101
|
Zhang L, Hernández V, Liu B, Medina M, Nava-Kopp A, Irles C, Morales M. Hypothalamic vasopressin system regulation by maternal separation: Its impact on anxiety in rats. Neuroscience 2012; 215:135-48. [DOI: 10.1016/j.neuroscience.2012.03.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 01/21/2023]
|
102
|
Nadeau L, Mouginot D. Quantitative prediction of vasopressin secretion using a computational population model of rat magnocellular neurons. J Comput Neurosci 2012; 33:533-45. [DOI: 10.1007/s10827-012-0399-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
103
|
Abstract
Abstract The evolution of immunological agents in milk is intertwined with the general aspects of the evolution of the mammary gland. In that respect, mammalian precursors emerged from basal amniotes some 300 million years ago. In contrast to the predominant dinosaurs, proto-mammals possessed a glandular skin. A secondary palate in the roof of the mouth that directed airflow from the nostrils to the oropharynx and thus allowed mammals to ingest and breathe simultaneously first appeared in cynodonts 230 million years ago. This set the stage for mammalian newborns to nurse from the future mammary gland. Interplays between environmental and genetic changes shaped mammalian evolution including the mammary gland from dermal glands some 160 millions of years ago. It is likely that secretions from early mammary glands provided nutrients and immunological agents for the infant. Natural selection culminated in milks uniquely suited to nourish and protect infants of each species. In human milk, antimicrobial, anti-inflammatory, and immunoregulatory agents and living leukocytes are qualitatively or quantitatively different from those in other mammalian milks. Those in human milk compensate for developmental delays in the immunological system of the recipient infant. Consequently, the immune system in human milk provided by evolution is much of the basis for encouraging breastfeeding for human infants.
Collapse
Affiliation(s)
- Armond S Goldman
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, 77555-0369, USA.
| |
Collapse
|
104
|
Jokinen J, Chatzittofis A, Hellström C, Nordström P, Uvnäs-Moberg K, Asberg M. Low CSF oxytocin reflects high intent in suicide attempters. Psychoneuroendocrinology 2012; 37:482-90. [PMID: 21852050 DOI: 10.1016/j.psyneuen.2011.07.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 12/15/2022]
Abstract
Data from animal studies suggest that oxytocin is an important modulating neuropeptide in regulation of social interaction. One human study has reported a negative correlation between CSF oxytocin levels, life history of aggression and suicidal behaviour. We hypothesized that CSF oxytocin levels would be related to suicidal behaviour, suicide intent, lifetime interpersonal violence and suicide risk. 28 medication free suicide attempters and 19 healthy volunteers participated in this cross sectional and longitudinal study. CSF and plasma morning basal levels of oxytocin were assessed with specific radio-immunoassays. The Beck Suicide Intent Scale (SIS), the Freeman scale and the Karolinska Interpersonal Violence Scale (KIVS) were used to assess suicide intent and lifetime violent behaviour. All patients were followed up for cause of death. The mean follow-up was 21 years. Suicide attempters had lower CSF oxytocin levels compared to healthy volunteers p=0.077. In suicide attempters CSF oxytocin showed a significant negative correlation with the planning subscale of SIS. CSF oxytocin showed a significant negative correlation with suicide intent, the planning subscale of SIS and Freeman interruption probability in male suicide attempters. Correlations between plasma oxytocin levels and the planning subscale of SIS and Freeman interruption probability were significant in male suicide attempters. Lifetime violent behaviour showed a trend to negative correlation with CSF oxytocin. In the regression analysis suicide intent remained a significant predictor of CSF oxytocin corrected for age and gender whereas lifetime violent behaviour showed a trend to be a predictor of CSF oxytocin. Oxytocin levels did not differ significantly in suicide victims compared to survivors. CSF oxytocin may be an important modulator of suicide intent and interpersonal violence in suicide attempters.
Collapse
Affiliation(s)
- Jussi Jokinen
- The Department of Clinical Neuroscience/Psychiatry, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
105
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
106
|
Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 2012; 63:18-30. [PMID: 22369786 DOI: 10.1016/j.neuropharm.2012.02.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/23/2011] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.
Collapse
|
107
|
Opacka-Juffry J, Mohiyeddini C. Experience of stress in childhood negatively correlates with plasma oxytocin concentration in adult men. Stress 2012; 15:1-10. [PMID: 21682649 DOI: 10.3109/10253890.2011.560309] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early life experience is known to affect responses to stress in adulthood. Adverse experience in childhood and/or adolescence sensitises to life events that precipitate depression in later life. Published evidence suggests a relationship between depression and oxytocin (OT), but the extent to which early life experience influences OT disposition in adulthood deserves further exploration. This study hypothesised that early life stress (ELS) has a long-term negative effect on OT system activity. The study was performed on 90 male volunteers (18-56 years; mean ± standard deviation = 27.7 ± 7.09 years). Several questionnaires were used to assess: health, early life stressful experiences in childhood (ELS-C, up to 12 years) and early life stressful adolescence (13-18 years), recent stressful life events, depressive symptoms, state-trait anxiety and social desirability. Plasma OT concentration was estimated by means of a competitive enzyme immunoassay. Lower OT concentrations were significantly associated with higher levels of ELS-C (p < 0.01), and with depressive symptoms and trait anxiety (both p < 0.05). The interaction between ELS-C and trait anxiety was significant (p < 0.05), indicating that the link between ELS-C and plasma OT concentration is moderated by trait anxiety. These results contribute to the evidence that early life adverse experience is negatively associated with OT system activity in adulthood, and offer further insight into mediator and moderator effects on this link.
Collapse
|
108
|
Kiss I, Levy-Gigi E, Kéri S. CD 38 expression, attachment style and habituation of arousal in relation to trust-related oxytocin release. Biol Psychol 2011; 88:223-6. [PMID: 21893160 DOI: 10.1016/j.biopsycho.2011.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 12/14/2022]
Abstract
Oxytocin plays an important role in human attachment, trust, social perception, memory, and fear regulation. Evidence suggests that CD38, a regulator of oxytocin release, may also be critical in these processes. The purpose of this study was to investigate the predictors of plasma oxytocin level measured after a task requiring intimate trust (secret sharing), modeling psychotherapeutic processes, and a neutral social interaction. Results revealed that peripheral CD38 expression positively predicted both trust-related and trust-unrelated oxytocin levels. In addition, habituation of arousal, as measured by skin conductance response, and attachment anxiety also emerged as predictors of oxytocin level in the trust-related condition. These results suggest that CD38 plays a general role in oxytocin secretion, whereas habituation of arousal and attachment anxiety are specifically related to situations involving intimate trust.
Collapse
Affiliation(s)
- Imre Kiss
- National Psychiatry Center, Budapest, Hungary
| | | | | |
Collapse
|
109
|
Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M. Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci 2011; 1220:106-16. [PMID: 21388408 DOI: 10.1111/j.1749-6632.2010.05885.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central vasopressin facilitates social recognition and modulates numerous complex social behaviors in mammals, including parental behavior, aggression, affiliation, and pair-bonding. In rodents, social interactions are primarily mediated by the exchange of olfactory information, and there is evidence that vasopressin signaling is important in brain areas where olfactory information is processed. We recently discovered populations of vasopressin neurons in the main and accessory olfactory bulbs and anterior olfactory nucleus that are involved in the processing of social odor cues. In this review, we propose a model of how vasopressin release in these regions, potentially from the dendrites, may act to filter social odor information to facilitate odor-based social recognition. Finally, we discuss recent human research linked to vasopressin signaling and suggest that our model of priming-facilitated vasopressin signaling would be a rewarding target for further studies, as a failure of priming may underlie pathological changes in complex behaviors.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
110
|
Oliet SHR, Bonfardin VDJ. Morphological plasticity of the rat supraoptic nucleus--cellular consequences. Eur J Neurosci 2011; 32:1989-94. [PMID: 21143653 DOI: 10.1111/j.1460-9568.2010.07514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The supraoptic nuclei of the hypothalamus display a remarkable anatomical plasticity during lactation, parturition and chronic dehydration, conditions associated with massive neurohypophysial hormone secretion. This structural remodeling is characterized by a pronounced reduction of the astrocytic coverage of oxytocin neurons, resulting in an increase in the number and extent of directly juxtaposed neuronal surfaces. Although the exact role played by such an anatomical remodeling in the physiology of the hypothalamo-neurohypophysial system is still unknown, several findings obtained over the last decade indicate that synaptic and extrasynaptic transmissions are impacted by these structural changes. We review these data and try to extrapolate how such changes at the cellular level might affect the overall activity of the system. One repercussion of the retraction of glial processes is the accumulation of glutamate in the extracellular space. This build-up of glutamate causes an increased activation of pre-synaptic metabotropic glutamate receptors, which are negatively coupled to neurotransmitter release, and a switch in the mode of action of pre-synaptic kainate receptors that control GABA release. Finally, the range of action of substances released from astrocytes and acting on adjacent magnocellular neurons is also affected during the anatomical remodeling. It thus appears that the structural plasticity of the hypothalamic magnocellular nuclei strongly affects neuron-glial interactions and, as a consequence, induces significant changes in synaptic and extrasynaptic transmission.
Collapse
Affiliation(s)
- Stéphane H R Oliet
- Inserm U862, Neurocentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France.
| | | |
Collapse
|
111
|
Monteiro O, Wiegand UK, Ludwig M. Vesicle degradation in dendrites of magnocellular neurones of the rat supraoptic nucleus. Neurosci Lett 2011; 489:30-3. [PMID: 21129440 DOI: 10.1016/j.neulet.2010.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/02/2010] [Accepted: 11/20/2010] [Indexed: 11/17/2022]
Abstract
The magnocellular neurones of the supraoptic nucleus (SON) and paraventricular nucleus release neuropeptide from their axon terminals and also from their dendrites. In the axon terminals, swellings known as Herring bodies are responsible for the degradation of aged, unreleased large dense-cored vesicles (LDCVs) by lysosomes. Dendrites of magnocellular neurones also contain a large number of LDCVs but specialised areas of vesicle degradation have yet to be discovered. Using immunofluorescence labelling for lysosomes in vasopressin-enhanced green fluorescent protein (vasopressin-eGFP) transgenic rats, we found that lysosomes are preferentially located in the centre of the dendrites where there was a high density of vasopressin-eGFP expression. These data suggest that there are local "hot spots", but not specific compartments for vesicle degradation in magnocellular dendrites.
Collapse
Affiliation(s)
- Olivia Monteiro
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | |
Collapse
|
112
|
ABE H, OKA Y. Mechanisms of Neuromodulation by a Nonhypophysiotropic GnRH System Controlling Motivation of Reproductive Behavior in the Teleost Brain. J Reprod Dev 2011; 57:665-74. [DOI: 10.1262/jrd.11-055e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hideki ABE
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka OKA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
113
|
Leng G, Ludwig M. The 7th International Congress of Neuroendocrinology (ICN2010) 11-15 July 2010, Rouen, France. Expert Rev Neurother 2010; 10:1519-21. [PMID: 20925467 DOI: 10.1586/ern.10.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroendocrinology has moved far beyond its initial focus on the regulation of pituitary hormone secretion. It now embraces not only the actions on the brain of a diverse range of 'new' hormones, such as leptin and ghrelin, but also the expanding roles of peptides as hormone-like messengers within the brain, controlling many fundamental behaviors and physiological processes. A recent International Congress of Neuroendocrinology highlighted the translational importance of some of these new insights.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | | |
Collapse
|
114
|
Wacker DW, Tobin VA, Noack J, Bishop VR, Duszkiewicz AJ, Engelmann M, Meddle SL, Ludwig M. Expression of early growth response protein 1 in vasopressin neurones of the rat anterior olfactory nucleus following social odour exposure. J Physiol 2010; 588:4705-17. [PMID: 20921194 DOI: 10.1113/jphysiol.2010.196139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The anterior olfactory nucleus (AON), a component of the main olfactory system, is a cortical region that processes olfactory information and acts as a relay between the main olfactory bulbs and higher brain regions such as the piriform cortex. Utilizing a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we have discovered a population of vasopressin neurones in the AON. These vasopressin neurones co-express vasopressin V1 receptors. They also co-express GABA and calbinin-D28k indicating that they are neurochemically different from the newly described vasopressin neurons in the main olfactory bulb. We utilized the immediate early gene product, early growth response protein 1 (Egr-1), to examine the functional role of these vasopressin neurons in processing social and non-social odours in the AON. Exposure of adult rats to a conspecific juvenile or a heterospecific predator odour leads to increases in Egr-1 expression in the AON in a subregion specific manner. However, only exposure to a juvenile increases Egr-1 expression in AON vasopressin neurons. These data suggest that vasopressin neurones in the AON may be selectively involved in the coding of social odour information.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Bldg, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci 2010; 30:8274-84. [PMID: 20554879 DOI: 10.1523/jneurosci.1594-10.2010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) contribute to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord, or systemically. Here, we characterized the phenotype of oxytocin receptor (OTR) and vasopressin-1A receptor (V1AR) null mutant mice in a battery of pain assays. Surprisingly, OTR knock-out mice displayed a pain phenotype identical to their wild-type littermates. Moreover, systemic administration of OXT dose-dependently produced analgesia in both wild-type and OTR knock-out mice in three different assays, the radiant-heat paw withdrawal test, the von Frey test of mechanical sensitivity, and the formalin test of inflammatory nociception. In contrast, OXT-induced analgesia was completely absent in V1AR knock-out mice. In wild-type mice, OXT-induced analgesia could be fully prevented by pretreatment with a V1AR but not an OTR antagonist. Receptor binding studies demonstrated that the distribution of OXT and AVP binding sites in mouse lumbar spinal cord resembles the pattern observed in rat. AVP binding sites diffusely label the lumbar spinal cord, whereas OXT binding sites cluster in the substantia gelatinosa of the dorsal horn. In contrast, quantitative real-time reverse transcription (RT)-PCR revealed that V1AR but not OTR mRNA is abundantly expressed in mouse dorsal root ganglia, where it localizes to small- and medium-diameter cells as shown by single-cell RT-PCR. Hence, V1ARs expressed in dorsal root ganglia might represent a previously unrecognized target for the analgesic action of OXT and AVP.
Collapse
|
116
|
Tanaka N, Ishii H, Yin C, Koyama M, Sakuma Y, Kato M. Voltage-gated Ca2+ channel mRNAs and T-type Ca2+ currents in rat gonadotropin-releasing hormone neurons. J Physiol Sci 2010; 60:195-204. [PMID: 20101487 PMCID: PMC10717889 DOI: 10.1007/s12576-010-0085-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the neuroendocrine regulation of reproduction. We have previously reported that rat GnRH neurons exhibit voltage-gated Ca(2+) currents. In this study, oligo-cell RT-PCR was carried out to identify subtypes of the alpha(1) subunit of voltage-gated Ca(2+) channels in adult rat GnRH neurons. GnRH neurons expressed mRNAs for all five types of voltage-gated Ca(2+) channels. For T-type Ca(2+) channels, alpha(1H) was dominantly expressed in GnRH neurons. Electrophysiological analysis in acute slice preparations revealed that GnRH neurons from adult rats exhibited T-type Ca(2+) currents with fast inactivation kinetics (~20 ms at -30 mV) and a time constant of recovery from inactivation of ~0.6 s. These results indicate that rat GnRH neurons express subtypes of the alpha(1) subunit for all five types of voltage-gated Ca(2+) channel, and that alpha(1H) was the dominant subtype in T-type Ca(2+) channels.
Collapse
Affiliation(s)
- Nobuyuki Tanaka
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Hirotaka Ishii
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Chengzhu Yin
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Makiko Koyama
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Yasuo Sakuma
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Masakatsu Kato
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| |
Collapse
|
117
|
Salmina AB, Lopatina O, Ekimova MV, Mikhutkina SV, Higashida H. CD38/cyclic ADP-ribose system: a new player for oxytocin secretion and regulation of social behaviour. J Neuroendocrinol 2010; 22:380-92. [PMID: 20141572 DOI: 10.1111/j.1365-2826.2010.01970.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxytocin is important for regulating a number of physiological processes. Disruption of the secretion, metabolism or action of oxytocin results in an impairment of reproductive function, social and sexual behaviours, and stress responses. This review discusses current views on the regulation and autoregulation of oxytocin release in the hypothalamic-neurohypophysial system, with special focus on the activity of the CD38/cADP-ribose system as a new component in this regulation. Data from our laboratories indicate that an impairment of this system results in alterations of oxytocin secretion and abnormal social behaviour, thus suggesting new clues that help in our understanding of the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- A B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.
| | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Alison J Douglas
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK.
| |
Collapse
|
119
|
Abstract
In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn's view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
120
|
Electroacupuncture enhances preproenkephalin mRNA expression in rostral ventrolateral medulla of rats. Neurosci Lett 2010; 477:61-5. [PMID: 20399834 DOI: 10.1016/j.neulet.2010.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/22/2022]
Abstract
Electroacupuncture (EA) causes prolonged suppression of reflex elevations in blood pressure for at least 60min in anesthetized preparations. Thus, EA can modify sympathetic outflow and elevated blood pressure through actions in a number of hind brain regions, including the rostral ventrolateral medulla (rVLM). Since our previous data show that the opioid system plays a role in EA-related prolonged inhibition of presympathetic neuronal activity in the rVLM, we postulated that EA increases preproenkephalin (PPE) mRNA in this region, possibly for prolonged periods of time. Under alpha-chloralose anesthesia, rats received EA (1-2mA, 2Hz, 0.5ms) at P5-P6 acupoints (overlying median nerves) or sham (needle placement without electrical stimulation) for 30min. PPE mRNA in the rVLM also was evaluated in control rats that received surgery but no EA, or sham treatment. 20min, 1.5h or 4h following EA or sham treatment, PPE mRNA in the rVLM was analyzed by reverse transcription and quantitative real-time PCR. Relative ratios of PPE mRNA levels (normalized with 18s house keeping gene) were increased 1.5h after EA stimulation (7.77+/-1.39, n=6) relative to sham (2.84+/-0.37, n=5) but were unchanged both 20min and 4h after EA, compared to the sham or surgery groups at the same time points. Thus, 30min of EA transiently stimulates the production of enkephalin in a region of the brain that importantly regulates sympathetic outflow suggesting that even a single brief acupuncture treatment can increase the expression of this modulatory neuropeptide.
Collapse
|
121
|
Nobel G, Tribukait A, Mekjavic IB, Eiken O. Histaminergic and cholinergic neuron systems in the impairment of human thermoregulation during motion sickness. Brain Res Bull 2010; 82:193-200. [PMID: 20394809 DOI: 10.1016/j.brainresbull.2010.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 11/15/2022]
Abstract
Motion sickness (MS) exaggerates body cooling during cold-water immersion. The aim of the present study was to investigate whether such MS-induced predisposition to hypothermia is influenced by two anti-MS drugs: the histamine-receptor blocker dimenhydrinate (DMH) and the muscarine-receptor blocker scopolamine (Scop). Nine healthy male subjects were immersed in 15 degrees C water for a maximum of 90min in five conditions: (1) control (CN): no medication, no MS provocation; (2) MS-control (MS-CN): no medication, MS provocation; (3) MS-placebo (MS-P): placebo DMH and placebo Scop, MS provocation; (4) MS-DMH: DMH and placebo Scop, MS provocation; (5) MS-Scop: Scop and placebo DMH, MS provocation. MS was induced by use of a rotating chair. Throughout the experiments rectal temperature (T(re)), the difference in temperature between the non-immersed right forearm and third finger (T(ff)) as an index of peripheral vasoconstriction, and oxygen uptake (VO(2)) as a measure of shivering thermogenesis, were recorded. DMH and Scop were similarly efficacious in ameliorating nausea. The fall in T(re) was greater in the MS-CN and MS-P conditions than in the CN condition. DMH, but not Scop, prevented the MS-induced increase in body-core cooling. MS attenuated the cold-induced vasoconstriction, an effect which was fully prevented by DMH but only partially by Scop. MS provocation did not affect VO(2) in any condition. The results suggest that the MS-induced predisposition to hypothermia is predominantly mediated by histaminergic mechanisms and that DMH might be useful in conjunction with maritime accidents or other scenarios where exposure to cold and MS are imminent features.
Collapse
Affiliation(s)
- Gerard Nobel
- Department of Environmental Physiology, Royal Institute of Technology, School for Technology and Health, Berzelius v. 13, SE 171 65 Stockholm, Sweden.
| | | | | | | |
Collapse
|
122
|
Zhang L, Medina MP, Hernández VS, Estrada FS, Vega-González A. Vasopressinergic network abnormalities potentiate conditioned anxious state of rats subjected to maternal hyperthyroidism. Neuroscience 2010; 168:416-28. [PMID: 20371268 DOI: 10.1016/j.neuroscience.2010.03.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/02/2010] [Accepted: 03/27/2010] [Indexed: 11/30/2022]
Abstract
We have previously reported that a mild maternal hyperthyroidism in rats impairs stress coping of adult offspring. To assess anxiogenesis in this rat model of stress over-reactivity, we used two behavioural tests for unconditional and conditional anxious states: elevated plus maze test (EPM) and Vogel conflict test (VCT). In the latter one, arginine vasopressin (AVP) release was enhanced due to osmotic stress. With the EPM test no differences were observed between maternal hyperthyroid rats (MH) and controls. However, with the VCT, the MH showed increased anxiety-like behaviour. This behavioural difference was abolished by diazepam. Plasma AVP concentration curve as a function of water deprivation (WD) time showed a marked increase, reaching its maximal levels within half the time of controls and another significant difference after VCT. A general increase in Fos expression in hypothalamic supraoptic and paraventricular nuclei (PVN) was observed during WD and after VCT. There was also a significant increase of AVP immunoreactivity in anterior hypothalamic area. A large number of Herring bodies were observed in the AVP containing fibres of MH hypothalamic-neurohypophysial system. Numerous reciprocal synaptic connections between AVP and corticotropin releasing factor containing neurons in MH ventromedial PVN were observed by electron microscopy. These results suggest that a mild maternal hyperthyroidism could induce an aberrant organization in offspring's hypothalamic stress related regions which could mediate the enhanced anxiety seen in this animal model.
Collapse
Affiliation(s)
- L Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México 04510, D. F., Mexico.
| | | | | | | | | |
Collapse
|
123
|
The hypothalamic endocannabinoid system participates in the secretion of oxytocin and tumor necrosis factor-alpha induced by lipopolysaccharide. J Neuroimmunol 2010; 221:32-41. [DOI: 10.1016/j.jneuroim.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 01/21/2023]
|
124
|
Harony H, Wagner S. The Contribution of Oxytocin and Vasopressin to Mammalian Social Behavior: Potential Role in Autism Spectrum Disorder. Neurosignals 2010; 18:82-97. [DOI: 10.1159/000321035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 01/09/2023] Open
|
125
|
Zhang P, Liu L, Xie CJ, Wang KH, Gao LZ, Ju G. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary. Reprod Biol Endocrinol 2009; 7:154. [PMID: 20042121 PMCID: PMC2804610 DOI: 10.1186/1477-7827-7-154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. METHODS The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. RESULTS The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. CONCLUSIONS The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Neurosciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| | - Cong-Jun Xie
- Institute of Neurosciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Hu Wang
- School of Foreign Languages, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Zhi Gao
- Institute of Neurosciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gong Ju
- Institute of Neurosciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
126
|
Stornetta RL. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 2009; 38:222-30. [PMID: 19665549 DOI: 10.1016/j.jchemneu.2009.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/19/2023]
Abstract
This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
127
|
Meynen G, Unmehopa UA, Hofman MA, Swaab DF, Hoogendijk WJG. Hypothalamic vasopressin and oxytocin mRNA expression in relation to depressive state in Alzheimer's disease: a difference with major depressive disorder. J Neuroendocrinol 2009; 21:722-9. [PMID: 19500216 DOI: 10.1111/j.1365-2826.2009.01890.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXT), produced in the hypothalamic paraventricular (PVN) and supraoptic nucleus (SON), are considered to be involved in the pathophysiology of major depressive disorder (MDD). The objective of this study was to determine, for the first time, the relationship between AVP and OXT gene expression and depressive state in Alzheimer's disease (AD). Post-mortem brain tissue was obtained from six control subjects, and from a prospectively studied cohort of 23 AD patients, using the DSM-IIIR and the Cornell Scale for Depression in Dementia to determine depression diagnosis and severity. The amount of AVP and OXT mRNA was determined by in situ hybridisation. AD patients did not differ from controls with respect to the amount of AVP or OXT mRNA in the PVN or SON. Also, no differences were found between depressed and nondepressed AD patients and no relationship was found between the depression severity and AVP or OXT mRNA expression. The results indicate that AVP and OXT gene expression in the PVN and SON is unchanged in depressed AD patients compared to nondepressed AD patients. This is in contrast with the enhanced AVP gene expression in MDD, suggesting a difference in pathophysiology between MDD and depression in AD.
Collapse
Affiliation(s)
- G Meynen
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
128
|
Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res 2009; 65:11-22. [PMID: 19523993 DOI: 10.1016/j.neures.2009.06.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and other members of the protein family of neurotrophins have been implicated in a multitude of processes that are important for neuronal development and synaptic plasticity in the rodent central nervous system. In comparison to the wealth of information available with respect to the biological functions of neurotrophins, our knowledge regarding the processes that govern synaptic secretion of neurotrophins is scarce. Using live cell imaging of GFP-tagged neurotrophins in primary neurons, immunocytochemical detection of endogenous BDNF in fixed cells, and by blocking the action of endogenously released BDNF by means of TrkB receptor bodies in living neurons, several studies in recent years have allowed to better understand the time course and the mechanisms of synaptic secretion of neurotrophins. This review will summarize the current knowledge regarding the intracellular processing of proneurotrophins, the targeting of neurotrophin vesicles to axons and dendrites, and the mechanisms of activity-dependent secretion of BDNF at synapses. Since these processes are known to be cell type dependent, special emphasis is given to observations gained from experiments in primary neurons.
Collapse
|
129
|
Zelena D, Langnaese K, Domokos A, Pintér O, Landgraf R, Makara GB, Engelmann M. Vasopressin administration into the paraventricular nucleus normalizes plasma oxytocin and corticosterone levels in Brattleboro rats. Endocrinology 2009; 150:2791-8. [PMID: 19246538 DOI: 10.1210/en.2008-1007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adult male rats of the Brattleboro strain were used to investigate the impact of the congenital absence of vasopressin on plasma adrenocorticotropin, corticosterone, and oxytocin concentrations as well as the release pattern of oxytocin within the hypothalamic paraventricular nucleus (PVN), in response to a 10-min forced swimming session. Measurement of adrenocorticotropin in plasma samples collected via chronically implanted jugular venous catheters revealed virtually identical stress responses for vasopressin-lacking Brattleboro (KO) and intact control animals. In contrast, plasma corticosterone and oxytocin levels were found to be significantly elevated 105 min after onset of the stressor in KO animals only. Microdialysis samples collected from the extracellular fluid of the PVN showed significantly higher levels of oxytocin both under basal conditions and in response to stressor exposure in KO vs. intact control animals accompanied by elevated oxytocin mRNA levels in the PVN of KO rats. These findings suggest that the increased oxytocin levels in the PVN caused by the congenital absence of vasopressin may contribute to normal adrenocorticotropin stress responses in KO animals. However, whereas the stressor-induced elevation of plasma oxytocin in KO rats may be responsible for their maintained corticosterone levels, oxytocin seems unable to fully compensate for the lack of vasopressin. This hypothesis was tested by retrodialyzing synthetic vasopressin into the PVN area concomitantly with blood sampling in KO animals. Indeed, this treatment normalized plasma oxytocin and corticosterone levels 105 min after forced swimming. Thus, endogenous vasopressin released within the PVN is likely to act as a paracrine signal to facilitate the return of plasma oxytocin and corticosterone to basal levels after acute stressor exposure.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
130
|
Bennett CB, Muschol M. Large neurohypophysial varicosities amplify action potentials: results from numerical simulations. Endocrinology 2009; 150:2829-36. [PMID: 19213831 DOI: 10.1210/en.2008-1636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Axons in the neurohypophysis are known for their "beads on a string" morphology, with numerous in-line secretory swellings lined up along the axon cable. A significant fraction of these secretory swellings, called Herring bodies, is large enough to serve as an identifying feature of the neural lobe in histological sections. Little is known about the physiological role such large axonal swellings might play in neuroendocrine physiology. Using numerical simulations, we have investigated whether large in-line varicosities affect the waveform and propagation of action potentials (APs) along neurohypophysial axons. Due to the strong nonlinear dependence of calcium influx on AP waveforms, such modulation would inevitably affect neuroendocrine release. The parameters for our numerical simulations were matched to established properties of voltage-gated ion channels in neurohypophysial swellings. We find that even a single in-line varicosity can severely depress AP waveforms far upstream in the axonal cable. In contrast, AP depolarization within varicosities becomes amplified. Amplification within varicosities varies in a nontrivial manner with varicosity dimensions, and is most pronounced for diameters close to those of Herring bodies. Overall, we find that large axonal varicosities significantly modulate AP waveforms and their propagation, and do so over large distances. Varicosity size is the main determinant for the observed AP amplification, with the kinetics of voltage-gated ion channels playing a noticeable but secondary role. Our results imply that large varicosities are sites of enhanced hormone release, suggesting that small and large varicosities target different neurohypophysial structures.
Collapse
Affiliation(s)
- C Brad Bennett
- Department of Physics, University of South Florida, Tampa, Florida 33620-5700, USA
| | | |
Collapse
|
131
|
Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 2009; 162:892-903. [PMID: 19482070 DOI: 10.1016/j.neuroscience.2009.05.055] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/07/2009] [Accepted: 05/26/2009] [Indexed: 11/21/2022]
Abstract
Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.
Collapse
|