101
|
Ben Guerrero E, Soria M, Salvador R, Ceja-Navarro JA, Campos E, Brodie EL, Talia P. Effect of Different Lignocellulosic Diets on Bacterial Microbiota and Hydrolytic Enzyme Activities in the Gut of the Cotton Boll Weevil ( Anthonomus grandis). Front Microbiol 2016; 7:2093. [PMID: 28082962 PMCID: PMC5186755 DOI: 10.3389/fmicb.2016.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 11/13/2022] Open
Abstract
Cotton boll weevils, Anthonomus grandis, are omnivorous coleopteran that can feed on diets with different compositions, including recalcitrant lignocellulosic materials. We characterized the changes in the prokaryotic community structure and the hydrolytic activities of A. grandis larvae fed on different lignocellulosic diets. A. grandis larvae were fed on three different artificial diets: cottonseed meal (CM), Napier grass (NG) and corn stover (CS). Total DNA was extracted from the gut samples for amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Proteobacteria and Firmicutes dominated the gut microbiota followed by Actinobacteria, Spirochaetes and a small number of unclassified phyla in CM and NG microbiomes. In the CS feeding group, members of Spirochaetes were the most prevalent, followed by Proteobacteria and Firmicutes. Bray-Curtis distances showed that the samples from the CS community were clearly separated from those samples of the CM and NG diets. Gut extracts from all three diets exhibited endoglucanase, xylanase, β-glucosidase and pectinase activities. These activities were significantly affected by pH and temperature across different diets. We observed that the larvae reared on a CM showed significantly higher activities than larvae reared on NG and CS. We demonstrated that the intestinal bacterial community structure varies depending on diet composition. Diets with more variable and complex compositions, such as CS, showed higher bacterial diversity and richness than the two other diets. In spite of the detected changes in composition and diversity, we identified a core microbiome shared between the three different lignocellulosic diets. These results suggest that feeding with diets of different lignocellulosic composition could be a viable strategy to discover variants of hemicellulose and cellulose breakdown systems.
Collapse
Affiliation(s)
- Emiliano Ben Guerrero
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria Castelar Hurlingham, Argentina
| | - Marcelo Soria
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales-Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria Castelar Hurlingham, Argentina
| | - Javier A Ceja-Navarro
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Eleonora Campos
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria CastelarHurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Paola Talia
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria CastelarHurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
| |
Collapse
|
102
|
Mikaelyan A, Meuser K, Brune A. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 2016; 93:fiw210. [PMID: 27798065 DOI: 10.1093/femsec/fiw210] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 11/13/2022] Open
Abstract
Symbiotic digestion of lignocellulose in higher termites (family Termitidae) is accomplished by an exclusively prokaryotic gut microbiota. By deep sequencing of amplified 16S rRNA genes, we had identified diet as the primary determinant of bacterial community structure in a broad selection of termites specialized on lignocellulose in different stages of humification. Here, we increased the resolution of our approach to account for the pronounced heterogeneity in microenvironmental conditions and microbial activities in the major hindgut compartments. The community structure of consecutive gut compartments in each species strongly differed, but that of homologous compartments clearly converged, even among unrelated termites. While the alkaline P1 compartments of all termites investigated contained specific lineages of Clostridiales, the posterior hindgut compartments (P3, P4) differed between feeding groups and were predominantly colonized by putatively fiber-associated lineages of Spirochaetes, Fibrobacteres and the TG3 phylum (wood and grass feeders) or diverse assemblages of Clostridiales and Bacteroidetes (humus and soil feeders). The results underscore that bacterial community structure in termite guts is driven by microenvironmental factors, such as pH, available substrates and gradients of O2 and H2, and inspire investigations on the functional roles of specific bacterial taxa in lignocellulose and humus digestion.
Collapse
Affiliation(s)
- Aram Mikaelyan
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Katja Meuser
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
103
|
Yang Y, Deng Y, Cao L. Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas. Sci Rep 2016; 6:32655. [PMID: 27600170 PMCID: PMC5013396 DOI: 10.1038/srep32655] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Microorganisms in vertebrate guts have been recognized as important symbionts influencing host life. However, it remains unclear about the gut microbiota in long-distance migratory Anseriformes herbivores, which could be functionally important for these wetland-dependent animals. We collected faeces of the greater white-fronted goose (GWFG), bean goose (BG) and swan goose (SG) from Shengjin Lake (SJL) and Poyang Lake (PYL) in the Yangtze River Floodplain, China. High-throughput sequencing of 16S rRNA V4 region was employed to depict the composition and structure of geese gut microbiota during wintering period. The dominant bacterial phyla across all samples were Firmicutes, Proteobacteria and Actinobacteria, but significant variations were detected among different goose species and sampling sites, in terms of α diversity, community structures and microbial interactions. We found a significant correlation between diet and the microbial community structure in GWFG-SJL samples. These results demonstrated that host species and diet are potential drivers of goose gut microbiota assemblies. Despite these variations, functions of geese gut microbiota were similar, with great abundances of potential genes involved in nutrient metabolism. This preliminary study would be valuable for future, exhaustive investigations of geese gut microbiota and their interactions with host.
Collapse
Affiliation(s)
- Yuzhan Yang
- School of Life Sciences, University of Science and Technology of China, Huangshan Road, Hefei, 230026, China
| | - Ye Deng
- Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Cao
- Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
104
|
Montagna M, Mereghetti V, Gargari G, Guglielmetti S, Faoro F, Lozzia G, Locatelli D, Limonta L. Evidence of a bacterial core in the stored products pest Plodia interpunctella: the influence of different diets. Environ Microbiol 2016; 18:4961-4973. [PMID: 27398939 DOI: 10.1111/1462-2920.13450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
The potential influence of insects' feeding behaviour on their associated bacterial communities is currently a matter of debate. Using the major pest of commodities, Plodia interpunctella, as a model and adopting a culture-independent approach, the impact of different diets on the host-associated microbiota was evaluated. An analysis of similarity showed differences among the microbiotas of moths fed with five substrates and provided evidence that diet represents the only tested factor that explains this dissimilarity. Bacteria shared between food and insects provide evidence for a limited conveyance to the host of the bacteria derived from the diet; more likely, the content of carbohydrates and proteins in the diets promotes changes in the insect's microbiota. Moth microbiotas were characterized by two robust entomotypes, respectively, associated with a carbohydrate-rich diet and a protein-rich diet. These results were also confirmed by the predicted metagenome functional potential. A core microbiota, composed of six taxa, was shared between eggs and adults, regardless of the origin of the population. Finally, the identification of possible human and animal pathogens on chili and associated with the moths that feed on it highlights the possibility that these bacteria may be conveyed by moth frass.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Gargari
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Simone Guglielmetti
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Lozzia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Daria Locatelli
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Lidia Limonta
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
105
|
Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol 2016; 25:3776-800. [DOI: 10.1111/mec.13730] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy J. Colston
- Department of Biology The University of Mississippi University MS 38677 USA
| | - Colin R. Jackson
- Department of Biology The University of Mississippi University MS 38677 USA
| |
Collapse
|
106
|
Su L, Yang L, Huang S, Li Y, Su X, Wang F, Bo C, Wang ET, Song A. Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets. Appl Biochem Biotechnol 2016; 181:32-47. [PMID: 27457759 DOI: 10.1007/s12010-016-2197-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Abstract
Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1-V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets < corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.
Collapse
Affiliation(s)
- Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Lele Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Shi Huang
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Yan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Xiaoquan Su
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Fengqin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, Henan, 450002, China
| | - Cunpei Bo
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México D.F., Mexico.
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, Henan, 450002, China.
- , No. 93, Nongye Road, Zhengzhou, Henan Province, China.
| |
Collapse
|
107
|
Tegtmeier D, Thompson CL, Schauer C, Brune A. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model. Appl Environ Microbiol 2016; 82:1080-1089. [PMID: 26637604 PMCID: PMC4751835 DOI: 10.1128/aem.03130-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.
Collapse
Affiliation(s)
- Dorothee Tegtmeier
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Claire L Thompson
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Christine Schauer
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
108
|
Su L, Yang L, Huang S, Su X, Li Y, Wang F, Wang E, Kang N, Xu J, Song A. Comparative Gut Microbiomes of Four Species Representing the Higher and the Lower Termites. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew081. [PMID: 27638955 PMCID: PMC5026480 DOI: 10.1093/jisesa/iew081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/30/2016] [Indexed: 05/12/2023]
Abstract
Aiming at learning the association between the gut microbiota and termites with different diet habits and phylogenetic positions, the gut bacteria of three populations for each of the two higher termites (wood-feeding Mironasutitermes shangchengensis and fungus-feeding Odontotermes formosanus) and two wood-feeding lower termites (Tsaitermes ampliceps and Reticulitermes flaviceps) were analyzed by high-throughput 454 pyrosequencing of 16S V1-V3 amplicons. As results, 132 bacterial genera and some unidentified operational taxonomic units within 29 phyla in the gut bacteria were detected, with Spirochaetes (11-55%), Firmicutes (7-18%), Bacteroidetes (7-31%), and Proteobacteria (8-14%) as the main phyla, and Treponema, TG5, Dysgonomonas, Tannerella, za29, Lactococcus, Pseudomonas, and SJA-88 as the common genera in all the four termites. The diversity of gut bacterial communities in the higher termite guts was significantly greater than that in the lower termites; while the gut microbiota in M. shangchengensis (wood-feeding higher termite) was more similar to those of the wood-feeding lower termites rather than that of O. formosanus (fungus-feeding higher termite), and phylum Spirochaetes and nitrogen-fixing bacteria were super-dominant in the wood-feeding termites, despite of their phylogenetic relations. This study reported for the first time the gut bacterial communities for the termites of M. shangchengensis and T. ampliceps and the comparative analyses showed that the gut microbial communities varied according to the phylogeny and the diet habits of termites.
Collapse
Affiliation(s)
- LiJuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - LeLe Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Shi Huang
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (; )
| | - XiaoQuan Su
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (; )
| | - Yan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - FengQin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, Henan 450002, China
| | - EnTao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, DF 11340, México
| | - Ning Kang
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (; )
| | - Jian Xu
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (; )
| | - AnDong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, Henan 450002, China
| |
Collapse
|
109
|
Deterministic Assembly of Complex Bacterial Communities in Guts of Germ-Free Cockroaches. Appl Environ Microbiol 2015; 82:1256-63. [PMID: 26655763 DOI: 10.1128/aem.03700-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 01/09/2023] Open
Abstract
The gut microbiota of termites plays important roles in the symbiotic digestion of lignocellulose. However, the factors shaping the microbial community structure remain poorly understood. Because termites cannot be raised under axenic conditions, we established the closely related cockroach Shelfordella lateralis as a germ-free model to study microbial community assembly and host-microbe interactions. In this study, we determined the composition of the bacterial assemblages in cockroaches inoculated with the gut microbiota of termites and mice using pyrosequencing analysis of their 16S rRNA genes. Although the composition of the xenobiotic communities was influenced by the lineages present in the foreign inocula, their structure resembled that of conventional cockroaches. Bacterial taxa abundant in conventional cockroaches but rare in the foreign inocula, such as Dysgonomonas and Parabacteroides spp., were selectively enriched in the xenobiotic communities. Donor-specific taxa, such as endomicrobia or spirochete lineages restricted to the gut microbiota of termites, however, either were unable to colonize germ-free cockroaches or formed only small populations. The exposure of xenobiotic cockroaches to conventional adults restored their normal microbiota, which indicated that autochthonous lineages outcompete foreign ones. Our results provide experimental proof that the assembly of a complex gut microbiota in insects is deterministic.
Collapse
|