101
|
Auer TO, Xiao T, Bercier V, Gebhardt C, Duroure K, Concordet JP, Wyart C, Suster M, Kawakami K, Wittbrodt J, Baier H, Del Bene F. Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. eLife 2015; 4. [PMID: 26076409 PMCID: PMC4467164 DOI: 10.7554/elife.05061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
Development and function of highly polarized cells such as neurons depend on microtubule-associated intracellular transport, but little is known about contributions of specific molecular motors to the establishment of synaptic connections. In this study, we investigated the function of the Kinesin I heavy chain Kif5aa during retinotectal circuit formation in zebrafish. Targeted disruption of Kif5aa does not affect retinal ganglion cell differentiation, and retinal axons reach their topographically correct targets in the tectum, albeit with a delay. In vivo dynamic imaging showed that anterograde transport of mitochondria is impaired, as is synaptic transmission. Strikingly, disruption of presynaptic activity elicits upregulation of Neurotrophin-3 (Ntf3) in postsynaptic tectal cells. This in turn promotes exuberant branching of retinal axons by signaling through the TrkC receptor (Ntrk3). Thus, our study has uncovered an activity-dependent, retrograde signaling pathway that homeostatically controls axonal branching.
Collapse
Affiliation(s)
| | - Tong Xiao
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | | | | | | - Jean-Paul Concordet
- Muséum National d'Histoire naturelle, Inserm U 1154, CNRS, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Universités, UPMC University Paris 6, Paris, France
| | - Maximiliano Suster
- Neural Circuits and Behaviour Group, Uni Research AS High Technology Centre, Bergen, Norway
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | |
Collapse
|
102
|
Sato T, Sato F, Kamezaki A, Sakaguchi K, Tanigome R, Kawakami K, Sehara-Fujisawa A. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain. PLoS One 2015; 10:e0127360. [PMID: 26001123 PMCID: PMC4441363 DOI: 10.1371/journal.pone.0127360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.
Collapse
Affiliation(s)
- Tomomi Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (TS); (ASF)
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Aosa Kamezaki
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuya Sakaguchi
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ryoma Tanigome
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima-shi, Shizuoka, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (TS); (ASF)
| |
Collapse
|
103
|
Kardamakis AA, Saitoh K, Grillner S. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc Natl Acad Sci U S A 2015; 112:E1956-65. [PMID: 25825743 PMCID: PMC4403191 DOI: 10.1073/pnas.1504866112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The optic tectum (called superior colliculus in mammals) is critical for eye-head gaze shifts as we navigate in the terrain and need to adapt our movements to the visual scene. The neuronal mechanisms underlying the tectal contribution to stimulus selection and gaze reorientation remains, however, unclear at the microcircuit level. To analyze this complex--yet phylogenetically conserved--sensorimotor system, we developed a novel in vitro preparation in the lamprey that maintains the eye and midbrain intact and allows for whole-cell recordings from prelabeled tectal gaze-controlling cells in the deep layer, while visual stimuli are delivered. We found that receptive field activation of these cells provide monosynaptic retinal excitation followed by local GABAergic inhibition (feedforward). The entire remaining retina, on the other hand, elicits only inhibition (surround inhibition). If two stimuli are delivered simultaneously, one inside and one outside the receptive field, the former excitatory response is suppressed. When local inhibition is pharmacologically blocked, the suppression induced by competing stimuli is canceled. We suggest that this rivalry between visual areas across the tectal map is triggered through long-range inhibitory tectal connections. Selection commands conveyed via gaze-controlling neurons in the optic tectum are, thus, formed through synaptic integration of local retinotopic excitation and global tectal inhibition. We anticipate that this mechanism not only exists in lamprey but is also conserved throughout vertebrate evolution.
Collapse
Affiliation(s)
- Andreas A Kardamakis
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; and
| | - Kazuya Saitoh
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; and Faculty of Education, Kumamoto University, Kumamoto 860-8556, Japan
| | - Sten Grillner
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; and
| |
Collapse
|
104
|
|
105
|
Bianco IH, Engert F. Visuomotor transformations underlying hunting behavior in zebrafish. Curr Biol 2015; 25:831-46. [PMID: 25754638 PMCID: PMC4386024 DOI: 10.1016/j.cub.2015.01.042] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 11/28/2022]
Abstract
Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Zebrafish hunting responses are triggered by conjunctions of visual features Tectal neurons show non-linear mixed selectivity for prey-like visual stimuli Tectal assemblies show premotor activity specifically preceding hunting responses
Collapse
Affiliation(s)
- Isaac H Bianco
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
106
|
Romano SA, Pietri T, Pérez-Schuster V, Jouary A, Haudrechy M, Sumbre G. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior. Neuron 2015; 85:1070-85. [PMID: 25704948 PMCID: PMC4353685 DOI: 10.1016/j.neuron.2015.01.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/19/2014] [Accepted: 01/22/2015] [Indexed: 10/25/2022]
Abstract
Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents "preferred" network states, tuned to behaviorally relevant features, emerging from the circuit's intrinsic non-linear dynamics, adapted for its functional role.
Collapse
Affiliation(s)
- Sebastián A Romano
- Ecole Normale Supérieure, Institut de Biologie de l'ENS IBENS, 75005 Paris, France; INSERM, U1024, 75005 Paris, France; CNRS, UMR 8197, 75005 Paris, France
| | - Thomas Pietri
- Ecole Normale Supérieure, Institut de Biologie de l'ENS IBENS, 75005 Paris, France; INSERM, U1024, 75005 Paris, France; CNRS, UMR 8197, 75005 Paris, France
| | - Verónica Pérez-Schuster
- Ecole Normale Supérieure, Institut de Biologie de l'ENS IBENS, 75005 Paris, France; INSERM, U1024, 75005 Paris, France; CNRS, UMR 8197, 75005 Paris, France
| | - Adrien Jouary
- Ecole Normale Supérieure, Institut de Biologie de l'ENS IBENS, 75005 Paris, France; INSERM, U1024, 75005 Paris, France; CNRS, UMR 8197, 75005 Paris, France
| | - Mathieu Haudrechy
- Ecole Normale Supérieure, Institut de Biologie de l'ENS IBENS, 75005 Paris, France; INSERM, U1024, 75005 Paris, France; CNRS, UMR 8197, 75005 Paris, France
| | - Germán Sumbre
- Ecole Normale Supérieure, Institut de Biologie de l'ENS IBENS, 75005 Paris, France; INSERM, U1024, 75005 Paris, France; CNRS, UMR 8197, 75005 Paris, France.
| |
Collapse
|
107
|
Ahrens MB, Engert F. Large-scale imaging in small brains. Curr Opin Neurobiol 2015; 32:78-86. [PMID: 25636154 DOI: 10.1016/j.conb.2015.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/10/2015] [Indexed: 01/01/2023]
Abstract
The dense connectivity in the brain means that one neuron's activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Florian Engert
- Harvard University, Department of Molecular and Cellular Biology, Cambridge, MA, USA.
| |
Collapse
|
108
|
Kita EM, Scott EK, Goodhill GJ. Topographic wiring of the retinotectal connection in zebrafish. Dev Neurobiol 2015; 75:542-56. [PMID: 25492632 DOI: 10.1002/dneu.22256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/08/2022]
Abstract
The zebrafish retinotectal projection provides an attractive model system for studying many aspects of topographic map formation and maintenance. Visual connections initially start to form between 3 and 5 days postfertilization, and remain plastic throughout the life of the fish. Zebrafish are easily manipulated surgically, genetically, and chemically, and a variety of molecular tools exist to enable visualization and control of various aspects of map development. Here, we review zebrafish retinotectal map formation, focusing particularly on the detailed structure and dynamics of the connections, the molecules that are important in map creation, and how activity regulates the maintenance of the map.
Collapse
Affiliation(s)
- Elizabeth M Kita
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
109
|
Wyart C, Knafo S. Sensorimotor Integration in the Spinal Cord, from Behaviors to Circuits: New Tools to Close the Loop? BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2015. [DOI: 10.1007/978-3-319-12913-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
110
|
Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H. A dedicated visual pathway for prey detection in larval zebrafish. eLife 2014; 3. [PMID: 25490154 PMCID: PMC4281881 DOI: 10.7554/elife.04878] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/08/2014] [Indexed: 12/03/2022] Open
Abstract
Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, that was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response. DOI:http://dx.doi.org/10.7554/eLife.04878.001 Our ability to recognize objects, and to respond instinctively to them, is something that is not fully understood. For example, seeing your favorite dessert could trigger an irresistible urge to eat it. Yet precisely how the image of the dessert could trigger an inner desire to indulge is a question that has so far eluded scientists. This compelling question also applies to the animal kingdom. Predators often demonstrate a typical hunting behavior upon seeing their prey from a distance. But just how the image of the prey triggers this hunting behavior is not known. Semmelhack et al. have now investigated this question by looking at the hunting behavior of zebrafish larvae. The larvae's prey is a tiny microbe that resembles a small moving dot. When the larvae encounter something that looks like their prey, they demonstrate a hardwired hunting response towards it. The hunting behavior consists of a series of swimming maneuvers to help the larvae successfully capture their prey. Semmelhack et al. used prey decoys to lure the zebrafish larvae, and video recordings to monitor the larvae's response. During the recordings, the larvae were embedded in a bed of jelly with only their tails free to move. The larvae's tail movements were recorded, and because the larvae are completely transparent, their brain activity could be visually monitored at the same time using calcium dyes. Using this approach, Semmelhack et al. identified a specific area of the brain that is responsible for triggering the larvae's hunting behavior. It turns out that this brain region forms a circuit that directly connects the retina at the back of the eye to nerve centers that control hunting maneuvers. So when the larva sees its prey, this circuit could directly trigger the larva's hunting behavior. When the circuit was specifically destroyed with a laser, this instinctive hunting response was impaired. These findings suggest that predators have a distinct brain circuit that hardwires their hunting response to images of their prey. Future studies would involve understanding precisely how this circuit coordinates the larvae's complex hunting behavior. DOI:http://dx.doi.org/10.7554/eLife.04878.002
Collapse
Affiliation(s)
- Julia L Semmelhack
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Joseph C Donovan
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tod R Thiele
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Enrico Kuehn
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Eva Laurell
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
111
|
Sano Y, Watanabe W, Matsunaga S. Chromophore-assisted laser inactivation--towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function. J Cell Sci 2014; 127:1621-9. [PMID: 24737873 DOI: 10.1242/jcs.144527] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromophore-assisted laser or light inactivation (CALI) has been employed as a promising technique to achieve spatiotemporal knockdown or loss-of-function of target molecules in situ. CALI is performed using photosensitizers as generators of reactive oxygen species (ROS). There are two CALI approaches that use either transgenic tags with chemical photosensitizers, or genetically encoded fluorescent protein fusions. Using spatially restricted microscopy illumination, CALI can address questions regarding, for example, protein isoforms, subcellular localization or phase-specific analyses of multifunctional proteins that other knockdown approaches, such as RNA interference or treatment with chemicals, cannot. Furthermore, rescue experiments can clarify the phenotypic capabilities of CALI after the depletion of endogenous targets. CALI can also provide information about individual events that are involved in the function of a target protein and highlight them in multifactorial events. Beyond functional analysis of proteins, CALI of nuclear proteins can be performed to induce cell cycle arrest, chromatin- or locus-specific DNA damage. Even at organelle level - such as in mitochondria, the plasma membrane or lysosomes - CALI can trigger cell death. Moreover, CALI has emerged as an optogenetic tool to switch off signaling pathways, including the optical depletion of individual neurons. In this Commentary, we review recent applications of CALI and discuss the utility and effective use of CALI to address open questions in cell biology.
Collapse
Affiliation(s)
- Yukimi Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|
112
|
Kim CK, Miri A, Leung LC, Berndt A, Mourrain P, Tank DW, Burdine RD. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front Neural Circuits 2014; 8:138. [PMID: 25505384 PMCID: PMC4244806 DOI: 10.3389/fncir.2014.00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/06/2014] [Indexed: 02/05/2023] Open
Abstract
Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf), precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs) limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials (APs). We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca(2+) signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development.
Collapse
Affiliation(s)
- Christina K Kim
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Andrew Miri
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University Stanford, CA, USA ; Center for Sleep Sciences, Stanford University Stanford, CA, USA
| | - Andre Berndt
- Department of Bioengineering, Stanford University Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University Stanford, CA, USA ; Center for Sleep Sciences, Stanford University Stanford, CA, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University Princeton, NJ, USA
| |
Collapse
|
113
|
|
114
|
Classification of Object Size in Retinotectal Microcircuits. Curr Biol 2014; 24:2376-85. [DOI: 10.1016/j.cub.2014.09.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 11/20/2022]
|
115
|
Zhao X, Liu M, Cang J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 2014; 84:202-213. [PMID: 25220812 DOI: 10.1016/j.neuron.2014.08.037] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 01/31/2023]
Abstract
Neural circuits in the brain often receive inputs from multiple sources, such as the bottom-up input from early processing stages and the top-down input from higher-order areas. Here we study the function of top-down input in the mouse superior colliculus (SC), which receives convergent inputs from the retina and visual cortex. Neurons in the superficial SC display robust responses and speed tuning to looming stimuli that mimic approaching objects. The looming-evoked responses are reduced by almost half when the visual cortex is optogenetically silenced in awake, but not in anesthetized, mice. Silencing the cortex does not change the looming speed tuning of SC neurons, or the response time course, except at the lowest tested speed. Furthermore, the regulation of SC responses by the corticotectal input is organized retinotopically. This effect we revealed may thus provide a potential substrate for the cortex, an evolutionarily new structure, to modulate SC-mediated visual behaviors.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Mingna Liu
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
116
|
Fallani FDV, Corazzol M, Sternberg JR, Wyart C, Chavez M. Hierarchy of neural organization in the embryonic spinal cord: Granger-causality graph analysis of in vivo calcium imaging data. IEEE Trans Neural Syst Rehabil Eng 2014; 23:333-41. [PMID: 25122836 DOI: 10.1109/tnsre.2014.2341632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The recent development of genetically encoded calcium indicators enables monitoring in vivo the activity of neuronal populations. Most analysis of these calcium transients relies on linear regression analysis based on the sensory stimulus applied or the behavior observed. To estimate the basic properties of the functional neural circuitry, we propose a network approach to calcium imaging recorded at single cell resolution. Differently from previous analysis based on cross-correlation, we used Granger-causality estimates to infer information propagation between the activities of different neurons. The resulting functional network was then modeled as a directed graph and characterized in terms of connectivity and node centralities. We applied our approach to calcium transients recorded at low frequency (4 Hz) in ventral neurons of the zebrafish spinal cord at the embryonic stage when spontaneous coiling of the tail occurs. Our analysis on population calcium imaging data revealed a strong ipsilateral connectivity and a characteristic hierarchical organization of the network hubs that supported established propagation of activity from rostral to caudal spinal cord. Our method could be used for detecting functional defects in neuronal circuitry during development and pathological conditions.
Collapse
|
117
|
Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, Rosen J, Yang CT, Looger LL, Ahrens MB. Mapping brain activity at scale with cluster computing. Nat Methods 2014; 11:941-50. [DOI: 10.1038/nmeth.3041] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
|
118
|
Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 2014; 5:153. [PMID: 25104936 PMCID: PMC4109429 DOI: 10.3389/fphar.2014.00153] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/11/2014] [Indexed: 01/11/2023] Open
Abstract
Most neuroactive drugs were discovered through unexpected behavioral observations. Systematic behavioral screening is inefficient in most model organisms. But, automated technologies are enabling a new phase of discovery-based research in central nervous system (CNS) pharmacology. Researchers are using large-scale behavior-based chemical screens in zebrafish to discover compounds with new structures, targets, and functions. These compounds are powerful tools for understanding CNS signaling pathways. Substantial differences between human and zebrafish biology will make it difficult to translate these discoveries to clinical medicine. However, given the molecular genetic similarities between humans and zebrafish, it is likely that some of these compounds will have translational utility. We predict that the greatest new successes in CNS drug discovery will leverage many model systems, including in vitro assays, cells, rodents, and zebrafish.
Collapse
Affiliation(s)
- Giancarlo Bruni
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Parth Lakhani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - David Kokel
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
119
|
Portugues R, Feierstein CE, Engert F, Orger MB. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 2014; 81:1328-1343. [PMID: 24656252 DOI: 10.1016/j.neuron.2014.01.019] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2013] [Indexed: 02/04/2023]
Abstract
Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain.
Collapse
Affiliation(s)
- Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Claudia E Feierstein
- Champalimaud Neuroscience Programme, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Michael B Orger
- Champalimaud Neuroscience Programme, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal.
| |
Collapse
|
120
|
Ferreira T, Wilson SR, Choi YG, Risso D, Dudoit S, Speed TP, Ngai J. Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron. Neuron 2014; 81:847-59. [PMID: 24559675 DOI: 10.1016/j.neuron.2014.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 02/06/2023]
Abstract
Olfactory sensory neurons express just one out of a possible ∼ 1,000 odorant receptor genes, reflecting an exquisite mode of gene regulation. In one model, once an odorant receptor is chosen for expression, other receptor genes are suppressed by a negative feedback mechanism, ensuring a stable functional identity of the sensory neuron for the lifetime of the cell. The signal transduction mechanism subserving odorant receptor gene silencing remains obscure, however. Here, we demonstrate in the zebrafish that odorant receptor gene silencing is dependent on receptor activity. Moreover, we show that signaling through G protein βγ subunits is both necessary and sufficient to suppress the expression of odorant receptor genes and likely acts through histone methylation to maintain the silenced odorant receptor genes in transcriptionally inactive heterochromatin. These results link receptor activity with the epigenetic mechanisms responsible for ensuring the expression of one odorant receptor per olfactory sensory neuron.
Collapse
Affiliation(s)
- Todd Ferreira
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah R Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yoon Gi Choi
- Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Davide Risso
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sandrine Dudoit
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Terence P Speed
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3050, Australia
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
121
|
Abstract
Synapse loss occurs normally during development and pathologically during neurodegenerative disease. Long-term depression, a proposed physiological correlate of synapse elimination, requires caspase-3 and the mitochondrial pathway of apoptosis. Here, we show that caspase-3 activity is essential--and can act locally within neurons--for regulation of spine density and dendrite morphology. By photostimulation of Mito-KillerRed, we induced caspase-3 activity in defined dendritic regions of cultured neurons. Within the photostimulated region, local elimination of dendritic spines and dendrite retraction occurred in a caspase-3-dependent manner without inducing cell death. However, pharmacological inhibition of inhibitor of apoptosis proteins or proteasome function led to neuronal death, suggesting that caspase activation is spatially restricted by these "molecular brakes" on apoptosis. Caspase-3 knock-out mice have increased spine density and altered miniature EPSCs, confirming a physiological involvement of caspase-3 in the regulation of spines in vivo.
Collapse
|
122
|
Teh C, Korzh V. In vivo optogenetics for light-induced oxidative stress in transgenic zebrafish expressing the KillerRed photosensitizer protein. Methods Mol Biol 2014; 1148:229-238. [PMID: 24718805 DOI: 10.1007/978-1-4939-0470-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optogenetic methods are gaining broad recognition. The zebrafish is particularly useful for these applications as a model vertebrate due to a unique combination of translucent embryos/larvae and efficient transgenesis. Here, we describe a zebrafish model of light-induced cardiac deficiency. Upon illumination with intense green light, the membrane-tethered photosensitizer protein KillerRed acts as a photoinducer of reactive oxygen species which in turn cause changes in heart rate and contractility in hearts that express this transgene.
Collapse
Affiliation(s)
- Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, Singapore, 138673
| | | |
Collapse
|
123
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
124
|
Role of a ubiquitously expressed receptor in the vertebrate olfactory system. J Neurosci 2013; 33:15235-47. [PMID: 24048853 DOI: 10.1523/jneurosci.2339-13.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the "one receptor, one neuron" rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed.
Collapse
|
125
|
Abstract
The larval zebrafish is a model organism to study the neural circuitry underlying behavior. There exist, however, few examples of robust long-term memory. Here we describe a simple, unrestrained associative place-conditioning paradigm. We show that visual access to a group of conspecifics has rewarding properties for 6- to 8-day-old larval zebrafish. We use this social reward as an unconditioned stimulus and pair it with a distinct visual environment. After training, larvae exhibited spatial preference for the location previously paired with the social reward for up to 36 h, indicating that zebrafish larvae can exhibit long-term associative memory. Furthermore, incubation with a protein synthesis inhibitor or an NMDAR-antagonist impaired memory. In future experiments, this learning paradigm could be used to study the social interactions of larval zebrafish or paired with cell-specific metabolic labeling to visualize circuits underlying memory formation.
Collapse
|
126
|
Byrne LC, Khalid F, Lee T, Zin EA, Greenberg KP, Visel M, Schaffer DV, Flannery JG. AAV-mediated, optogenetic ablation of Müller Glia leads to structural and functional changes in the mouse retina. PLoS One 2013; 8:e76075. [PMID: 24086689 PMCID: PMC3785414 DOI: 10.1371/journal.pone.0076075] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
Müller glia, the primary glial cell in the retina, provide structural and metabolic support for neurons and are essential for retinal integrity. Müller cells are closely involved in many retinal degenerative diseases, including macular telangiectasia type 2, in which impairment of central vision may be linked to a primary defect in Müller glia. Here, we used an engineered, Müller-specific variant of AAV, called ShH10, to deliver a photo-inducibly toxic protein, KillerRed, to Müller cells in the mouse retina. We characterized the results of specific ablation of these cells on visual function and retinal structure. ShH10-KillerRed expression was obtained following intravitreal injection and eyes were then irradiated with green light to induce toxicity. Induction of KillerRed led to loss of Müller cells and a concomitant decrease of Müller cell markers glutamine synthetase and cellular retinaldehyde-binding protein, reduction of rhodopsin and cone opsin, and upregulation of glial fibrillary acidic protein. Loss of Müller cells also resulted in retinal disorganization, including thinning of the outer nuclear layer and the photoreceptor inner and outer segments. High resolution imaging of thin sections revealed displacement of photoreceptors from the ONL, formation of rosette-like structures and the presence of phagocytic cells. Furthermore, Müller cell ablation resulted in increased area and volume of retinal blood vessels, as well as the formation of tortuous blood vessels and vascular leakage. Electrophysiologic measures demonstrated reduced retinal function, evident in decreased photopic and scotopic electroretinogram amplitudes. These results show that loss of Müller cells can cause progressive retinal degenerative disease, and suggest that AAV delivery of an inducibly toxic protein in Müller cells may be useful to create large animal models of retinal dystrophies.
Collapse
Affiliation(s)
- Leah C. Byrne
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Fakhra Khalid
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Trevor Lee
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Emilia A. Zin
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | | | - Meike Visel
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - David V. Schaffer
- Department of Chemical Engineering, Department of Bioengineering, and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - John G. Flannery
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
127
|
Hunter PR, Lowe AS, Thompson ID, Meyer MP. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J Neurosci 2013; 33:13940-5. [PMID: 23986231 PMCID: PMC3756745 DOI: 10.1523/jneurosci.1493-13.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 11/21/2022] Open
Abstract
How local circuits within the brain process visual information has classically been addressed at the single neuron level. Such reductionist approaches, however, struggle to capture the full scope of functional properties associated with even "simple" brain nuclei. Using population functional calcium imaging, we aim to describe how local circuits within the zebrafish optic tectum process visual information. Specifically, how are previously identified direction-selective (DS) and orientation-selective (OS) retinal ganglion cell (RGC) inputs (Nikolaou et al., 2012) represented in tectal cells? First, we identify an emergent population of DS tectal cell with a direction preference not explicitly present in any one of the RGC inputs. Second, this is associated with a striking shift from a tiled and triangular representation of directional space (RGC inputs) into an overlapping cardinal representation by tectal cell populations. Third, and in contrast, we find that orientation space is represented similarly in both the RGC input and tectal cell populations illustrating feature-dependent differences in how tectal circuits process their inputs. Finally, we identify OS and two populations of DS cells at the superficial border of the tectal neuropil, one of which is an emergent population. This study, together with our previous one (Nikolaou et al., 2012), demonstrate that direction-selectivity is established in both the retina and tectum.
Collapse
Affiliation(s)
- Paul R Hunter
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, United Kingdom
| | | | | | | |
Collapse
|
128
|
Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, Ciruna B, Sanes JR, Lichtman JW, Schier AF. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 2013; 140:2835-46. [PMID: 23757414 DOI: 10.1242/dev.094631] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous studies have demonstrated that Cre recombinase-mediated recombination can lead to combinatorial expression of spectrally distinct fluorescent proteins (RFP, YFP and CFP) in neighboring cells, creating a 'Brainbow' of colors. The random combination of fluorescent proteins provides a way to distinguish adjacent cells, visualize cellular interactions and perform lineage analyses. Here, we describe Zebrabow (Zebrafish Brainbow) tools for in vivo multicolor imaging in zebrafish. First, we show that the broadly expressed ubi:Zebrabow line provides diverse color profiles that can be optimized by modulating Cre activity. Second, we find that colors are inherited equally among daughter cells and remain stable throughout embryonic and larval stages. Third, we show that UAS:Zebrabow lines can be used in combination with Gal4 to generate broad or tissue-specific expression patterns and facilitate tracing of axonal processes. Fourth, we demonstrate that Zebrabow can be used for long-term lineage analysis. Using the cornea as a model system, we provide evidence that embryonic corneal epithelial clones are replaced by large, wedge-shaped clones formed by centripetal expansion of cells from the peripheral cornea. The Zebrabow tool set presented here provides a resource for next-generation color-based anatomical and lineage analyses in zebrafish.
Collapse
Affiliation(s)
- Y Albert Pan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Lange M, Neuzeret F, Fabreges B, Froc C, Bedu S, Bally-Cuif L, Norton WHJ. Inter-individual and inter-strain variations in zebrafish locomotor ontogeny. PLoS One 2013; 8:e70172. [PMID: 23950910 PMCID: PMC3739779 DOI: 10.1371/journal.pone.0070172] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 12/25/2022] Open
Abstract
Zebrafish exhibit remarkable alterations in behaviour and morphology as they develop from early larval stages to mature adults. In this study we compare the locomotion parameters of six common zebrafish strains from two different laboratories to determine the stability and repeatability of these behaviours. Our results demonstrate large variability in locomotion and fast swim events between strains and between laboratories across time. These data highlight the necessity for careful, strain-specific controls when analysing locomotor phenotypes and open up the possibility of standardising the quantification of zebrafish behaviour at multiple life stages.
Collapse
Affiliation(s)
- Merlin Lange
- Zebrafish Neurogenetics, Neurobiologie et Développement, Insitut de Neurobiologie Albert Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, Essonne, France
| | | | - Benoit Fabreges
- Département de Mathématiques, Université Paris-Sud 11, Orsay, Essonne, France
| | - Cynthia Froc
- Zebrafish Neurogenetics, Neurobiologie et Développement, Insitut de Neurobiologie Albert Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, Essonne, France
| | - Sebastien Bedu
- Zebrafish Neurogenetics, Neurobiologie et Développement, Insitut de Neurobiologie Albert Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, Essonne, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics, Neurobiologie et Développement, Insitut de Neurobiologie Albert Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, Essonne, France
- * E-mail: (LBC); (WN)
| | - William H. J. Norton
- Department of Biology, University of Leicester, Leicester, Leicestershire, United Kingdom
- * E-mail: (LBC); (WN)
| |
Collapse
|
130
|
Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits 2013; 7:126. [PMID: 23935566 PMCID: PMC3731533 DOI: 10.3389/fncir.2013.00126] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023] Open
Abstract
Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
| | - Brent R. Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California at Los AngelesLos Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
- Integrative Center for Learning and Memory, David Geffen School of Medicine, Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA
| |
Collapse
|
131
|
Ryumina AP, Serebrovskaya EO, Shirmanova MV, Snopova LB, Kuznetsova MM, Turchin IV, Ignatova NI, Klementieva NV, Fradkov AF, Shakhov BE, Zagaynova EV, Lukyanov KA, Lukyanov SA. Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochim Biophys Acta Gen Subj 2013; 1830:5059-67. [PMID: 23876295 DOI: 10.1016/j.bbagen.2013.07.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/20/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells. METHODS HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo. RESULTS Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG. CONCLUSIONS miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor. GENERAL SIGNIFICANCE This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.
Collapse
Affiliation(s)
- Alina P Ryumina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Muto A, Kawakami K. Prey capture in zebrafish larvae serves as a model to study cognitive functions. Front Neural Circuits 2013; 7:110. [PMID: 23781176 PMCID: PMC3678101 DOI: 10.3389/fncir.2013.00110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/26/2013] [Indexed: 11/13/2022] Open
Abstract
Prey capture in zebrafish larvae is an innate behavior which can be observed as early as 4~days postfertilization, the day when they start to swim. This simple behavior apparently involves several neural processes including visual perception, recognition, decision-making, and motor control, and, therefore, serves as a good model system to study cognitive functions underlying natural behaviors in vertebrates. Recent progresses in imaging techniques provided us with a unique opportunity to image neuronal activity in the brain of an intact fish in real-time while the fish perceives a natural prey, paramecium. By expanding this approach, it would be possible to image entire brain areas at a single-cell resolution in real-time during prey capture, and identify neuronal circuits important for cognitive functions. Further, activation or inhibition of those neuronal circuits with recently developed optogenetic tools or neurotoxins should shed light on their roles. Thus, we will be able to explore the prey capture in zebrafish larvae more thoroughly at cellular levels, which should establish a basis of understanding of the cognitive function in vertebrates.
Collapse
Affiliation(s)
- Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | |
Collapse
|
133
|
Westphal RE, O'Malley DM. Fusion of locomotor maneuvers, and improving sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish. Front Neural Circuits 2013; 7:108. [PMID: 23761739 PMCID: PMC3675323 DOI: 10.3389/fncir.2013.00108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 12/01/2022] Open
Abstract
At 5 days post-fertilization and 4 mm in length, zebrafish larvae are successful predators of mobile prey items. The tracking and capture of 200 μm long Paramecia requires efficient sensorimotor transformations and precise neural controls that activate axial musculature for orientation and propulsion, while coordinating jaw muscle activity to engulf them. Using high-speed imaging, we report striking changes across ontogeny in the kinematics, structure and efficacy of zebrafish feeding episodes. Most notably, the discrete tracking maneuvers used by larval fish (turns, forward swims) become fused with prey capture swims to form the continuous, fluid homing strikes of juvenile and adult zebrafish. Across this same developmental time frame, the duration of feeding episodes become much shorter, with strikes occurring at broader angles and from much greater distances than seen with larval zebrafish. Moreover, juveniles use a surprisingly diverse array of motor patterns that constitute a flexible predatory strategy. This enhances the ability of zebrafish to capture more mobile prey items such as Artemia. Visually-guided tracking is complemented by the mechanosensory lateral line system. Neomycin ablation of lateral line hair cells reduced the accuracy of strikes and overall feeding rates, especially when neomycin-treated larvae and juveniles were placed in the dark. Darkness by itself reduced the distance from which strikes were launched, as visualized by infrared imaging. Rapid growth and changing morphology, including ossification of skeletal elements and differentiation of control musculature, present challenges for sustaining and enhancing predatory capabilities. The concurrent expansion of the cerebellum and subpallium (an ancestral basal ganglia) may contribute to the emergence of juvenile homing strikes, whose ontogeny possibly mirrors a phylogenetic expansion of motor capabilities.
Collapse
Affiliation(s)
- Rebecca E Westphal
- Department of Natural Sciences, North Shore Community College Lynn, MA, USA
| | | |
Collapse
|
134
|
Renninger SL, Orger MB. Two-photon imaging of neural population activity in zebrafish. Methods 2013; 62:255-67. [PMID: 23727462 DOI: 10.1016/j.ymeth.2013.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023] Open
Abstract
Rapidly developing imaging technologies including two-photon microscopy and genetically encoded calcium indicators have opened up new possibilities for recording neural population activity in awake, behaving animals. In the small, transparent zebrafish, it is even becoming possible to image the entire brain of a behaving animal with single-cell resolution, creating brain-wide functional maps. In this chapter, we comprehensively review past functional imaging studies in zebrafish, and the insights that they provide into the functional organization of neural circuits. We further offer a basic primer on state-of-the-art methods for in vivo calcium imaging in the zebrafish, including building a low-cost two-photon microscope and highlight possible challenges and technical considerations.
Collapse
Affiliation(s)
- Sabine L Renninger
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon, Portugal
| | | |
Collapse
|
135
|
Asakawa K, Abe G, Kawakami K. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 2013; 7:100. [PMID: 23754985 PMCID: PMC3664770 DOI: 10.3389/fncir.2013.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Developmental Genetics, Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
136
|
Imaging of neural ensemble for the retrieval of a learned behavioral program. Neuron 2013; 78:881-94. [PMID: 23684786 DOI: 10.1016/j.neuron.2013.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 11/22/2022]
Abstract
The encoding of long-term associative memories for learned behaviors is a fundamental brain function. Yet, how behavior is stably consolidated and retrieved in the vertebrate cortex is poorly understood. We trained zebrafish in aversive reinforcement learning and measured calcium signals across their entire brain during retrieval of the learned response. A discrete area of dorsal telencephalon that was inactive immediately after training became active the next day. Analysis of the identified area indicated that it was specific and essential for long-term memory retrieval and contained electrophysiological responses entrained to the learning stimulus. When the behavioral rule changed, a rapid spatial shift in the functional map across the telencephalon was observed. These results demonstrate that the retrieval of long-term memories for learned behaviors can be studied at the whole-brain scale in behaving zebrafish in vivo. Moreover, the findings indicate that consolidated memory traces can be rapidly modified during reinforcement learning.
Collapse
|
137
|
Barker AJ, Baier H. SINs and SOMs: neural microcircuits for size tuning in the zebrafish and mouse visual pathway. Front Neural Circuits 2013; 7:89. [PMID: 23717263 PMCID: PMC3650670 DOI: 10.3389/fncir.2013.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/21/2013] [Indexed: 11/13/2022] Open
Abstract
In many animals, a fast and reliable circuit for discriminating between predator-sized objects and edible (prey-sized) objects is necessary for survival. How are receptive fields (RFs) in visual brain areas organized to extract information about size? Recent studies from the zebrafish optic tectum and the mouse visual cortex suggest de novo shaping of RFs by subtypes of inhibitory neurons. Del Bene et al. (2010) describe a population of GABAergic neurons in the zebrafish optic tectum (superficial interneurons, SINs) that are necessary for size filtering during prey capture. Adesnik et al. (2012) describe a somatostatin-expressing interneuron population (SOMs) that confers surround suppression on layer II/III pyramidal cells in mouse V1. Strikingly both the SINs and the SOMs, display size-dependent response properties. Increasing visual stimulus size increases excitatory input to these neurons. Dampening SIN or SOM activity alters tuning of neighboring circuits such that they lose preference for small objects. Both results provide exciting evidence for mechanisms of size filtering in visual circuits. Here we review the roles of the SINs and the SOMs and speculate on the similarity of such spatial filters across species.
Collapse
Affiliation(s)
- Alison J Barker
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology Martinsried, Germany ; Neuroscience Graduate Program, University of California San Francisc San Francisco, CA, USA
| | | |
Collapse
|
138
|
Kassing V, Engelmann J, Kurtz R. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One 2013; 8:e62846. [PMID: 23667529 PMCID: PMC3647071 DOI: 10.1371/journal.pone.0062846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain age and the use of two-photon microscopy. This principle of fluorescence excitation was necessary to suppress crosstalk between signals from individual neurons, which is a critical issue when using membrane-permeant dyes. This makes the equipment to study neuronal processing costly and limits the approach to the study of larvae. Thus there is lack of knowledge about the properties of neurons in the optic tectum of adult animals. We established a procedure to circumvent these problems, enabling in vivo calcium imaging in the optic tectum of adult zebrafish. Following local application of dextran-coupled dyes single-neuron activity of adult zebrafish can be monitored with conventional widefield microscopy, because dye labeling remains restricted to tens of neurons or less. Among the neurons characterized with our technique we found neurons that were selective for a certain pattern orientation as well as neurons that responded in a direction-selective way to visual motion. These findings are consistent with previous studies and indicate that the functional integrity of neuronal circuits in the optic tectum of adult zebrafish is preserved with our staining technique. Overall, our protocol for in vivo calcium imaging provides a useful approach to monitor visual responses of individual neurons in the optic tectum of adult zebrafish even when only widefield microscopy is available. This approach will help to obtain valuable insight into the principles of visual computation in adult vertebrates and thus complement previous work on developing visual circuits.
Collapse
Affiliation(s)
- Vanessa Kassing
- AG Active Sensing and Center of Excellence ‘Cognitive Interaction Technology’, Bielefeld University, Bielefeld, Germany
| | - Jacob Engelmann
- AG Active Sensing and Center of Excellence ‘Cognitive Interaction Technology’, Bielefeld University, Bielefeld, Germany
| | - Rafael Kurtz
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
139
|
Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J Neurosci 2013; 33:5027-39. [PMID: 23486973 DOI: 10.1523/jneurosci.4990-12.2013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axons of retinal ganglion cells (RGCs) form topographic connections in the optic tectum, recreating a two-dimensional map of the visual field in the midbrain. RGC axons are also targeted to specific positions along the laminar axis of the tectum. Understanding the sensory transformations performed by the tectum requires identification of the rules that control the formation of synaptic laminae by RGC axons. However, there is little information regarding the spatial relationships between multiple axons as they establish laminar and retinotopic arborization fields within the same region of neuropil. Moreover, the contribution of RGC axon lamination to the processing of visual information is unknown. We used Brainbow genetic labeling to visualize groups of individually identifiable axons during the assembly of a precise laminar map in the larval zebrafish tectum. Live imaging of multiple RGCs revealed that axons target specific sublaminar positions during initial innervation and maintain their relative laminar positions throughout early larval development, ruling out a model for lamina selection based on iterative refinements. During this period of laminar stability, RGC arbors undergo structural rearrangements that shift their relative retinotopic positions. Analysis of cell-type-specific lamination patterns revealed that distinct combinations of RGCs converge to form each sublamina, and this input heterogeneity correlates with different functional responses to visual stimuli. These findings suggest that lamina-specific sorting of retinal inputs provides an anatomical blueprint for the integration of visual features in the tectum.
Collapse
|
140
|
Patterson BW, Abraham AO, MacIver MA, McLean DL. Visually guided gradation of prey capture movements in larval zebrafish. ACTA ACUST UNITED AC 2013; 216:3071-83. [PMID: 23619412 DOI: 10.1242/jeb.087742] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mechanistic understanding of goal-directed behavior in vertebrates is hindered by the relative inaccessibility and size of their nervous systems. Here, we have studied the kinematics of prey capture behavior in a highly accessible vertebrate model organism, the transparent larval zebrafish (Danio rerio), to assess whether they use visual cues to systematically adjust their movements. We found that zebrafish larvae scale the speed and magnitude of turning movements according to the azimuth of one of their standard prey, paramecia. They also bias the direction of subsequent swimming movements based on prey azimuth and select forward or backward movements based on the prey's direction of travel. Once within striking distance, larvae generate either ram or suction capture behaviors depending on their distance from the prey. From our experimental estimations of ocular receptive fields, we ascertained that the ultimate decision to consume prey is likely a function of the progressive vergence of the eyes that places the target in a proximal binocular 'capture zone'. By repeating these experiments in the dark, we demonstrate that paramecia are only consumed if they contact the anterior extremities of larvae, which triggers ocular vergence and tail movements similar to close proximity captures in lit conditions. These observations confirm the importance of vision in the graded movements we observe leading up to capture of more distant prey in the light, and implicate somatosensation in captures in the absence of light. We discuss the implications of these findings for future work on the neural control of visually guided behavior in zebrafish.
Collapse
Affiliation(s)
- Bradley W Patterson
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
141
|
Fajardo O, Zhu P, Friedrich RW. Control of a specific motor program by a small brain area in zebrafish. Front Neural Circuits 2013; 7:67. [PMID: 23641200 PMCID: PMC3640207 DOI: 10.3389/fncir.2013.00067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/30/2013] [Indexed: 11/13/2022] Open
Abstract
Complex motor behaviors are thought to be coordinated by networks of brain nuclei that may control different elementary motor programs. Transparent zebrafish larvae offer the opportunity to analyze the functional organization of motor control networks by optical manipulations of neuronal activity during behavior. We examined motor behavior in transgenic larvae expressing channelrhodopsin-2 throughout many neurons in the brain. Wide-field optical stimulation triggered backward and rotating movements caused by the repeated execution of J-turns, a specific motor program that normally occurs during prey capture. Although optically-evoked activity was widespread, behavioral responses were highly coordinated and lateralized. 3-D mapping of behavioral responses to local optical stimuli revealed that J-turns can be triggered specifically in the anterior-ventral optic tectum (avOT) and/or the adjacent pretectum. These results suggest that the execution of J-turns is controlled by a small group of neurons in the midbrain that may act as a command center. The identification of a brain area controlling a defined motor program involved in prey capture is a step toward a comprehensive analysis of neuronal circuits mediating sensorimotor behaviors of zebrafish.
Collapse
Affiliation(s)
- Otto Fajardo
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland
| | | | | |
Collapse
|
142
|
Panier T, Romano SA, Olive R, Pietri T, Sumbre G, Candelier R, Debrégeas G. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front Neural Circuits 2013; 7:65. [PMID: 23576959 PMCID: PMC3620503 DOI: 10.3389/fncir.2013.00065] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 11/13/2022] Open
Abstract
The optical transparency and the small dimensions of zebrafish at the larval stage make it a vertebrate model of choice for brain-wide in-vivo functional imaging. However, current point-scanning imaging techniques, such as two-photon or confocal microscopy, impose a strong limit on acquisition speed which in turn sets the number of neurons that can be simultaneously recorded. At 5 Hz, this number is of the order of one thousand, i.e., approximately 1–2% of the brain. Here we demonstrate that this limitation can be greatly overcome by using Selective-plane Illumination Microscopy (SPIM). Zebrafish larvae expressing the genetically encoded calcium indicator GCaMP3 were illuminated with a scanned laser sheet and imaged with a camera whose optical axis was oriented orthogonally to the illumination plane. This optical sectioning approach was shown to permit functional imaging of a very large fraction of the brain volume of 5–9-day-old larvae with single- or near single-cell resolution. The spontaneous activity of up to 5,000 neurons was recorded at 20 Hz for 20–60 min. By rapidly scanning the specimen in the axial direction, the activity of 25,000 individual neurons from 5 different z-planes (approximately 30% of the entire brain) could be simultaneously monitored at 4 Hz. Compared to point-scanning techniques, this imaging strategy thus yields a ≃20-fold increase in data throughput (number of recorded neurons times acquisition rate) without compromising the signal-to-noise ratio (SNR). The extended field of view offered by the SPIM method allowed us to directly identify large scale ensembles of neurons, spanning several brain regions, that displayed correlated activity and were thus likely to participate in common neural processes. The benefits and limitations of SPIM for functional imaging in zebrafish as well as future developments are briefly discussed.
Collapse
Affiliation(s)
- Thomas Panier
- CNRS/UPMC Laboratoire Jean Perrin, Université Paris 6 Paris, France
| | | | | | | | | | | | | |
Collapse
|
143
|
Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 2013; 7:63. [PMID: 23580329 PMCID: PMC3619107 DOI: 10.3389/fncir.2013.00063] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish have great potential to contribute to our understanding of behavioral genetics and thus to contribute to our understanding of the etiology of psychiatric disease. However, progress is dependent upon the rate at which behavioral assays addressing complex behavioral phenotypes are designed, reported and validated. Here we critically review existing behavioral assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | | | | | | |
Collapse
|
144
|
Heap LA, Goh CC, Kassahn KS, Scott EK. Cerebellar output in zebrafish: an analysis of spatial patterns and topography in eurydendroid cell projections. Front Neural Circuits 2013; 7:53. [PMID: 23554587 PMCID: PMC3612595 DOI: 10.3389/fncir.2013.00053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/09/2013] [Indexed: 01/16/2023] Open
Abstract
The cerebellum is a brain region responsible for motor coordination and for refining motor programs. While a great deal is known about the structure and connectivity of the mammalian cerebellum, fundamental questions regarding its function in behavior remain unanswered. Recently, the zebrafish has emerged as a useful model organism for cerebellar studies, owing in part to the similarity in cerebellar circuits between zebrafish and mammals. While the cell types composing their cerebellar cortical circuits are generally conserved with mammals, zebrafish lack deep cerebellar nuclei, and instead a majority of cerebellar output comes from a single type of neuron: the eurydendroid cell. To describe spatial patterns of cerebellar output in zebrafish, we have used genetic techniques to label and trace eurydendroid cells individually and en masse. We have found that cerebellar output targets the thalamus and optic tectum, and have confirmed the presence of pre-synaptic terminals from eurydendroid cells in these structures using a synaptically targeted GFP. By observing individual eurydendroid cells, we have shown that different medial-lateral regions of the cerebellum have eurydendroid cells projecting to different targets. Finally, we found topographic organization in the connectivity between the cerebellum and the optic tectum, where more medial eurydendroid cells project to the rostral tectum while lateral cells project to the caudal tectum. These findings indicate that there is spatial logic underpinning cerebellar output in zebrafish with likely implications for cerebellar function.
Collapse
Affiliation(s)
- Lucy A Heap
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
145
|
Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 2013; 10:413-20. [DOI: 10.1038/nmeth.2434] [Citation(s) in RCA: 962] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 12/19/2022]
|
146
|
Haug MF, Gesemann M, Mueller T, Neuhauss SC. Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J Comp Neurol 2013; 521:1533-60. [DOI: 10.1002/cne.23240] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 04/05/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022]
|
147
|
Shirmanova MV, Serebrovskaya EO, Lukyanov KA, Snopova LB, Sirotkina MA, Prodanetz NN, Bugrova ML, Minakova EA, Turchin IV, Kamensky VA, Lukyanov SA, Zagaynova EV. Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice. JOURNAL OF BIOPHOTONICS 2013; 6:283-90. [PMID: 22696211 DOI: 10.1002/jbio.201200056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/12/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
KillerRed is known to be a unique red fluorescent protein displaying strong phototoxic properties. Its effectiveness has been shown previously for killing bacterial and cancer cells in vitro. Here, we investigated the photototoxicity of the protein on tumor xenografts in mice. HeLa Kyoto cell line stably expressing KillerRed in mitochondria and in fusion with histone H2B was used. Irradiation of the tumors with 593 nm laser led to photobleaching of KillerRed indicating photosensitization reaction and caused significant destruction of the cells and activation of apoptosis. The portion of the dystrophically changed cells increased from 9.9% to 63.7%, and the cells with apoptosis hallmarks from 6.3% to 14%. The results of this study suggest KillerRed as a potential genetically encoded photosensitizer for photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 603005 Minin Sq., 10/1, Nizhny Novgorod, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Muto A, Ohkura M, Abe G, Nakai J, Kawakami K. Real-time visualization of neuronal activity during perception. Curr Biol 2013; 23:307-11. [PMID: 23375894 DOI: 10.1016/j.cub.2012.12.040] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/23/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
To understand how the brain perceives the external world, it is desirable to observe neuronal activity in the brain in real time during perception. The zebrafish is a suitable model animal for fluorescence imaging studies to visualize neuronal activity because its body is transparent through the embryonic and larval stages. Imaging studies have been carried out to monitor neuronal activity in the larval spinal cord and brain using Ca(2+) indicator dyes and DNA-encoded Ca(2+) indicators, such as Cameleon, GFP-aequorin, and GCaMPs. However, temporal and spatial resolution and sensitivity of these tools are still limited, and imaging of brain activity during perception of a natural object has not yet been demonstrated. Here we demonstrate visualization of neuronal activity in the optic tectum of larval zebrafish by genetically expressing the new version of GCaMP. First, we demonstrate Ca(2+) transients in the tectum evoked by a moving spot on a display and identify direction-selective neurons. Second, we show tectal activity during perception of a natural object, a swimming paramecium, revealing a functional visuotopic map. Finally, we image the tectal responses of a free-swimming larval fish to a paramecium and thereby correlate neuronal activity in the brain with prey capture behavior.
Collapse
Affiliation(s)
- Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
149
|
Engert F. Fish in the matrix: motor learning in a virtual world. Front Neural Circuits 2013; 6:125. [PMID: 23355810 PMCID: PMC3555039 DOI: 10.3389/fncir.2012.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/26/2012] [Indexed: 01/20/2023] Open
Abstract
One of the large remaining challenges in the field of zebrafish neuroscience is the establishment of techniques and preparations that permit the recording and perturbation of neural activity in animals that can interact meaningfully with the environment. Since it is very difficult to do this in freely behaving zebrafish, I describe here two alternative approaches that meet this goal via tethered preparations. The first uses head-fixation in agarose in combination with online imaging and analysis of tail motion. In the second method, paralyzed fish are suspended with suction pipettes in mid-water and nerve root recordings serve as indicators for intended locomotion. In both cases, fish can be immersed into a virtual environment and allowed to interact with this virtual world via real or fictive tail motions. The specific examples given in this review focus primarily on the role of visual feedback~– but the general principles certainly extend to other modalities, including proprioception, hearing, balance, and somatosensation.
Collapse
|
150
|
Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. Proc Natl Acad Sci U S A 2013; 110:1524-9. [PMID: 23302694 DOI: 10.1073/pnas.1213048110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of electrical activity in axon guidance has been extensively studied in vitro. To better understand its role in the intact nervous system, we imaged intracellular Ca(2+) in zebrafish primary motor neurons (PMN) during axon pathfinding in vivo. We found that PMN generate specific patterns of Ca(2+) spikes at different developmental stages. Spikes arose in the distal axon of PMN and were propagated to the cell body. Suppression of Ca(2+) spiking activity in single PMN led to stereotyped errors, but silencing all electrical activity had no effect on axon guidance, indicating that an activity-based competition rule regulates this process. This competition was not mediated by synaptic transmission. Combination of PlexinA3 knockdown with suppression of Ca(2+) activity in single PMN produced a synergistic increase in the incidence of pathfinding errors. However, expression of PlexinA3 transcripts was not regulated by activity. Our results provide an in vivo demonstration of the intersection of spontaneous electrical activity with the PlexinA3 guidance molecule receptor in regulation of axon pathfinding.
Collapse
|