101
|
Wu C, Hosier KE, Beck KE, Radevic MB, Lehmann J, Zhang HH, Kroner A, Dutton SC, Rosenthal SA, Bareng JK, Logsdon MD, Asche DR. On using 3D γ-analysis for IMRT and VMAT pretreatment plan QA. Med Phys 2012; 39:3051-9. [DOI: 10.1118/1.4711755] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
102
|
King BW, Morf D, Greer PB. Development and testing of an improved dosimetry system using a backscatter shielded electronic portal imaging device. Med Phys 2012; 39:2839-47. [DOI: 10.1118/1.4709602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
103
|
A simple approach for EPID dosimetric calibration to overcome the effect of image-lag and ghosting. Appl Radiat Isot 2012; 70:1154-7. [PMID: 22365112 DOI: 10.1016/j.apradiso.2012.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/23/2022]
Abstract
EPID dosimetry has known drawbacks. The main issue is that a measurable residual signal is observed after the end of irradiation for prolonged periods of time, thus making measurement difficult. We present a detailed analysis of EPID response and suggest a simple, yet accurate approach for calibration that avoids the complexity of incorporating ghosting and image-lag using the maximum integrated signal instead of the total integrated signal. This approach is linear with dose and independent of dose rate.
Collapse
|
104
|
Calvo O, Stathakis S, Gutiérrez AN, Esquivel C, Papanikolaou N. 3D Dose Reconstruction of Pretreatment Verification Plans Using Multiple 2D Planes from the OCTAVIUS/Seven29 Phantom Array. Technol Cancer Res Treat 2012; 11:69-82. [DOI: 10.7785/tcrt.2012.500236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study is to evaluate 3D dose reconstruction of pretreatment verification plans using multiple 2D planes acquired from the OCTAVIUS phantom and the Seven29 detector array. Eight VMAT patient treatment plans of different sites were delivered onto the OCTAVIUS phantom. The plans span a variety of tumor site locations from low to high plan complexity. A patient specific quality assurance (QA) plan was created and delivered for each of the 8 patients using the OCTAVIUS phantom in which the Seven29 detector array was placed. Each plan was delivered four times by rotating the phantom in 45° increments along its longitudinal axis. The treatment plans were delivered using a Novalis Tx with the HD120 MLC. Each of the four corresponding planar doses was exported as a text file for further analysis. An in-house MATLAB code was used to process the planar dose information. A cylindrical geometry-based, linear interpolation method was utilized to generate the measured 3D dose reconstruction. The TPS calculated volumetric dose was exported and compared against the measured reconstructed volumetric dose. Dose difference, dose area histograms (DAH), isodose lines, profiles, 2D and 3D gamma were used for evaluation. The interpolation method shows good agreement (<2%) between the planned dose distributions in the high dose region but shows discrepancies in the low dose region. Horizontal profiles, dose area histograms and isodose lines show good agreement for the sagittal and coronal planes but demonstrate slight discrepancies in the transverse plane. The 3D gamma index average was 92.4% for all patients when a 5%/5 mm gamma passing rate criteria was employed but dropped to <80.1% on average when parameters were reduced to 2%/2 mm. A simple cylindrical geometry-based, linear interpolation method is able to predict good agreement in the high dose region between the reconstructed volumetric dose and the planned volumetric dose. It is important to mention that the interpolation algorithm introduces dose discrepancies in small regions within the high dose gradients due to the interpolation itself. However, the work presented serves as a good starting point to establish a benchmark for the level of manipulation necessary to obtain 3D dose delivery quality assurance using current technology.
Collapse
Affiliation(s)
- O. Calvo
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - S. Stathakis
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - A. N. Gutiérrez
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - C. Esquivel
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - N. Papanikolaou
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
105
|
Wendling M, N. McDermott L, Mans A, Olaciregui-Ruiz Í, Pecharromán-Gallego R, Sonke JJ, Stroom J, van Herk M, J. Mijnheer B. In aqua vivo
EPID dosimetry. Med Phys 2011; 39:367-77. [DOI: 10.1118/1.3665709] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
106
|
Chen Q, Westerly D, Fang Z, Sheng K, Chen Y. TomoTherapy MLC verification using exit detector data. Med Phys 2011; 39:143-51. [DOI: 10.1118/1.3666762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
107
|
Berry SL, Sheu RD, Polvorosa CS, Wuu CS. Implementation of EPID transit dosimetry based on a through-air dosimetry algorithm. Med Phys 2011; 39:87-98. [DOI: 10.1118/1.3665249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
108
|
Long-term two-dimensional pixel stability of EPIDs used for regular linear accelerator quality assurance. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 34:459-66. [PMID: 22038292 DOI: 10.1007/s13246-011-0106-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
Abstract
The long-term stability of three clinical electronic portal imaging devices (EPIDs) was studied to determine if longer times between calibrations can be justified. This would make alternatives to flood-field calibration of EPIDs clinically feasible, allowing for more effective use of EPIDs for dosimetry. Images were acquired monthly for each EPID as part of regular clinical quality assurance over a time period of approximately 3 years. The images were analysed to determine (1) the long-term stability of the EPID positioning system, (2) the dose response of the central pixels and (3) the long term stability of each pixel in the imager. The position of the EPID was found to be very repeatable with variations less than 0.3 pixels (0.27 mm) for all imagers (1 standard deviation). The central axis dose response was found to reliably track ion chamber measurements to better than 0.5%. The mean variation in pixel response (1 standard deviation), averaged over all pixels in the EPID, was found to be at most 0.6% for the three EPIDs studied over the entire period. More than 99% of pixels in each EPID showed less than 1% variation. Since the EPID response was found to be very stable over long periods of time, an annual calibration should be sufficient in most cases. More complex dosimetric calibrations should be clinically feasible.
Collapse
|
109
|
Simple Proposal for Dosimetry with an Elekta iViewGTTM Electronic Portal Imaging Device (EPID) Using Commercial Software Modules. Strahlenther Onkol 2011; 187:316-21. [DOI: 10.1007/s00066-011-2176-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 02/04/2011] [Indexed: 11/27/2022]
|
110
|
Chung H, Li J, Samant S. Feasibility of using two-dimensional array dosimeter for in vivo dose reconstruction via transit dosimetry. J Appl Clin Med Phys 2011; 12:3370. [PMID: 21844846 PMCID: PMC5718653 DOI: 10.1120/jacmp.v12i3.3370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 02/02/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022] Open
Abstract
Two-dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from -0.2% ~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry.
Collapse
Affiliation(s)
- Heeteak Chung
- Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
111
|
Kavuma A, Glegg M, Metwaly M, Currie G, Elliott A. Calculation of exit dose for conformal and dynamically-wedged fields, based on water-equivalent path length measured with an amorphous silicon electronic portal imaging device. J Appl Clin Med Phys 2011; 12:3439. [PMID: 21844855 PMCID: PMC5718655 DOI: 10.1120/jacmp.v12i3.3439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/23/2022] Open
Abstract
In this study, we use the quadratic calibration method (QCM), in which an EPID image is converted into a matrix of equivalent path lengths (EPLs) and, therefore, exit doses, so as to model doses in conformal and enhanced dynamic wedge (EDW) fields. The QCM involves acquiring series of EPID images at a reference field size for different thicknesses of homogeneous solid water blocks. From these, a set of coefficients is established that is used to compute the EPL of any other irradiated material. To determine the EPL, the irradiated area must be known in order to establish the appropriate scatter correction. A method was devised for the automatic calculation of areas from the EPID image that facilitated the calculation of EPL for any field and exit dose. For EDW fields, the fitting coefficients were modified by utilizing the linac manufacturer's golden segmented treatment tables (GSTT) methodology and MU fraction model. The nonlinear response of the EPL with lower monitor units (MUs) was investigated and slight modification of the algorithm performed to account for this. The method permits 2D dose distributions at the exit of phantom or patient to be generated by relating the EPL with an appropriate depth dose table. The results indicate that the inclusion of MU correction improved the EPL determination. The irradiated field areas can be accurately determined from EPID images to within ± 1% uncertainty. Cross-plane profiles and 2D dose distributions of EPID predicted doses were compared with those calculated with the Eclipse treatment planning system (TPS) and those measured directly with MapCHECK 2 device. Comparison of the 2D EPID dose maps to those from TPS and MapCHECK shows that more than 90% of all points passed the gamma index acceptance criteria of 3% dose difference and 3 mm distance to agreement (DTA), for both conformal and EDW study cases. We conclude that the EPID QCM is an accurate and convenient method for in vivo dosimetry and may, therefore, complement existing techniques.
Collapse
Affiliation(s)
- Awusi Kavuma
- Department of Clinical Physics and Bioengineering, Radiotherapy Physics, Beatson West of Scotland Cancer Centre, Glasgow, Scotland, UK.
| | | | | | | | | |
Collapse
|
112
|
Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med Phys 2011; 38:1313-38. [DOI: 10.1118/1.3514120] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
113
|
Pecharromán-Gallego R, Mans A, Sonke JJ, Stroom JC, Olaciregui-Ruiz Í, van Herk M, Mijnheer BJ. Simplifying EPID dosimetry for IMRT treatment verification. Med Phys 2011; 38:983-92. [DOI: 10.1118/1.3547714] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
114
|
Francois P, Boissard P, Berger L, Mazal A. In vivo dose verification from back projection of a transit dose measurement on the central axis of photon beams. Phys Med 2011; 27:1-10. [DOI: 10.1016/j.ejmp.2010.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/31/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022] Open
|
115
|
Mijnheer B, Mans A, Olaciregui-Ruiz I, Sonke JJ, Tielenburg R, Van Herk M, Vijlbrief R, Stroom J. 2D AND 3D dose verification at The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital using EPIDs. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/250/1/012020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
116
|
Vinall AJ, Williams AJ, Currie VE, Van Esch A, Huyskens D. Practical guidelines for routine intensity-modulated radiotherapy verification: pre-treatment verification with portal dosimetry and treatment verification with in vivo dosimetry. Br J Radiol 2010; 83:949-57. [PMID: 20965905 PMCID: PMC3473728 DOI: 10.1259/bjr/31573847] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/22/2009] [Accepted: 10/29/2009] [Indexed: 11/05/2022] Open
Abstract
The purpose of this work is to provide guidelines for the routine use of portal dosimetry and in vivo diode measurements to verify intensity-modulated radiotherapy (IMRT) treatments. To achieve tolerance levels that are sensitive enough to intercept problems, both the portal dosimetry and the in vivo procedure must be optimised. Portal dosimetry was improved by the introduction of an optimised two-dimensional (2D) profile correction, which also accounted for the effect of backscatter from the R-arm. The scaled score, indicating the fraction of points not meeting the desired gamma evaluation criteria within the field opening, was determined as the parameter of interest. Using gamma criteria of a 3% dose difference and 3 mm distance to agreement, a "scaled score" threshold value of 1.5% was chosen to indicate excessive tongue and groove and other problems. The pre-treatment portal dosimetry quality assurance (QA) does not encompass verification of the patient dose calculation or position, and so it is complemented by in vivo diode measurements. Diode positioning is crucial in IMRT, and so we describe a method for diode positioning at any suitable point. We achieved 95% of IMRT field measurements within ±5% and 99% within ±8%, with improved accuracy being achieved over time owing to better positioning. Although the careful preparation and setup of the diode measurements can be time-consuming, this is compensated for by the time efficiency of the optimised procedure. Both methods are now easily absorbed into the routine work of the department.
Collapse
Affiliation(s)
- A J Vinall
- Radiotherapy Physics Department, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich UK.
| | | | | | | | | |
Collapse
|
117
|
Cufflin RS, Spezi E, Millin AE, Lewis DG. An investigation of the accuracy of Monte Carlo portal dosimetry for verification of IMRT with extended fields. Phys Med Biol 2010; 55:4589-600. [DOI: 10.1088/0031-9155/55/16/s12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
118
|
Rowshanfarzad P, McCurdy BMC, Sabet M, Lee C, O'Connor DJ, Greer PB. Measurement and modeling of the effect of support arm backscatter on dosimetry with a varian EPID. Med Phys 2010; 37:2269-78. [PMID: 20527561 DOI: 10.1118/1.3369445] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Amorphous silicon EPIDs have been used for planar dose verification in IMRT treatments for many years. The support arm used to attach some types of EPIDs to linear accelerators can introduce inaccuracies to dosimetry measurements due to the presence of metallic parts in their structures. It is demonstrated that this uncertainty may be as large as approximately 6% of maximum image signal for large fields. In this study, a method has been described to quantify, model and correct for the effect of backscattered radiation from the EPID support arm (E-Arm type, Varian Medical Systems). METHODS Measurements of a support arm backscatter kernel were made using several 1 x 1 cm2 6 MV pencil beam irradiations at a sample of positions over the sensitive area of the EPID in standard clinical setup and repeated with the EPID removed from the support arm but at the same positions. A curve-fit to the subtraction of EPID response obtained on and off the arm was used to define the backscatter kernel. The measured kernel was compared with a backscatter kernel obtained by Monte Carlo simulations with EGS/BEAM code. A backscatter dose prediction using the measured backscatter kernel was added to an existing EPID dose prediction model. The improvement in the agreement of the modified model predictions with EPID measurements for a number of open fields and IMRT beams were investigated by comparison to the original model results. RESULTS Considering all functions tested to find the best functional fit to the data points, a broad Gaussian curve proved to be the optimum fit to the backscatter data. The best fit through the Monte Carlo simulated backscatter kernel was also found to be a Gaussian curve. The maximum decrease in normalized root mean squared deviation of the measured and modeled EPID image profiles for open fields was 13.7% for a 15 x 15 cm2 field with no decrease observed for a 3 x 3 cm2 (the smallest) field as it was not affected by the arm backscatter. Gamma evaluation (2%, 2 mm criteria) showed the improvement in agreement between the model and measurement results when the backscatter was incorporated. The average increase in Gamma pass rate was 2% for head and neck and 1.3% for prostate IMRT fields investigated in this study. CONCLUSIONS The application of the backscatter kernel determined in this study improved the accuracy of dosimetry using a Varian EPID with E-arm for open fields of different sizes: Eight head and neck and seven prostate IMRT fields. Further improvement in the agreement between the model predictions and EPID measurements requires more sophisticated modeling of the backscatter.
Collapse
Affiliation(s)
- Pejman Rowshanfarzad
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308, Australia.
| | | | | | | | | | | |
Collapse
|
119
|
A fully electronic intensity-modulated radiation therapy quality assurance (IMRT QA) process implemented in a network comprised of independent treatment planning, record and verify, and delivery systems. Radiol Oncol 2010; 44:124-30. [PMID: 22933903 PMCID: PMC3423679 DOI: 10.2478/v10019-010-0017-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/16/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The purpose of this study is to implement an electronic method to perform and analyze intensity-modulated radiation therapy quality assurance (IMRT QA) using an aSi megavoltage electronic portal imaging device in a network comprised of independent treatment planning, record and verify (R&V), and delivery systems. METHODS A verification plan was generated in the treatment planning system using the actual treatment plan of a patient. After exporting the treatment fields to the R&V system, the fields were delivered in QA mode with the aSi imager deployed. The resulting dosimetric images are automatically stored in a DICOM-RT format in the delivery system treatment console computer. The relative dose density images are subsequently pushed to the R&V system. The absolute dose images are then transferred electronically from the treatment console computer to the treatment planning system and imported into the verification plan in the dosimetry work space for further analysis. Screen shots of the gamma evaluation and isodose comparison are imported into the R&V system as an electronic file (e.g. PDF) to be reviewed prior to initiation of patient treatment. A relative dose image predicted by the treatment planning system can also be sent to the R&V system to be compared with the relative dose density image measured with the aSi imager. RESULTS Our department does not have integrated planning, R&V, and delivery systems. In spite of this, we are able to fully implement a paperless and filmless IMRT QA process, allowing subsequent analysis and approval to be more efficient, while the QA document is directly attached to its specific patient chart in the R&V system in electronic form. The calculated and measured relative dose images can be compared electronically within the R&V system to analyze the density differences and ensure proper dose delivery to patients. CONCLUSIONS In the absence of an integrated planning, verifying, and delivery system, we have shown that it is nevertheless possible to develop a completely electronic IMRT QA process.
Collapse
|
120
|
Mans A, Wendling M, McDermott LN, Sonke JJ, Tielenburg R, Vijlbrief R, Mijnheer B, van Herk M, Stroom JC. Catching errors within vivoEPID dosimetry. Med Phys 2010; 37:2638-44. [DOI: 10.1118/1.3397807] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
121
|
Roxby KJ, Crosbie JC. Pre-treatment verification of intensity modulated radiation therapy plans using a commercial electronic portal dosimetry system. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2010; 33:51-7. [DOI: 10.1007/s13246-010-0001-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
|
122
|
Mans A, Remeijer P, Olaciregui-Ruiz I, Wendling M, Sonke JJ, Mijnheer B, van Herk M, Stroom JC. 3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry. Radiother Oncol 2010; 94:181-7. [DOI: 10.1016/j.radonc.2009.12.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/16/2009] [Accepted: 12/20/2009] [Indexed: 10/19/2022]
|
123
|
Kavuma A, Glegg M, Metwaly M, Currie G, Elliott A. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device. Phys Med Biol 2009; 55:435-52. [DOI: 10.1088/0031-9155/55/2/007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
124
|
Wang S, Gardner JK, Gordon JJ, Li W, Clews L, Greer PB, Siebers JV. Monte Carlo-based adaptive EPID dose kernel accounting for different field size responses of imagers. Med Phys 2009; 36:3582-95. [PMID: 19746793 DOI: 10.1118/1.3158732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The aim of this study is to present an efficient method to generate imager-specific Monte Carlo (MC)-based dose kernels for amorphous silicon-based electronic portal image device dose prediction and determine the effective backscattering thicknesses for such imagers. EPID field size-dependent responses were measured for five matched Varian accelerators from three institutions with 6 MV beams at the source to detector distance (SDD) of 105 cm. For two imagers, measurements were made with and without the imager mounted on the robotic supporting arm. Monoenergetic energy deposition kernels with 0-2.5 cm of water backscattering thicknesses were simultaneously computed by MC to a high precision. For each imager, the backscattering thickness required to match measured field size responses was determined. The monoenergetic kernel method was validated by comparing measured and predicted field size responses at 150 cm SDD, 10 x 10 cm2 multileaf collimator (MLC) sliding window fields created with 5, 10, 20, and 50 mm gaps, and a head-and-neck (H&N) intensity modulated radiation therapy (IMRT) patient field. Field size responses for the five different imagers deviated by up to 1.3%. When imagers were removed from the robotic arms, response deviations were reduced to 0.2%. All imager field size responses were captured by using between 1.0 and 1.6 cm backscatter. The predicted field size responses by the imager-specific kernels matched measurements for all involved imagers with the maximal deviation of 0.34%. The maximal deviation between the predicted and measured field size responses at 150 cm SDD is 0.39%. The maximal deviation between the predicted and measured MLC sliding window fields is 0.39%. For the patient field, gamma analysis yielded that 99.0% of the pixels have gamma < 1 by the 2%, 2 mm criteria with a 3% dose threshold. Tunable imager-specific kernels can be generated rapidly and accurately in a single MC simulation. The resultant kernels are imager position independent and are able to predict fields with varied incident energy spectra and a H&N IMRT patient field. The proposed adaptive EPID dose kernel method provides the necessary infrastructure to build reliable and accurate portal dosimetry systems.
Collapse
Affiliation(s)
- Song Wang
- Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Lin MH, Chao TC, Lee CC, Tung CJ, Yeh CY, Hong JH. Measurement-based Monte Carlo dose calculation system for IMRT pretreatment and on-line transit dose verifications. Med Phys 2009; 36:1167-75. [PMID: 19472622 DOI: 10.1118/1.3089790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to develop a dose simulation system based on portal dosimetry measurements and the BEAM Monte Carlo code for intensity-modulated (IM) radiotherapy dose verification. This measurement-based Monte Carlo (MBMC) system can perform, within one systematic calculation, both pretreatment and on-line transit dose verifications. BEAMnrc and DOSXYZnrc 2006 were used to simulate radiation transport from the treatment head, through the patient, to the plane of the aS500 electronic portal imaging device (EPID). In order to represent the nonuniform fluence distribution of an IM field within the MBMC simulation, an EPID-measured efficiency map was used to redistribute particle weightings of the simulated phase space distribution of an open field at a plane above a patient/phantom. This efficiency map was obtained by dividing the measured energy fluence distribution of an IM field to that of an open field at the EPID plane. The simulated dose distribution at the midplane of a homogeneous polystyrene phantom was compared to the corresponding distribution obtained from the Eclipse treatment planning system (TPS) for pretreatment verification. It also generated a simulated transit dose distribution to serve as the on-line verification reference for comparison to that measured by the EPID. Two head-and-neck (NPC1 and NPC2) and one prostate cancer fields were tested in this study. To validate the accuracy of the MBMC system, film dosimetry was performed and served as the dosimetry reference. Excellent agreement between the film dosimetry and the MBMC simulation was obtained for pretreatment verification. For all three cases tested, gamma evaluation with 3%/3 mm criteria showed a high pass percentage (> 99.7%) within the area in which the dose was greater than 30% of the maximum dose. In contrast to the TPS, the MBMC system was able to preserve multileaf collimator delivery effects such as the tongue-and-groove effect and interleaf leakage. In the NPC1 field, the TPS showed 16.5% overdose due to the tongue-and-groove effect and 14.6% overdose due to improper leaf stepping. Similarly, in the NPC2 field, the TPS showed 14.1% overdose due to the tongue-and-groove effect and 8.9% overdose due to improper leaf stepping. In the prostate cancer field, the TPS showed 6.8% overdose due to improper leaf stepping. No tongue-and-groove effect was observed for this field. For transit dose verification, agreements among the EPID measurement, the film dosimetry, and the MBMC system were also excellent with a minimum gamma pass percentage of 99.6%.
Collapse
Affiliation(s)
- Mu-Han Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | | | | | | | | | | |
Collapse
|
126
|
Wendling M, McDermott LN, Mans A, Sonke JJ, van Herk M, Mijnheer BJ. A simple backprojection algorithm for 3D in vivo
EPID dosimetry of IMRT treatments. Med Phys 2009; 36:3310-21. [DOI: 10.1118/1.3148482] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
127
|
McCurdy BMC, Greer PB. Dosimetric properties of an amorphous-silicon EPID used in continuous acquisition mode for application to dynamic and arc IMRT. Med Phys 2009; 36:3028-39. [DOI: 10.1118/1.3148822] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
128
|
Greer PB, Cadman P, Lee C, Bzdusek K. An energy fluence-convolution model for amorphous silicon EPID dose prediction. Med Phys 2009; 36:547-55. [PMID: 19291994 DOI: 10.1118/1.3058481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this work, an amorphous silicon electronic portal imaging device (a-Si EPID) dose prediction model based on the energy fluence model of the Pinnacle treatment planning system Version 7 (Philips Medical Systems, Madison, WI) is developed. An energy fluence matrix at very high resolution (< 1 mm) is used to incorporate multileaf collimator (MLC) leaf effects in the predicted EPID images. The primary dose deposited in the EPID is calculated from the energy fluence using experimentally derived radially dependent EPID interaction coefficients. Separate coefficients are used for the open beam energy fluence component and the component of the energy fluence transmitted through closed MLC leaves to each EPID pixel. A spatially invariant EPID dose deposition kernel that describes both radiative dose deposition, central axis EPID backscatter, and optical glare is convolved with the primary dose. The kernel is further optimized to give accurate EPID penumbra prediction and EPID scatter factor with changing MLC field size. An EPID calibration method was developed to reduce the effect of nonuniform backscatter from the support arm (E-arm) in a calibrated EPID image. This method removes the backscatter component from the pixel sensitivity (flood field) correction matrix retaining only field-specific backscatter in the images. The model was compared to EPID images for jaw and MLC defined open fields and eight head and neck intensity modulated radiotherapy (IMRT) fields. For the head and neck IMRT fields with 2%, 2 mm criteria 97.6 +/- 0.6% (mean +/- 1 standard deviation) of points passed with a gamma index less than 1, and for 3%, 3 mm 99.4 +/- 0.4% of points were within the criteria. For these fields, the 2%, 2 mm pass score reduced to 96.0 +/- 1.5% when backscatter was present in the pixel sensitivity correction matrix. The model incorporates the effect of MLC leaf transmission, EPID response to open and MLC leakage dose components, and accurately predicts EPID images of IMRT fields. Removing the backscatter component of the pixel sensitivity matrix correction reduces the effect of nonuniform E-arm backscatter.
Collapse
Affiliation(s)
- Peter B Greer
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter Region Mail Centre, Newcastle, NSW 2310, Australia.
| | | | | | | |
Collapse
|
129
|
Chytyk K, McCurdy BMC. Comprehensive fluence model for absolute portal dose image prediction. Med Phys 2009; 36:1389-98. [DOI: 10.1118/1.3083583] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
130
|
Tyner E, McClean B, McCavana P, Wetterstedt SA. Experimental investigation of the response of an a-Si EPID to an unflattened photon beam from an Elekta Precise linear accelerator. Med Phys 2009; 36:1318-29. [DOI: 10.1118/1.3089424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
131
|
van Zijtveld M, Dirkx M, Breuers M, de Boer H, Heijmen B. Portal dose image prediction forin vivotreatment verification completely based on EPID measurements. Med Phys 2009; 36:946-52. [DOI: 10.1118/1.3070545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
132
|
In patient dose reconstruction using a cine acquisition for dynamic arc radiation therapy. Med Biol Eng Comput 2009; 47:425-33. [DOI: 10.1007/s11517-009-0456-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
|
133
|
Kavuma A, Glegg M, Currie G, Elliott A. Assessment of dosimetrical performance in 11 Varian a-Si500 electronic portal imaging devices. Phys Med Biol 2008; 53:6893-909. [DOI: 10.1088/0031-9155/53/23/016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
134
|
Khan RFH, Ostapiak OZ, Szabo JJ. An empirical model of electronic portal imager response implemented within a commercial treatment planning system for verification of intensity-modulated radiation therapy fields. J Appl Clin Med Phys 2008; 9:135-150. [PMID: 19020485 PMCID: PMC5722365 DOI: 10.1120/jacmp.v9i4.2807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 07/17/2008] [Accepted: 07/22/2008] [Indexed: 11/30/2022] Open
Abstract
Quality assurance (QA) of an intensity‐modulated radiation therapy (IMRT) plan is more complex than that of a conventional plan. To improve the efficiency of QA, electronic portal imaging devices (EPIDs) can be used. The major objective of the present work was to use a commercial treatment planning system to model EPID response for the purpose of pre‐treatment IMRT dose verification. Images were acquired with an amorphous silicon flat panel portal imager (aS500: Varian Medical Systems, Palo Alto, CA) directly irradiated with a 6‐MV photon beam from a Clinac 21EX linear accelerator (Varian Medical Systems). Portal images were acquired for a variety of rectangular fields, from which profiles and relative output factors were extracted. A dedicated machine model was created using the physics tools of the Pinnacle3 (Philips Medical Systems, Madison, WI) treatment planning system to model the data. Starting with the known photon spectrum and assuming an effective depth of 7 cm, machine model parameters were adjusted to best fit measured profile and output factors. The machine parameters of a second model, which assumed a 0.8 MeV monoenergetic photon spectrum and an effective depth in water of 3 cm, were also optimized. The second EPID machine model was used to calculate planar dose maps of simple geometric IMRT fields as well as a 9‐field IMRT plan developed for clinical trials credentialing purposes. The choice of energy and depth for an EPID machine model influenced the best achievable fit of the optimized machine model to the measured data. When both energy and depth were reduced by a significant amount, a better overall fit was achieved. In either case, the secondary source size and strength could be adjusted to give reasonable agreement with measured data. The gamma evaluation method was used to compare planar dose maps calculated using the second EPID machine model with the EPID images of small IMRT fields. In each case, more than 95% of points fell within 3% of the maximum dose or 3 mm distance to agreement. These results are slightly poorer than those obtained using an ion chamber array, which confirms agreement to within 2% of the maximum dose or 2 mm distance to agreement for all points within these fields. PACS numbers: 87.55Qr, 87.56.Fc
Collapse
Affiliation(s)
- Rao F H Khan
- Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta
| | - Orest Z Ostapiak
- Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta
| | - Joe J Szabo
- Department of Medical Physics, Juravinski Cancer Center, Hamilton, Ontario, Canada
| |
Collapse
|
135
|
Abstract
The complexity of modern radiotherapy requires a comprehensive quality assurance programme, including in vivo dosimetry. In this paper, the use of the detector systems most often used for in vivo dosimetry [diodes, thermoluminescence detectors, metal oxide field effect transistors and electronic portal imaging devices (EPIDs)] will be summarised. Although point detectors are useful for the verification of conventional 3-D conformal radiotherapy, the use of 2-D detector systems, such as EPIDs, is required for the verification of more complicated techniques, including intensity-modulated radiotherapy.
Collapse
Affiliation(s)
- Ben Mijnheer
- Radiotherapy Department, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
136
|
van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 2008; 88:289-309. [PMID: 18706727 DOI: 10.1016/j.radonc.2008.07.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/09/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
Abstract
Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.
Collapse
Affiliation(s)
- Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
137
|
Chen Y, Moran JM, Roberts DA, El-Mohri Y, Antonuk LE, Fraass BA. Performance of a direct-detection active matrix flat panel dosimeter (AMFPD) for IMRT measurements. Med Phys 2008; 34:4911-22. [PMID: 18196816 DOI: 10.1118/1.2805993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The dosimetric performance of a direct-detection active matrix flat panel dosimeter (AMFPD) is reported for intensity modulated radiation therapy (IMRT) measurements. The AMFPD consists of a-Si : H photodiodes and thin-film transistors deposited on a glass substrate with no overlying scintillator screen or metal plate. The device is operated at 0.8 frames per second in a continuous acquisition or fluoroscopic mode. The effect of the applied bias voltage across the photodiodes on the response of the AMFPD was evaluated because this parameter affects dark signal, lag contributions, and pixel sensitivity. In addition, the AMPFD response was evaluated as a function of dose, dose rate, and energy, for static fields at 10 cm depth. In continuous acquisition mode, the AMFPD maintained a linear dose response (r2 > 0.99999) up to at least 1040 cGy. In order to obtain reliable integrated dose results for IMRT fields, the effects of lag on the radiation signal were minimized by operating the system at the highest frame rate and at an appropriate reverse bias voltage. Segmental MLC and dynamic MLC IMRT fields were measured with the AMFPD, and the results were compared to film, using standard methods for reliable film dosimetry. Both AMFPD and film measurements were independently converted to dose in cGy. Gamma and chi values were calculated as indices of agreement. The results from the AMFPD were in excellent agreement with those from film. When 2% of D(max) and 2 mm of distance to agreement were used as the criteria, 98% of the region of interest (defined as the region where dose is greater than 5% of D(max)) satisfied [chi] < or = 1 on average across the cases that were tested.
Collapse
Affiliation(s)
- Yu Chen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
138
|
A phantom study of dose compensation behind hip prosthesis using portal dosimetry and dynamic MLC. Radiother Oncol 2008; 88:277-84. [DOI: 10.1016/j.radonc.2008.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/03/2008] [Accepted: 04/13/2008] [Indexed: 11/19/2022]
|
139
|
Vial P, Greer PB, Hunt P, Oliver L, Baldock C. The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams. Med Phys 2008; 35:1267-77. [PMID: 18491519 DOI: 10.1118/1.2885368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to experimentally quantify the change in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to dynamic multileaf collimator (dMLC) beams with varying MLC-transmitted dose components and incorporate the response into a commercial treatment planning system (TPS) EPID prediction model. A combination of uniform intensity dMLC beams and static beams were designed to quantify the effect of MLC transmission on EPID response at the central axis of 10 x 10 cm2 beams, at off-axis positions using wide dMLC beam profiles, and at different field sizes. The EPID response to MLC transmitted radiation was 0.79 +/- 0.02 of the response to open beam radiation at the central axis of a 10 x 10 cm2 field. The EPID response to MLC transmitted radiation was further reduced relative to the open beam response with off-axis distance. The EPID response was more sensitive to field size changes for MLC transmitted radiation compared to open beam radiation by a factor of up to 1.17 at large field sizes. The results were used to create EPID response correction factors as a function of the fraction of MLC transmitted radiation, off-axis distance, and field size. Software was developed to apply the correction factors to each pixel in the TPS predicted EPID image. The corrected images agreed more closely with the measured EPID images in areas of intensity modulated fields with a large fraction of MLC transmission and, as a result the accuracy of portal dosimetry with a-Si EPIDs can be improved. Further investigation into the detector response function and the radiation source model are required to achieve improvements in accuracy for the general case.
Collapse
Affiliation(s)
- Philip Vial
- Royal North Shore Hospital, Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
140
|
Reich PD, Bezak E. The use of a treatment planning system to investigate the potential for transmission dosimetry in detecting patient breathing during breast 3D CRT. ACTA ACUST UNITED AC 2008; 31:110-21. [DOI: 10.1007/bf03178585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
141
|
Abstract
The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment.
Collapse
Affiliation(s)
- Philip M Evans
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK.
| |
Collapse
|
142
|
Ju T, Simpson T, Deasy JO, Low DA. Geometric interpretation of the gamma dose distribution comparison technique: interpolation-free calculation. Med Phys 2008; 35:879-87. [PMID: 18404924 DOI: 10.1118/1.2836952] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The gamma dose comparison tool has been used by numerous investigators to quantitatively compare multidimensional dose distributions. The gamma tool requires the specification of dose and distance-to-agreement (DTA) criteria for acceptable variations between the dose distributions. The tool then provides a comparison that simultaneously evaluates the dose difference and distance to agreement of the two dose distributions. One of the weaknesses of the tool is that the comparison requires one of the dose distributions to have a relatively high spatial resolution, with points spaced significantly closer than the DTA criterion. The determination of gamma involves an exhaustive search process, so the computation time is significant if an accurate gamma is desired. The reason for the need for high spatial resolution lies with the fact that the gamma tool measures the closest point in one of the dose distributions (the evaluated distribution) with individual points of the other distribution (the reference distribution) when the two distributions are normalized by the dose difference and DTA criteria for the dose and spatial coordinates, respectively. The closest point in the evaluated distribution to a selected reference distribution point is the value of gamma at that reference point. If individual evaluated dose distribution points are compared, the closest point may not accurately reflect the closest value of the evaluated distribution as if it were interpolated on an infinite resolution grid. Therefore, a reinterpretation of the gamma distribution as the closest geometric distance between the two distributions is proposed. This is conducted by subdividing the evaluated distribution into simplexes; line segments, triangles, and tetrahedra for one, two, and three-dimensional (3D) dose distributions. The closest distance between any point and these simplexes can be straightforwardly computed using matrix multiplication and inversion without the need of interpolating the original evaluated distribution. While an exhaustive search is still required, not having to interpolate the evaluated distribution avoids the drastic growth of calculation time incurred by interpolation and makes the gamma tool more practical and more accurate. In our experiment, the geometric method accurately computes gamma distributions between 3D dose distributions on a 200 x 200 x 50 grid within two minutes.
Collapse
Affiliation(s)
- Tao Ju
- Department of Computer Science, Washington University, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
143
|
Nicolini G, Fogliata A, Vanetti E, Clivio A, Vetterli D, Cozzi L. Testing the GlaaS algorithm for dose measurements on low- and high-energy photon beams using an amorphous silicon portal imager. Med Phys 2008; 35:464-72. [PMID: 18383666 DOI: 10.1118/1.2828182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.
Collapse
Affiliation(s)
- Giorgia Nicolini
- Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
144
|
Greer PB, Vial P, Oliver L, Baldock C. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams. Med Phys 2008; 34:4389-98. [PMID: 18072504 DOI: 10.1118/1.2789406] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.
Collapse
Affiliation(s)
- Peter B Greer
- Calvary Mater Newcastle Hospital, Newcastle, New South Wales, Australia.
| | | | | | | |
Collapse
|
145
|
3D in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT. Radiother Oncol 2008; 86:35-42. [DOI: 10.1016/j.radonc.2007.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/21/2022]
|
146
|
van Elmpt W, Nijsten S, Mijnheer B, Dekker A, Lambin P. The next step in patient-specific QA: 3D dose verification of conformal and intensity-modulated RT based on EPID dosimetry and Monte Carlo dose calculations. Radiother Oncol 2008; 86:86-92. [PMID: 18054102 DOI: 10.1016/j.radonc.2007.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/05/2007] [Accepted: 11/05/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
147
|
Georg D, Stock M, Kroupa B, Olofsson J, Nyholm T, Ahnesjö A, Karlsson M. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience. Phys Med Biol 2007; 52:4981-92. [PMID: 17671348 DOI: 10.1088/0031-9155/52/16/018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach. The physical effects modelled in the dose calculation software MUV allow accurate dose calculations in individual verification points. Independent calculations may be used to replace experimental dose verification once the IMRT programme is mature.
Collapse
Affiliation(s)
- Dietmar Georg
- Abteilung Medizinische Strahlenphysik, Univ. Klinik für Strahlentherapie, Medizinische Universität Wien/AKH Wien, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
148
|
Seibert RM, Ramsey CR, Garvey DR, Hines JW, Robison BH, Outten SS. Verification of helical tomotherapy delivery using autoassociative kernel regressiona). Med Phys 2007; 34:3249-62. [PMID: 17879788 DOI: 10.1118/1.2754059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Quality assurance (QA) is a topic of major concern in the field of intensity modulated radiation therapy (IMRT). The standard of practice for IMRT is to perform QA testing for individual patients to verify that the dose distribution will be delivered to the patient. The purpose of this study was to develop a new technique that could eventually be used to automatically evaluate helical tomotherapy treatments during delivery using exit detector data. This technique uses an autoassociative kernel regression (AAKR) model to detect errors in tomotherapy delivery. AAKR is a novel nonparametric model that is known to predict a group of correct sensor values when supplied a group of sensor values that is usually corrupted or contains faults such as machine failure. This modeling scheme is especially suited for the problem of monitoring the fluence values found in the exit detector data because it is able to learn the complex detector data relationships. This scheme still applies when detector data are summed over many frames with a low temporal resolution and a variable beam attenuation resulting from patient movement. Delivery sequences from three archived patients (prostate, lung, and head and neck) were used in this study. Each delivery sequence was modified by reducing the opening time for random individual multileaf collimator (MLC) leaves by random amounts. The errof and error-free treatments were delivered with different phantoms in the path of the beam. Multiple autoassociative kernel regression (AAKR) models were developed and tested by the investigators using combinations of the stored exit detector data sets from each delivery. The models proved robust and were able to predict the correct or error-free values for a projection, which had a single MLC leaf decrease its opening time by less than 10 msec. The model also was able to determine machine output errors. The average uncertainty value for the unfaulted projections ranged from 0.4% to 1.8% of the detector signal. The low model uncertainty indicates that the AAKR model is extremely accurate in its predictions and also suggests that the model may be able to detect errors that cause the fluence to change by less than 2%. However, additional evaluation of the AAKR technique is needed to determine the minimum detectable error threshold from the compressed helical tomotherapy detector data. Further research also needs to explore applying this technique to electronic portal imaging detector data.
Collapse
Affiliation(s)
- Rebecca M Seibert
- Department of Nuclear Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | | | | | |
Collapse
|
149
|
Winkler P, Hefner A, Georg D. Implementation and validation of portal dosimetry with an amorphous silicon EPID in the energy range from 6 to 25 MV. Phys Med Biol 2007; 52:N355-65. [PMID: 17634637 DOI: 10.1088/0031-9155/52/15/n05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to develop, implement and validate a method for portal dosimetry with an amorphous silicon EPID for a wide energy range. Analytic functions were applied in order to correct for nonlinearities in detector response with dose rate, irradiation time and total dose. EPID scattering processes were corrected for by means of empirically determined convolution kernels. For a variety of rectangular and irregularly shaped fields, head scatter factors determined from central axis portal dose values and those measured with an ionization chamber showed a maximum deviation of 0.5%. The accuracy of our method was further investigated for pretreatment IMRT verification (i.e. without absorbers in the beam). The agreement between EPID and film dosimetry was quantified using gamma (gamma) evaluation, with 2% dose and 2 mm distance-to-agreement criteria. All gamma-distributions showed a gamma(mean) < 0.5, a 99th percentile <1.5 and a fraction of pixels with gamma > 1 smaller than 7%. The number of monitor units delivered by single segments of the IMRT fields could be extracted from the portal images with high accuracy. Measured and delivered doses were within +/-3% for more than 98% of data points. Ghosting effects were found to have limited effects on dosimetric IMRT verification.
Collapse
Affiliation(s)
- Peter Winkler
- Division of Medical Radiation Physics, Department of Radiotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
150
|
van Elmpt WJC, Nijsten SMJJG, Dekker ALAJ, Mijnheer BJ, Lambin P. Treatment verification in the presence of inhomogeneities using EPID-based three-dimensional dose reconstruction. Med Phys 2007; 34:2816-26. [PMID: 17821989 DOI: 10.1118/1.2742778] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Treatment verification is a prerequisite for the verification of complex treatments, checking both the treatment planning process and the actual beam delivery. Pretreatment verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distributions. In a previous paper we described the reconstruction of three-dimensional (3-D) dose distributions in homogeneous phantoms using an in-house developed model based on the beams delivered by the linear accelerator measured with an amorphous silicon electronic portal imaging device (EPID), and a dose calculation engine using the Monte Carlo code XVMC. The aim of the present study is to extend the method to situations in which tissue inhomogeneities are present and to make a comparison with the dose distributions calculated by the TPS. Dose distributions in inhomogeneous phantoms, calculated using the fast-Fourier transform convolution (FFTC) and multigrid superposition (MGS) algorithms present in the TPS, were verified using the EPID-based dose reconstruction method and compared to film and ionization chamber measurements. Differences between dose distributions were evaluated using the gamma-evaluation method (3%/3 mm) and expressed as a mean gamma and the percentage of points with gamma> 1 (P(gamma>1)). For rectangular inhomogeneous phantoms containing a low-density region, the differences between film and reconstructed dose distributions were smaller than 3%. In low-density regions there was an overestimation of the planned dose using the FFTC and MGS algorithms of the TPS up to 20% and 8%, respectively, for a 10 MV photon beam and a 3 x 3 cm2 field. For lower energies and larger fields (6 MV, 5 x 5 cm2), these differences reduced to 6% and 3%, respectively. Dose reconstruction performed in an anthropomorphic thoracic phantom for a 3-D conformal and an IMRT plan, showed good agreement between film data and reconstructed dose values (P(gamma>1) <6%). The algorithms of the TPS underestimated the dose in the low-dose regions outside the treatment field, due to an implementation error of the jaws and multileaf collimator of the linac in the TPS. The FFTC algorithm of the TPS showed differences up to 6% or 6 mm at the interface between lung and breast. Two intensity-modulated radiation therapy head and neck plans, reconstructed in a commercial phantom having a bone-equivalent insert and an air cavity, showed good agreement between film measurement, reconstructed and planned dose distributions using the FFTC and MGS algorithm, except in the bone-equivalent regions where both TPS algorithms underestimated the dose with 4%. Absolute dose verification was performed at the isocenter where both planned and reconstructed dose were within 2% of the measured dose. Reproducibility for the EPID measurements was assessed and found to be of negligible influence on the reconstructed dose distribution. Our 3-D dose verification approach is based on the actual dose measured with an EPID in combination with a Monte Carlo dose engine, and therefore independent of a TPS. Because dose values are reconstructed in 3-D, isodose surfaces and dose-volume histograms can be used to detect dose differences in target volume and normal tissues. Using our method, the combined planning and treatment delivery process is verified, offering an easy to use tool for the verification of complex treatments.
Collapse
Affiliation(s)
- Wouter J C van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW U.H. Maastricht, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|