.2008.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 01/02/2023] Open
Abstract
Amphiphysins are BIN-amphiphysin-RVS (BAR) domain-containing proteins that influence membrane curvature in sites such as T-tubules in muscular cells, endocytic pits in neuronal as well as non-neuronal cells, and possibly cytoplasmic endosomes. This effect on lipid membranes is fulfilled by diverse amphiphysin 2/BIN1 isoforms, generated by alternative splicing and showing distinct structural and functional properties. In this study, our goal was to characterize the functional role of a ubiquitously expressed amphiphysin 2/BIN1 by the characterization of new molecular partners. We performed a two-hybrid screen with an isoform of amphiphysin 2/BIN1 expressed in HeLa cells. We identified CLIP-170 as an amphiphysin 2/BIN1-interacting molecule. CLIP-170 is a plus-end tracking protein involved in microtubule (MT) stability and recruitment of dynactin. The binding between amphiphysin 2/BIN1 and CLIP-170 is dependent on the N-terminal part of amphiphysin 2 (mostly the BAR domain) and an internal coiled-coil region of CLIP-170. This partnership was confirmed by GST pull-down assay and by co-immunoprecipitation in HeLa cells that express endogenous amphiphysin 2 (mostly isoforms 6, 9 and 10). When overexpressed in HeLa cells, amphiphysin 2/BIN1 leads to the formation of intracellular tubules which can closely align with MTs. After MT depolymerization by nocodazole, amphiphysin 2-stained tubules disappear, and reappear after nocodazole washout. Furthermore, depletion of CLIP-170 by RNAi induced a decrease in the proportion of cells with amphiphysin 2-stained tubules and an increase in the proportion of cells with no tubules. This result suggests the existence of a mechanistic link between the two types of tubules, which is likely to involve the +TIP protein, CLIP-170. Amphiphysin 2/BIN1 may be an anchoring point on membranes for CLIP-170, and consequently for MT. Then, the pushing force of polymerizing MT could help amphiphysin 2/BIN1 in its tubulation potential. We propose that amphiphysin 2/BIN1 participates in the tubulation of traffic intermediates and intracellular organelles first via its intrinsic tubulating potential and second via its ability to bind CLIP-170 and MT.
Collapse
Affiliation(s)
- Brigitte Meunier
- Analysis of Signal Transduction Group, INSERM U830, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
148
|
Li R, Gundersen GG. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 2008; 9:860-73. [PMID: 18946475 DOI: 10.1038/nrm2522] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell polarity relies on the asymmetric organization of cellular components and structures. Actin and microtubules are well suited to provide the structural basis for cell polarization because of their inherent structural polarity along the polymer lattices and intrinsic dynamics that allow them to respond rapidly to polarity cues. In general, the actin cytoskeleton drives the symmetry-breaking process that enables the establishment of a polarized distribution of regulatory molecules, whereas microtubules build on this asymmetry and maintain the stability of the polarized organization. Crosstalk coordinates the functions of the two cytoskeletal systems.
Collapse
Affiliation(s)
- Rong Li
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
149
|
Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 2008; 10:1181-9. [PMID: 18806788 DOI: 10.1038/ncb1778] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/28/2008] [Indexed: 01/30/2023]
Abstract
Interactions between dynamic microtubules and actin filaments (F-actin) underlie a range of cellular processes including cell polarity and motility. In growth cones, dynamic microtubules are continually extending into selected filopodia, aligning alongside the proximal ends of the F-actin bundles. This interaction is essential for neuritogenesis and growth-cone pathfinding. However, the molecular components mediating the interaction between microtubules and filopodial F-actin have yet to be determined. Here we show that drebrin, an F-actin-associated protein, binds directly to the microtubule-binding protein EB3. In growth cones, this interaction occurs specifically when drebrin is located on F-actin in the proximal region of filopodia and when EB3 is located at the tips of microtubules invading filopodia. When this interaction is disrupted, the formation of growth cones and the extension of neurites are impaired. We conclude that drebrin targets EB3 to coordinate F-actin-microtubule interactions that underlie neuritogenesis.
Collapse
Affiliation(s)
- Sara Geraldo
- The MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London SE11UL, UK
| | | | | | | | | |
Collapse
|
150
|
Honoré S, Pagano A, Gauthier G, Bourgarel-Rey V, Verdier-Pinard P, Civiletti K, Kruczynski A, Braguer D. Antiangiogenic vinflunine affects EB1 localization and microtubule targeting to adhesion sites. Mol Cancer Ther 2008; 7:2080-9. [PMID: 18645018 DOI: 10.1158/1535-7163.mct-08-0156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The motile behavior of endothelial cells is a crucial event for neoangiogenesis. We previously showed that noncytotoxic concentrations of vinflunine inhibit capillary-like tube formation on Matrigel and endothelial cell migration with a concomitant increase in interphase microtubule dynamic instability. In this article, we further investigated the effects of vinflunine on migration and cytoskeleton interaction dynamics in HMEC-1 endothelial cells. We confirmed that vinflunine, at low and noncytotoxic concentrations (0.01-1 nmol/L), inhibited endothelial cell random motility by 54%. This effect was associated with a decrease in the percentage of stable microtubules and in the mean duration of pauses for dynamic ones. Moreover, we found that vinflunine altered adhesion site targeting by microtubules and suppressed the microtubule (+) end pause that occurs at adhesion sites during cell migration (from 151 +/- 20 seconds in control cells to 38 +/- 7 seconds in vinflunine-treated cells, P < 0.001). This effect was associated with the inhibition of adhesion site dynamics and the formation of long-lived stress fibers. Importantly, we found that vinflunine altered EB1 localization at microtubule (+) ends. These results highlight a new mechanism of action of vinflunine, which act by disrupting the mutual control between microtubule and adhesion site dynamics and strengthen the role of +TIPs proteins such as EB1 as key regulators of endothelial cell motility.
Collapse
Affiliation(s)
- Stéphane Honoré
- Institut National de la Sante et de la Recherche Medicale UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie Aix-Marseille Université, Marseilles, France
| | | | | | | | | | | | | | | |
Collapse
|