101
|
Liu Q, Hobbs HA, Domier LL. Genome-wide association study of the seed transmission rate of soybean mosaic virus and associated traits using two diverse population panels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3413-3424. [PMID: 31630210 DOI: 10.1007/s00122-019-03434-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Genome-wide association analyses identified candidates for genes involved in restricting virus movement into embryonic tissues, suppressing virus-induced seed coat mottling and preserving yield in soybean plants infected with soybean mosaic virus. Soybean mosaic virus (SMV) causes significant reductions in soybean yield and seed quality. Because seedborne infections can serve as primary sources of inoculum for SMV infections, resistance to SMV seed transmission provides a means to limit the impacts of SMV. In this study, two diverse population panels, Pop1 and Pop2, composed of 409 and 199 soybean plant introductions, respectively, were evaluated for SMV seed transmission rate, seed coat mottling, and seed yield from SMV-infected plants. The phenotypic data and genotypic data from the SoySNP50K dataset were analyzed using GAPIT and rrBLUP. For SMV seed transmission rate, a single locus was identified on chromosome 9 in Pop1. For SMV-induced seed coat mottling, loci were identified on chromosome 9 in Pop1 and on chromosome 3 in Pop2. For seed yield from SMV-infected plants, a single locus was identified on chromosome 3 in Pop2 that was within the map interval of a previously described quantitative trait locus for seed number. The high linkage disequilibrium regions surrounding the markers on chromosomes 3 and 9 contained a predicted nonsense-mediated RNA decay gene, multiple pectin methylesterase inhibitor genes (involved in restricting virus movement), two chalcone synthase genes, and a homolog of the yeast Rtf1 gene (involved in RNA-mediated transcriptional gene silencing). The results of this study provided additional insight into the genetic architecture of these three important traits, suggested candidate genes for downstream functional validation, and suggested that genomic prediction would outperform marker-assisted selection for two of the four trait-marker associations.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Houston A Hobbs
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Leslie L Domier
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL, 61801, USA.
| |
Collapse
|
102
|
Ochoa J, Valli A, Martín-Trillo M, Simón-Mateo C, García JA, Rodamilans B. Sterol isomerase HYDRA1 interacts with RNA silencing suppressor P1b and restricts potyviral infection. PLANT, CELL & ENVIRONMENT 2019; 42:3015-3026. [PMID: 31286514 DOI: 10.1111/pce.13610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Plants use RNA silencing as a strong defensive barrier against virus challenges, and viruses counteract this defence by using RNA silencing suppressors (RSSs). With the objective of identifying host factors helping either the plant or the virus in this interaction, we have performed a yeast two-hybrid screen using P1b, the RSS protein of the ipomovirus Cucumber vein yellowing virus (CVYV, family Potyviridae), as a bait. The C-8 sterol isomerase HYDRA1 (HYD1), an enzyme involved in isoprenoid biosynthesis and cell membrane biology, and required for RNA silencing, was isolated in this screen. The interaction between CVYV P1b and HYD1 was confirmed in planta by Bimolecular Fluorescence Complementation assays. We demonstrated that HYD1 negatively impacts the accumulation of CVYV P1b in an agroinfiltration assay. Moreover, expression of HYD1 inhibited the infection of the potyvirus Plum pox virus, especially when antiviral RNA silencing was boosted by high temperature or by coexpression of homologous sequences. Our results reinforce previous evidence highlighting the relevance of particular composition and structure of cellular membranes for RNA silencing and viral infection. We report a new interaction of an RSS protein from the Potyviridae family with a member of the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Jon Ochoa
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián Valli
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Martín-Trillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Simón-Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Bernardo Rodamilans
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
103
|
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses, encompassing over 30% of known plant viruses. The family is closely related to animal picornaviruses such as enteroviruses and belongs to the picorna-like supergroup. Like all other picorna-like viruses, potyvirids employ polyprotein processing as a gene expression strategy and have single-stranded, positive-sense RNA genomes, most of which are monopartite with a long open reading frame. The potyvirid polyproteins are highly conserved in the central and carboxy-terminal regions. In contrast, the N-terminal region is hypervariable and contains position-specific mutations resulting from transcriptional slippage during viral replication, leading to translational frameshift to produce additional viral proteins essential for viral infection. Some potyvirids even lack one of the N-terminal proteins P1 or helper component-protease and have a genus-specific or species-specific protein instead. This review summarizes current knowledge about the conserved and divergent features of potyvirid genomes and biological relevance and discusses future research directions.
Collapse
Affiliation(s)
- Hongguang Cui
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Haikou, Hainan 570228, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| |
Collapse
|
104
|
Gupta AK, Tatineni S. RNA silencing suppression mechanisms of Triticum mosaic virus P1: dsRNA binding property and mapping functional motifs. Virus Res 2019; 269:197640. [DOI: 10.1016/j.virusres.2019.197640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022]
|
105
|
Kalyandurg PB, Tahmasebi A, Vetukuri RR, Kushwaha SK, Lezzhov AA, Solovyev AG, Grenville-Briggs LJ, Savenkov EI. Efficient RNA silencing suppression activity of Potato Mop-Top Virus 8K protein is driven by variability and positive selection. Virology 2019; 535:111-121. [PMID: 31299487 DOI: 10.1016/j.virol.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/31/2022]
Abstract
Previously, we investigated the evolution of Potato mop-top virus (PMTV) ORFs. Results indicate that positive selection acts exclusively on an ORF encoding the 8K protein, a weak viral suppressor of RNA silencing (VSR). However, how the extraordinary variability contributes to 8K-mediated RNA silencing suppression remains unknown. Here, we characterized the RNA silencing suppression activity of the 8K protein from seven diverse isolates. We show that 8K encoded by isolate P1 exhibits stronger RNA silencing suppression activity than the 8K protein from six other isolates. Mutational analyses revealed that Ser-50 is critical for these differences. By comparing small RNA profiles we found a lower abundance of siRNAs with U residue at the 5'-terminus after expression of the P1 8K compared to expression of 8K from isolate P125, an isolate with weak VSR activity. These results provide new clues as to the role of positive selection in shaping activities of VSRs.
Collapse
Affiliation(s)
- Pruthvi B Kalyandurg
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden
| | - Aminallah Tahmasebi
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden; Plant Virology Research Centre, College of Agriculture, Shiraz University, Iran
| | - Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; Department of Virology Biological Faculty, Moscow State University, Moscow, Russia
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
106
|
Osterbaan LJ, Choi J, Kenney J, Flasco M, Vigne E, Schmitt-Keichinger C, Rebelo AR, Heck M, Fuchs M. The Identity of a Single Residue of the RNA-Dependent RNA Polymerase of Grapevine Fanleaf Virus Modulates Vein Clearing in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:790-801. [PMID: 30640575 DOI: 10.1094/mpmi-12-18-0337-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms underlying host plant symptom development upon infection by viruses of the genus Nepovirus in the family Secoviridae, including grapevine fanleaf virus (GFLV), are poorly understood. In the systemic host Nicotiana benthamiana, GFLV strain GHu produces characteristic symptoms of vein clearing in apical leaves, unlike other GFLV strains such as F13, which cause an asymptomatic infection. In this study, we expanded on earlier findings and used reverse genetics to identify residue 802 (lysine, K) of the GFLV-GHu RNA1-encoded RNA-dependent RNA polymerase (1EPol) as a modulator of vein-clearing symptom development in N. benthamiana. Mutations to this site abolished (K to G, A, or Q) or attenuated (K to N or P) symptom expression. Noteworthy, residue 802 is necessary but not sufficient for vein clearing, as GFLV-F13 RNA1 carrying K802 remained asymptomatic in N. benthamiana. No correlation was found between symptom expression and RNA1 accumulation, as shown by reverse transcription-quantitative polymerase chain reaction. Additionally, the involvement of RNA silencing of vein clearing was ruled out by virus-induced gene silencing experiments and structure predictions for protein 1EPol suggested that residue 802 is flanked by strongly predicted stable secondary structures, including a conserved motif of unknown function (805LLKT/AHLK/RT/ALR814). Together, these results reveal the protein nature of the GFLV-GHu symptom determinant in N. benthamiana and provide a solid basis for probing and determining the virus-host proteome network for symptoms of vein clearing.
Collapse
Affiliation(s)
- Larissa J Osterbaan
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Jiyeong Choi
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Jaimie Kenney
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Madison Flasco
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Emmanuelle Vigne
- 2 UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, 68000 Colmar, France
| | | | - Ana Rita Rebelo
- 3 Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, U.S.A
| | - Michelle Heck
- 3 Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, U.S.A
- 4 Boyce Thompson Research Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, U.S.A
- 5 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Marc Fuchs
- 1 Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| |
Collapse
|
107
|
RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
|
108
|
Yang K, Shen W, Li Y, Li Z, Miao W, Wang A, Cui H. Areca Palm Necrotic Ringspot Virus, Classified Within a Recently Proposed Genus Arepavirus of the Family Potyviridae, Is Associated With Necrotic Ringspot Disease in Areca Palm. PHYTOPATHOLOGY 2019; 109:887-894. [PMID: 30133353 DOI: 10.1094/phyto-06-18-0200-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Areca palm (Areca catechu), one of the two most important commercial crops in Hainan, China, has been severely damaged by a variety of pathogens and insects. Here, we report a new disease, tentatively referred to as areca palm necrotic ringspot disease (ANRSD), which is highly epidemic in the main growing regions in Hainan. Transmission electron microscopy observation and small RNA deep sequencing revealed the existence of a viral agent of the family Potyviridae in a diseased areca palm plant (XC1). The virus was tentatively named areca palm necrotic ringspot virus (ANRSV). Subsequently, the positive-sense single-stranded genome of ANRSV isolate XC1 was completely determined. The genome annotation revealed the existence of two cysteine proteinases in tandem (HC-Pro1 and HC-Pro2) in the genomic 5' terminus of ANRSV. Sequence comparison and phylogenetic analysis suggested the taxonomic classification of ANRSV into the recently proposed genus Arepavirus in the family Potyviridae. Given the close relationship of ANRSV with another newly reported arepavirus (areca palm necrotic spindle-spot virus), the exact taxonomic status of ANRSV needs to be further investigated. In this study, a reverse transcription polymerase chain reaction assay for ANRSV-specific detection was developed and a close association between ANRSV and ANRSD was found.
Collapse
Affiliation(s)
- Ke Yang
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Wentao Shen
- 2 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ye Li
- 3 Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; and
| | - Zengping Li
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Weiguo Miao
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Aiming Wang
- 4 London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Hongguang Cui
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
109
|
Zhang L, Shang J, Jia Q, Li K, Yang H, Liu H, Tang Z, Chang X, Zhang M, Wang W, Yang W. Genetic evolutionary analysis of soybean mosaic virus populations from three geographic locations in China based on the P1 and CP genes. Arch Virol 2019; 164:1037-1048. [PMID: 30747339 DOI: 10.1007/s00705-019-04165-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Soybean mosaic virus (SMV) is one of the major pathogens causing serious soybean losses. Little is known about the genetic structure and evolutionary biology of the SMV population in southwestern China. In this study, 29 SMV isolates were obtained from Sichuan Province, and the genomic regions encoding the first protein (P1) and coat protein (CP) were sequenced. Combined with SMV isolates from the southeastern and northeastern regions of China, the genetic and molecular evolution of SMV was studied. Recombination analysis revealed that intraspecific and interspecific recombination had occurred in the SMV population. A phylogenetic tree based on the P1 gene reflected the geographic origin of the non-interspecific recombinant SMV (SMV-NI), while a tree based on the CP gene did not. Though frequent gene flow of the SMV-NI populations was found between the southeastern and northeastern populations, the southwestern population was relatively independent. Genetic differentiation was significant between the SMV interspecific recombinant (SMV-RI) and the non-interspecific recombinant (SMV-NI) populations. It was interesting to note that there was an almost identical recombination breakpoint in SMV-RI and Watermelon mosaic virus (WMV). Population dynamics showed that SMV-RI might be in an expanding state, while the SMV-NI population is relatively stable.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Jia
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Hui Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Liu
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqin Tang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenming Wang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
110
|
Han T, Hou Q, Cheng X, Garcia JA, Valli A, Zhang S, Cao M, Yang C. Complete genome sequence of a novel member of the family Potyviridae isolated from Phellodendron amurense Rupr. in Liaoning, China. Arch Virol 2019; 164:1705-1709. [PMID: 30880346 DOI: 10.1007/s00705-019-04210-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/15/2019] [Indexed: 11/25/2022]
Abstract
In September 2017, Phellodendron amurense Rupr. plants showing yellow ringspots on leaves were observed in Liaoning, China. Flexuous filamentous particles (~1000 × 13 nm) were observed in the sap prepared from symptomatic leaves. A virus was detected in the symptomatic leaves by sequencing small RNAs and assembling the genome sequence. The complete genomic RNA was found to be 10,457 nucleotides in length excluding the poly(A) tail and to have the closest phylogenetic relationship to rose yellow mosaic virus (RoYMV), the sole member of newly established genus Roymovirus in the family Potyviridae. The coat protein gene (CP) of this virus shares 49.2% nucleotide and 55.1% amino acid sequence identity with that of RoYMV. These results suggest that this virus, which was named "phellodendron yellow ringspot-associated virus" (PYRaV) is a new member of the genus Roymovirus.
Collapse
Affiliation(s)
- Tong Han
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Dadong, Shenyang, 110044, Liaoning, China
| | - Qiushi Hou
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Dadong, Shenyang, 110044, Liaoning, China
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Juan Antonio Garcia
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Dadong, Shenyang, 110044, Liaoning, China.
| |
Collapse
|
111
|
Mann KS, Chisholm J, Sanfaçon H. Strawberry Mottle Virus (Family Secoviridae, Order Picornavirales) Encodes a Novel Glutamic Protease To Process the RNA2 Polyprotein at Two Cleavage Sites. J Virol 2019; 93:e01679-18. [PMID: 30541838 PMCID: PMC6384087 DOI: 10.1128/jvi.01679-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.
Collapse
Affiliation(s)
- Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Joan Chisholm
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| |
Collapse
|
112
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
113
|
Rose H, Döring I, Vetten HJ, Menzel W, Richert-Pöggeler KR, Maiss E. Complete genome sequence and construction of an infectious full-length cDNA clone of celery latent virus - an unusual member of a putative new genus within the Potyviridae. J Gen Virol 2019; 100:308-320. [PMID: 30667354 DOI: 10.1099/jgv.0.001207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Celery latent virus (CeLV) is an incompletely described plant virus known to be sap and seed transmissible and to possess flexuous filamentous particles measuring about 900 nm in length, suggesting it as a possible member of the family Potyviridae. Here, an Italian isolate of CeLV was transmitted by sap to a number of host plants and shown to have a single-stranded and monopartite RNA genome being 11 519 nucleotides (nts) in size and possessing some unusual features. The RNA contains a large open reading frame (ORF) that is flanked by a short 5' untranslated region (UTR) of 13 nt and a 3' UTR consisting of 586 nt that is not polyadenylated. CeLV RNA shares nt sequence identity of only about 40 % with other members of the Potyviridae (potyvirids). The CeLV polyprotein is notable in that it starts with a signal peptide, has a putative P3N-PIPO ORF and shares low aa sequence identity (about 18 %) with other potyvirids. Although potential cleavage sites were not identified for the N-terminal two-thirds of the polyprotein, the latter possesses a number of sequence motifs, the identity and position of which are characteristic of other potyvirids. Attempts at constructing an infectious full-length cDNA clone of CeLV were successful following Rhizobium radiobacter infiltration of Nicotiana benthamiana and Apium graveolens. CeLV appears to have the largest genome of all known potyvirids and some unique genome features that may warrant the creation of a new genus, for which we propose the name 'celavirus'.
Collapse
Affiliation(s)
- Hanna Rose
- 1Department Phytomedicine, Leibniz University Hannover, Institute of Horticultural Production Systems, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ines Döring
- 1Department Phytomedicine, Leibniz University Hannover, Institute of Horticultural Production Systems, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | | | - Wulf Menzel
- 3Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124 Braunschweig, Germany
| | - Katja R Richert-Pöggeler
- 4Julius Kühn Institut JKI, Federal Research Centre for Cultivated Plants, Institute of Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Edgar Maiss
- 1Department Phytomedicine, Leibniz University Hannover, Institute of Horticultural Production Systems, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
114
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
115
|
Ambrós S, de la Iglesia F, Rosario SM, Butkovic A, Elena SF. Engineered Functional Redundancy Relaxes Selective Constraints upon Endogenous Genes in Viral RNA Genomes. Genome Biol Evol 2018; 10:1823-1836. [PMID: 29982435 PMCID: PMC6059116 DOI: 10.1093/gbe/evy141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
Functional redundancy, understood as the functional overlap of different genes, is a double-edge sword. At the one side, it is thought to serve as a robustness mechanism that buffers the deleterious effect of mutations hitting one of the redundant copies, thus resulting in pseudogenization. At the other side, it is considered as a source of genetic and functional innovation. In any case, genetically redundant genes are expected to show an acceleration in the rate of molecular evolution. Here, we tackle the role of functional redundancy in viral RNA genomes. To this end, we have evaluated the rates of compensatory evolution for deleterious mutations affecting an essential function, the suppression of RNA silencing plant defense, of tobacco etch potyvirus (TEV). TEV genotypes containing deleterious mutations in presence/absence of engineered functional redundancy were evolved and the pattern of fitness and pathogenicity recovery evaluated. Genetically redundant genotypes suffered less from the effect of deleterious mutations and showed relatively minor changes in fitness and pathogenicity. By contrast, nongenetically redundant genotypes had very low fitness and pathogenicity at the beginning of the evolution experiment that were fully recovered by the end. At the molecular level, the outcome depended on the combination of the actual mutations being compensated and the presence/absence of functional redundancy. Reversions to wild-type alleles were the norm in the nonredundant genotypes while redundant ones either did not fix any mutation at all or showed a higher nonsynonymous mutational load.
Collapse
Affiliation(s)
- Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain
| | - Francisca de la Iglesia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain
| | - Sttefany M Rosario
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain.,Laboratorio de Biología Molecular, Facultad de Agronomía y Veterinaria, UASD, Santo Domingo, Dominican Republic
| | - Anamarija Butkovic
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain.,Instituto de Biología Integrativa de Sistemas (I 2 SysBio), CSIC-Universitat de València, Paterna, Spain.,The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
116
|
Rodamilans B, Valli A, Mingot A, San León D, López-Moya JJ, García JA. An atypical RNA silencing suppression strategy provides a snapshot of the evolution of sweet potato-infecting potyviruses. Sci Rep 2018; 8:15937. [PMID: 30374036 PMCID: PMC6206096 DOI: 10.1038/s41598-018-34358-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Plant viruses usually encode proteins with RNA silencing suppression (RSS) activity to counteract plant defenses. In Potyvirus, the largest genus in the family Potyviridae, this role is taken over by the multifunctional HCPro, also involved in aphid transmission, polyprotein processing and virion formation. Recently, the large P1 of Sweet potato feathery mottle virus (SPFMV) was characterized finding an extra ORF produced after polymerase slippage, which originates the product P1N-PISPO. Transient expression assays showed that SPFMV P1 and P1N-PISPO presented RSS activity, while HCPro did not. In this work, we analyze possible differences between HCPro of SPFMV and other potyviruses, testing HCPro RSS activity in a transient expression assay, and using a Plum pox virus-based system to test the ability of SPFMV P1N-PISPO and HCPro to serve as RNA silencing suppressors in the context of a viral infection. Our results indicate that not only P1 and P1N-PISPO, but also HCPro display RSS activity when expressed in a suitable context, stressing the importance of the selected experimental system for testing anti-silencing capacity of proteins. The presence of multiple viral silencing suppressors in SPFMV adds complexity to an already intricate RSS system, and provides insight into the hypothetical evolution of sweet potato-infecting potyvirids.
Collapse
Affiliation(s)
| | - Adrián Valli
- Centro Nacional de Biotecnología CNB, CSIC, Madrid, Spain
| | - Ares Mingot
- Center for Research in Agricultural Genomics CRAG, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - David San León
- Centro Nacional de Biotecnología CNB, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Center for Research in Agricultural Genomics CRAG, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | |
Collapse
|
117
|
Hubei poty-like virus 1 is likely an interspecies recombinant of sugarcane mosaic virus and putative bean yellow mosaic virus. Arch Virol 2018; 164:261-265. [DOI: 10.1007/s00705-018-4047-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
118
|
Yang X, Ren Y, Sun S, Wang D, Zhang F, Li D, Li S, Zhou X. Identification of the Potential Virulence Factors and RNA Silencing Suppressors of Mulberry Mosaic Dwarf-Associated Geminivirus. Viruses 2018; 10:E472. [PMID: 30177616 PMCID: PMC6163789 DOI: 10.3390/v10090472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/31/2023] Open
Abstract
Plant viruses encode virulence factors or RNA silencing suppressors to reprogram plant cellular processes or to fine-tune host RNA silencing-mediated defense responses. In a previous study, Mulberry mosaic dwarf-associated virus (MMDaV), a novel, highly divergent geminivirus, has been identified from a Chinese mulberry tree showing mosaic and dwarfing symptoms, but the functions of its encoded proteins are unknown. In this study, all seven proteins encoded by MMDaV were screened for potential virulence and RNA silencing suppressor activities. We found that V2, RepA, and Rep affect the pathogenicity of a heterologous potato virus X. We showed that V2 could inhibit local RNA silencing and long-distance movement of the RNA silencing signal, but not short-range spread of the green fluorescent protein (GFP) silencing signal in Nicotiana benthamiana 16c plants. In addition, V2 localized to both subnuclear foci and the cytoplasm. Deletion mutagenesis of V2 showed that the basic motif from amino acids 61 to 76 was crucial for V2 to form subnuclear foci and for suppression of RNA silencing. Although the V2 protein encoded by begomoviruses or a curtovirus has been shown to have silencing suppressor activity, this is the first identification of an RNA silencing suppressor from a woody plant-infecting geminivirus.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yanxiang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shaoshuang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dongxue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fanfan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
119
|
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. MOLECULAR PLANT PATHOLOGY 2018; 19:1563-1579. [PMID: 29134790 PMCID: PMC6638002 DOI: 10.1111/mpp.12644] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
TAXONOMY Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.
Collapse
Affiliation(s)
- M. R. Hajimorad
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTN 37996USA
| | - L. L. Domier
- United States Department of Agriculture‐Agricultural Research Service and Department of Crop SciencesUniversity of IllinoisUrbanaIL 61801USA
| | - S. A. Tolin
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - S. A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
120
|
Zhang X, Dong K, Xu K, Zhang K, Jin X, Yang M, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus infection requires PKA-mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. THE NEW PHYTOLOGIST 2018; 218:1570-1585. [PMID: 29453938 DOI: 10.1111/nph.15065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The Barley stripe mosaic virus (BSMV) γb protein is a viral suppressor of RNA silencing (VSR) and symptom determinant. However, it is unclear how post-translational modification affects the different functions of γb. Here, we demonstrate that γb is phosphorylated at Ser-96 by a PKA-like kinase in vivo and in vitro. Mutant viruses containing a nonphosphorylatable substitution (BSMVS96A or BSMVS96R ) exhibited reduced viral accumulation in Nicotiana benthamiana due to transient induction of the cell death response that constrained the virus to necrotic areas. By contrast, a BSMVS96D mutant virus that mimics γb phosphorylation spread similarly to the wild-type virus. Furthermore, the S96A mutant had reduced local and systemic γb VSR activity due to having compromised its binding activity to 21-bp dsRNA. However, overexpression of other VSRs in trans or in cis failed to rescue the necrosis induced by BSMVS96A , demonstrating that suppression of cell death by γb phosphorylation is functionally distinct from its RNA silencing suppressor activities. These results provide new insights into the function of γb phosphorylation in regulating RNA silencing and the BSMV-induced host cell death response, and contribute to our understanding of how the virus optimizes the balance between viral replication and virus survival in the host plants during virus infection.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
121
|
Rodamilans B, Shan H, Pasin F, García JA. Plant Viral Proteases: Beyond the Role of Peptide Cutters. FRONTIERS IN PLANT SCIENCE 2018; 9:666. [PMID: 29868107 PMCID: PMC5967125 DOI: 10.3389/fpls.2018.00666] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/23/2023]
Abstract
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio Pasin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
122
|
Gallo A, Valli A, Calvo M, García JA. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus. J Virol 2018; 92:e02179-17. [PMID: 29444942 PMCID: PMC5899180 DOI: 10.1128/jvi.02179-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans, was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection.IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus Potyvirus), for instance, we have previously shown that the multitasking viral factor HCPro plays a role in the production of stable virions. Here, by using this potyvirus as a model, we move further to show that additional factors are also necessary for the efficient production of potyviral particles. More importantly, a comprehensive screening for such factors led us to the identification of a functional link between virus replication and packaging, unraveling a previously unknown connection of these two key events of the potyviral infection cycle.
Collapse
Affiliation(s)
- Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
123
|
Aguilar E, Cutrona C, Del Toro FJ, Vallarino JG, Osorio S, Pérez-Bueno ML, Barón M, Chung BN, Canto T, Tenllado F. Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. PLANT, CELL & ENVIRONMENT 2017; 40:2909-2930. [PMID: 28718885 DOI: 10.1111/pce.13028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 05/21/2023]
Abstract
It has been hypothesized that plants can get beneficial trade-offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus-induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought-tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus-infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid-independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non-infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Carmen Cutrona
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Francisco J Del Toro
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - José G Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-CSIC, Málaga, 2907, Spain
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-CSIC, Málaga, 2907, Spain
| | - María Luisa Pérez-Bueno
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Bong-Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Francisco Tenllado
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| |
Collapse
|
124
|
Li L, Andika IB, Xu Y, Zhang Y, Xin X, Hu L, Sun Z, Hong G, Chen Y, Yan F, Yang J, Li J, Chen J. Differential Characteristics of Viral siRNAs between Leaves and Roots of Wheat Plants Naturally Infected with Wheat Yellow Mosaic Virus, a Soil-Borne Virus. Front Microbiol 2017; 8:1802. [PMID: 28979249 PMCID: PMC5611437 DOI: 10.3389/fmicb.2017.01802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
RNA silencing is an important innate antiviral defense in plants. Soil-borne plant viruses naturally infect roots via soil-inhabiting vectors, but it is unclear how antiviral RNA silencing responds to virus infection in this particular tissue. In this study, viral small interfering RNA (siRNA) profiles from leaves and roots of wheat plants naturally infected with a soil-borne virus, wheat yellow mosaic virus (WYMV, genus Bymovirus), were analyzed by deep sequencing. WYMV siRNAs were much more abundant in roots than leaves, which was positively correlated with the accumulation of viral RNA. WYMV siRNAs in leaves and roots were predominantly 21- and 22-nt long and equally derived from the positive- and negative-strands of the viral genome. WYMV siRNAs from leaves and roots differed in distribution pattern along the viral genome. Interestingly, compared to siRNAs from leaves (and most other reports), those from roots obviously had a lower A/U bias at the 5'-terminal nucleotide. Moreover, the expression of Dicer-like genes upon WYMV infection were differently regulated between leaves and roots. Our data suggest that RNA silencing in roots may operate differently than in leaves against soil-borne virus invasion.
Collapse
Affiliation(s)
- Linying Li
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Ida Bagus Andika
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Yu Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yan Zhang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiangqi Xin
- Institute of Plant Protection, Shandong Academy of Agricultural SciencesJinan, China
| | - Lifeng Hu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Zongtao Sun
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Gaojie Hong
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yang Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jian Yang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Junmin Li
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| |
Collapse
|
125
|
Sanfaçon H. Grand Challenge in Plant Virology: Understanding the Impact of Plant Viruses in Model Plants, in Agricultural Crops, and in Complex Ecosystems. Front Microbiol 2017; 8:860. [PMID: 28596756 PMCID: PMC5442230 DOI: 10.3389/fmicb.2017.00860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/27/2017] [Indexed: 01/23/2023] Open
Affiliation(s)
- Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development CentreSummerland, BC, Canada
| |
Collapse
|