101
|
Sun F, Liu S, Gao X, Jiang Y, Perera D, Wang X, Li C, Sun L, Zhang J, Kaltenboeck L, Dunham R, Liu Z. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome. PLoS One 2013; 8:e68452. [PMID: 23874634 PMCID: PMC3709890 DOI: 10.1371/journal.pone.0068452] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022] Open
Abstract
Background Catfish has a male-heterogametic (XY) sex determination system, but genes involved in gonadogenesis, spermatogenesis, testicular determination, and sex determination are poorly understood. As a first step of understanding the transcriptome of the testis, here, we conducted RNA-Seq analysis using high throughput Illumina sequencing. Methodology/Principal Findings A total of 269.6 million high quality reads were assembled into 193,462 contigs with a N50 length of 806 bp. Of these contigs, 67,923 contigs had hits to a set of 25,307 unigenes, including 167 unique genes that had not been previously identified in catfish. A meta-analysis of expressed genes in the testis and in the gynogen (double haploid female) allowed the identification of 5,450 genes that are preferentially expressed in the testis, providing a pool of putative male-biased genes. Gene ontology and annotation analysis suggested that many of these male-biased genes were involved in gonadogenesis, spermatogenesis, testicular determination, gametogenesis, gonad differentiation, and possibly sex determination. Conclusion/Significance We provide the first transcriptome-level analysis of the catfish testis. Our analysis would lay the basis for sequential follow-up studies of genes involved in sex determination and differentiation in catfish.
Collapse
Affiliation(s)
- Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Xiaoyu Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Dayan Perera
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Xiuli Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Ludmilla Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
102
|
Forconi M, Canapa A, Barucca M, Biscotti MA, Capriglione T, Buonocore F, Fausto AM, Makapedua DM, Pallavicini A, Gerdol M, De Moro G, Scapigliati G, Olmo E, Schartl M. Characterization of sex determination and sex differentiation genes in Latimeria. PLoS One 2013; 8:e56006. [PMID: 23634199 PMCID: PMC3636272 DOI: 10.1371/journal.pone.0056006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022] Open
Abstract
Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.
Collapse
Affiliation(s)
- Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria A. Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| | - Francesco Buonocore
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Anna M. Fausto
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Daisy M. Makapedua
- Faculty of Fisheries and Marine Science, University of Sam Ratulangi, Manado, Indonesia
| | | | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Giuseppe Scapigliati
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Ettore Olmo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
103
|
Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 2013; 242:339-53. [PMID: 23335327 DOI: 10.1002/dvdy.23927] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022] Open
Abstract
Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, Japan.
| | | |
Collapse
|
104
|
Agbor VA, Tao S, Lei N, Heckert LL. A Wt1-Dmrt1 transgene restores DMRT1 to sertoli cells of Dmrt1(-/-) testes: a novel model of DMRT1-deficient germ cells. Biol Reprod 2013; 88:51. [PMID: 23255335 DOI: 10.1095/biolreprod.112.103135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DMRT1 is an evolutionarily conserved transcriptional factor expressed only in the postnatal testis, where it is produced in Sertoli cells and germ cells. While deletion of Dmrt1 in mice demonstrated it is required for postnatal testis development and fertility, much is still unknown about its temporal- and cell-specific functions. This study characterized a novel mouse model of DMRT1-deficient germ cells that was generated by breeding Dmrt1-null (Dmrt1(-/-)) mice with Wt1-Dmrt1 transgenic (Dmrt1(+/-;tg)) mice, which express a rat Dmrt1 cDNA in gonadal supporting cells by directing it from the Wilms tumor 1 locus in a yeast artificial chromosome transgene. Like Dmrt1(-/-) mice, male Dmrt1(-/-) transgenic mice (Dmrt1(-/-;tg)) were infertile, while female mice were fertile. Immunohistochemistry and Western blot analysis showed transgenic DMRT1 expressed in supporting cells of the newborn gonads of both sex and in Sertoli cells of the testis afterbirth. Sertoli cells were evaluated by electron microscopy, revealing that maturation of Dmrt1(-/-;tg) Sertoli cells was incomplete. Morphological analysis of testes from 42-day-old mice showed that, compared to Dmrt1(-/-) mice, Dmrt1(-/-;tg) mice have improved seminiferous tubule structure, with lumens present in many. Immunohistochemistry of the polarity markers ESPIN and NECTIN-2 showed that DMRT1 in Sertoli cells is required for NECTIN-2 expression and influences organization of ectoplasmic specializations. Further functional analyses of the transgene on a Dmrt1(-/-) background showed that it did not rescue the decrease in Dmrt1(-/-) testis size, but when expressed on a wild-type background, exogenous DMRT1 prevented the normal age-related decline in testis size and enhanced sperm progressive motility. The studies suggest that DMRT1 in Sertoli cells regulates tubule morphology, spermatogenesis, and sperm function via its effects on Sertoli cell maturation and polarity. Furthermore, expression and function of transgenic DMRT1 in Sertoli cells establishes a novel mouse model of DMRT1-deficient germ cells generated by breeding Dmrt1-null mice with Wt1-Dmrt1 transgenic mice (rescue; Dmrt1(-/-;tg)).
Collapse
Affiliation(s)
- Valentine A Agbor
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
105
|
Wu GC, Chang CF. The switch of secondary sex determination in protandrous black porgy, Acanthopagrus schlegeli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:33-38. [PMID: 22411079 DOI: 10.1007/s10695-012-9618-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
Hermaphrodites have both sexes during their life, including an initial primary sex determination and in later stage maintenance one of the sexual fates (secondary sex determination). Sex change (secondary sex determination) occurs in animals, but it is lost in amphibians through, mammals in vertebrates. Teleosts have various strategies and mechanisms of sex determination including genetic and environmental cues. However, the mechanisms by which the cues guide sex change are complicated in fish. This manuscript reviews our understanding of these processes in protandrous black porgy at the gonadal and neuroendocrine levels. Our studies addressed the process of sex change through brain-pituitary-gonad axis, and then secondary sex determination was switched by the fate of testis.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | | |
Collapse
|
106
|
Wu GC, Chang CF. Oocytes Survive in the Testis by Altering the Soma Fate from Male to Female in the Protandrous Black Porgy, Acanthopagrus schlegeli1. Biol Reprod 2013. [DOI: 10.1095/biolreprod.112.104398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
107
|
Bashamboo A, McElreavey K. Gene Mutations Associated with Anomalies of Human Gonad Formation. Sex Dev 2013; 7:126-46. [DOI: 10.1159/000342188] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
108
|
|
109
|
Miyake Y, Sakai Y, Kuniyoshi H. Molecular cloning and expression profile of sex-specific genes, Figla and Dmrt1, in the protogynous hermaphroditic fish, Halichoeres poecilopterus. Zoolog Sci 2012; 29:690-701. [PMID: 23030342 DOI: 10.2108/zsj.29.690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genes folliculogenesis specific basic helix-loop-helix (facor in the germline alpha, Figla) and doublesex and mab-3 related transcription factor 1 (Dmrt1) are female- and male-specific genes that play key roles in sex differentiation. To obtain a better understanding of the molecular mechanisms underlying female-to-male sex change, we cloned the cDNAs of these genes from an ovary and a testis of the protogynus wrasse, Halichoeres poecilopterus. This fish has two isoforms of Dmrt1, Dmrt1a and Dmrt1b, caused by an alternative splicing. The Dmrt1b has an insertion of three nucleotides (CAG) in the open reading frame. Figla and Dmrt1 displayed gonadal-specific expression and abundant in the ovaries and in the testes, respectively. In particular, levels of Figla expression in the ovaries were higher in the spawning season than in the non-spawning season. Once sex change began, Figla mRNA decreased and Dmrt1 mRNA increased with progression of oocyte degeneration and spermatogenesis. These expression levels were maintained until the completion of the sex change. Low Figla and high Dmrt1 were also observed in testes of primary males, which functioned as a gonochoristic male throughout its life span in this wrasse. The results of this study suggest that these genes may regulate the gonadal transition from ovary to testis by the same mechanism as that of formation and maintenance of the primary testis in H. poecilopterus.
Collapse
Affiliation(s)
- Yuko Miyake
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan.
| | | | | |
Collapse
|
110
|
Piferrer F, Ribas L, Díaz N. Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:591-604. [PMID: 22544374 PMCID: PMC3419836 DOI: 10.1007/s10126-012-9445-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/05/2012] [Indexed: 05/15/2023]
Abstract
The embryonic gonad is the only organ that takes two mutually exclusive differentiating pathways and hence gives rise to two different adult organs: testes or ovaries. The recent application of genomic tools including microarrays, next-generation sequencing approaches, and epigenetics can significantly contribute to decipher the molecular mechanisms involved in the processes of sex determination and sex differentiation. However, in fish, these studies are complicated by the fact that these processes depend, perhaps to a larger extent when compared to other vertebrates, on the interplay of genetic and environmental influences. Here, we review the advances made so far, taking into account different experimental approaches, and illustrate some technical complications deriving from the fact that as development progresses it becomes more and more difficult to distinguish whether changes in gene expression or DNA methylation patterns are the cause or the consequence of such developmental events. Finally, we suggest some avenues for further research in both model fish species and fish species facing specific problems within an aquaculture context.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim 37-49, Barcelona, Spain.
| | | | | |
Collapse
|
111
|
Johnsen H, Andersen Ø. Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication. Gene 2012; 505:221-32. [DOI: 10.1016/j.gene.2012.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
112
|
Kobayashi Y, Nagahama Y, Nakamura M. Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 2012; 7:115-25. [PMID: 22948719 DOI: 10.1159/000342009] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among vertebrates, fishes show an exceptional range of reproductive strategies regarding the expression of their sexuality. Fish sexualities were categorized into gonochorism, synchronous/sequential hermaphrodite, or unisexual reproduction. In gonochoristic fishes, sex is determined genetically or by environmental factors. After sex determination, the gonads are differentiated into ovary or testis, with the sex remaining fixed for the entire life cycle. In contrast, some sequential hermaphrodite fishes can change their sex from male to female (protandrous), female to male (protogynous), or serially (bi-directional sex change) in their life cycle. In many cases, sex change is cued by social factors such as the disappearance of a male or female from a group. This unique diversity in fishes provides an ideal animal model to investigate sex determination and differentiation in vertebrates. This review first discusses genetic-orientated sex determination mechanisms. Then, we address the gonadal sex differentiation process in a gonochoristic fish, using an example of the Nile tilapia. Finally, we discuss various types of sex change that occur in hermaphrodite fishes.
Collapse
Affiliation(s)
- Y Kobayashi
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Motobu, Japan.
| | | | | |
Collapse
|
113
|
Berbejillo J, Martinez-Bengochea A, Bedo G, Brunet F, Volff JN, Vizziano-Cantonnet D. Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Mol Reprod Dev 2012; 79:504-16. [DOI: 10.1002/mrd.22053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/11/2012] [Indexed: 11/12/2022]
|
114
|
Molecular basis and genetic improvement of economically important traits in aquaculture animals. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5213-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
115
|
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
116
|
Cao M, Duan J, Cheng N, Zhong X, Wang Z, Hu W, Zhao H. Sexually dimorphic and ontogenetic expression of dmrt1, cyp19a1a and cyp19a1b in Gobiocypris rarus. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:303-9. [PMID: 22504107 DOI: 10.1016/j.cbpa.2012.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/15/2022]
Abstract
Fish have diverse sex determination and differentiation. DMRT1 and aromatase are conserved in the phyla and play pivotal roles in sex development. Gobiocypris rarus is a small fish used as a model in aquatic toxicology in China and has been used to study the effects of environmental endocrine disruptors on gene expression, but its sexual development remains elusive. Here, we report the full-length cDNA of G. rarus dmrt1 and its expression along with the expression of cyp19a1a and cyp19a1b, two genes encoding gonad and brain type aromatases, in adults and during ontogenesis. Both cyp19a1a and dmrt1 are expressed in the ovary and testis but show sexual dimorphism. Expression of cyp19a1a in the ovary is higher than in testes and dmrt1 follows the opposite pattern. Juvenile gonad histology changes at 15 days after hatching. The dimorphic expression of dmrt1 and cyp19a1a appears from 5 days after hatching, which is earlier than histological change. cyp19a1b is expressed coordinately with cyp19a1a until 15 days after hatching. These results show that dmrt1 and cyp19a1a play important roles in sex determination and sex differentiation in G. rarus.
Collapse
Affiliation(s)
- Mengxi Cao
- Hubei Key Laboratory of Genetic Regulation and Integrated Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | | | | | | | | | | | | |
Collapse
|
117
|
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 2012; 28:175-84. [PMID: 22425532 DOI: 10.1016/j.tig.2012.02.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
Most animals are sexually dimorphic, but different taxa have different sex-specific traits. Despite major differences in the genetic control of sexual development among animal lineages, the doublesex/mab-3 related (Dmrt) family of transcription factors has been shown to be involved in sex-specific differentiation in all animals that have been studied. In recent years the functions of Dmrt genes have been characterized in many animal groups, opening the way to a broad comparative perspective. This review focuses on the similarities and differences in the functions of Dmrt genes across the animal kingdom. I highlight a number of common themes in the sexual development of different taxa, discuss how Dmrt genes have acquired new roles during animal evolution, and show how they have contributed to the origin of novel sex-specific traits.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616 USA.
| |
Collapse
|
118
|
Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 2012; 13:163-74. [PMID: 22310892 PMCID: PMC3595575 DOI: 10.1038/nrg3161] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most animals reproduce sexually, but the genetic and molecular mechanisms that determine the eventual sex of each embryo vary remarkably. DM domain genes, which are related to the insect gene doublesex, are integral to sexual development and its evolution in many metazoans. Recent studies of DM domain genes reveal mechanisms by which new sexual dimorphisms have evolved in invertebrates and show that one gene, Dmrt1, was central to multiple evolutionary transitions between sex-determining mechanisms in vertebrates. In addition, Dmrt1 coordinates a surprising array of distinct cell fate decisions in the mammalian gonad and even guards against transdifferentiation of male cells into female cells in the adult testis.
Collapse
Affiliation(s)
- Clinton K Matson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
119
|
Abstract
The transcription factor Dmrt1 regulates male sexual development from flies and worms to humans. A newly discovered function is to suppress female differentiation in the testes. Thus, the gonadal fate decision is not final but has to be actively maintained throughout life.
Collapse
Affiliation(s)
- Amaury Herpin
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
120
|
Wu GC, Chiu PC, Lin CJ, Lyu YS, Lan DS, Chang CF. Testicular dmrt1 Is Involved in the Sexual Fate of the Ovotestis in the Protandrous Black Porgy1. Biol Reprod 2012; 86:41. [DOI: 10.1095/biolreprod.111.095695] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
121
|
|
122
|
|