101
|
Mikhailov VA, Liko I, Mize TH, Bush MF, Benesch JLP, Robinson CV. Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase. Anal Chem 2016; 88:7060-7. [PMID: 27328020 DOI: 10.1021/acs.analchem.6b00645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment.
Collapse
Affiliation(s)
- Victor A Mikhailov
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Todd H Mize
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Matthew F Bush
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
102
|
Affiliation(s)
- Qinghao Wu
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ailin Li
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yuan Tian
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Daniel E. Austin
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
103
|
Ishii K, Noda M, Uchiyama S. Mass spectrometric analysis of protein-ligand interactions. Biophys Physicobiol 2016; 13:87-95. [PMID: 27924262 PMCID: PMC5042164 DOI: 10.2142/biophysico.13.0_87] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/16/2016] [Indexed: 12/01/2022] Open
Abstract
The interactions of small molecules with proteins (protein–ligand interactions) mediate various biological phenomena including signal transduction and protein transcription and translation. Synthetic compounds such as drugs can also bind to target proteins, leading to the inhibition of protein–ligand interactions. These interactions typically accompany association–dissociation equilibrium according to the free energy difference between free and bound states; therefore, the quantitative biophysical analysis of the interactions, which uncovers the stoichiometry and dissociation constant, is important for understanding biological reactions as well as for rational drug development. Mass spectrometry (MS) has been used to determine the precise molecular masses of molecules. Recent advancements in MS enable us to determine the molecular masses of protein–ligand complexes without disrupting the non-covalent interactions through the gentle desolvation of the complexes by increasing the vacuum pressure of a chamber in a mass spectrometer. This method is called MS under non-denaturing conditions or native MS and allows the unambiguous determination of protein–ligand interactions. Under a few assumptions, MS has also been applied to determine the dissociation constants for protein–ligand interactions. The structural information of a protein–ligand interaction, such as the location of the interaction and conformational change in a protein, can also be analyzed using hydrogen/deuterium exchange MS. In this paper, we briefly describe the history, principle, and recent applications of MS for the study of protein–ligand interactions.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
104
|
Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol 2016; 23:744-51. [PMID: 27399258 DOI: 10.1038/nsmb.3262] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers.
Collapse
|
105
|
López A, Vilaseca M, Madurga S, Varese M, Tarragó T, Giralt E. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:504-511. [PMID: 27434808 DOI: 10.1002/jms.3777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Abraham López
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sergio Madurga
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Teresa Tarragó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Iproteos, S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
106
|
Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. Proc Natl Acad Sci U S A 2016; 113:8230-5. [PMID: 27364008 DOI: 10.1073/pnas.1600354113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance.
Collapse
|
107
|
Chait BT, Cadene M, Olinares PD, Rout MP, Shi Y. Revealing Higher Order Protein Structure Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:952-65. [PMID: 27080007 PMCID: PMC5125627 DOI: 10.1007/s13361-016-1385-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 05/24/2023]
Abstract
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA.
| | - Martine Cadene
- CBM, CNRS UPR4301, Rue Charles Sadron, CS 80054, 45071, Orleans Cedex 2, France
| | - Paul Dominic Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
108
|
van de Waterbeemd M, Snijder J, Tsvetkova IB, Dragnea BG, Cornelissen JJ, Heck AJR. Examining the Heterogeneous Genome Content of Multipartite Viruses BMV and CCMV by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1000-9. [PMID: 26926442 PMCID: PMC4869746 DOI: 10.1007/s13361-016-1348-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 05/09/2023]
Abstract
Since the concept was first introduced by Brian Chait and co-workers in 1991, mass spectrometry of proteins and protein complexes under non-denaturing conditions (native MS) has strongly developed, through parallel advances in instrumentation, sample preparation, and data analysis tools. However, the success rate of native MS analysis, particularly in heterogeneous mega-Dalton (MDa) protein complexes, still strongly depends on careful instrument modification. Here, we further explore these boundaries in native mass spectrometry, analyzing two related endogenous multipartite viruses: the Brome Mosaic Virus (BMV) and the Cowpea Chlorotic Mottle Virus (CCMV). Both CCMV and BMV are approximately 4.6 megadalton (MDa) in mass, of which approximately 1 MDA originates from the genomic content of the virion. Both viruses are produced as mixtures of three particles carrying different segments of the genome, varying by approximately 0.1 MDA in mass (~2%). This mixture of particles poses a challenging analytical problem for high-resolution native MS analysis, given the large mass scales involved. We attempt to unravel the particle heterogeneity using both Q-TOF and Orbitrap mass spectrometers extensively modified for analysis of very large assemblies. We show that manipulation of the charging behavior can provide assistance in assigning the correct charge states. Despite their challenging size and heterogeneity, we obtained native mass spectra with resolved series of charge states for both BMV and CCMV, demonstrating that native MS of endogenous multipartite virions is feasible. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Bogdan G Dragnea
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Jeroen J Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
109
|
Babizhayev MA. Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA CLINICAL 2016; 6:49-68. [PMID: 27413694 PMCID: PMC4925929 DOI: 10.1016/j.bbacli.2016.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Senile cataract is a clouding of the lens in the aging eye leading to a decrease in vision. Symptoms may include faded colors, blurry vision, halos around light, trouble with bright lights, and trouble seeing at night. This may result in trouble driving, reading, or recognizing faces. Cataracts are the cause of half of blindness and 33% of visual impairment worldwide. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cells plasma membrane damage which causes clouding of the lens, light scattering, and obstruction of vision. ROS induced damage in the lens cell may consist of oxidation of proteins, DNA damage and/or lipid peroxidation, all of which have been implicated in cataractogenesis. The inner eye pressure (also called intraocular pressure or IOP) rises because the correct amount of fluid can't drain out of the eye. With primary open-angle glaucoma, the entrances to the drainage canals are clear and should be working correctly. The clogging problem occurs further inside the drainage canals, similar to a clogged pipe below the drain in a sink. The excessive oxidative damage is a major factor of the ocular diseases because the mitochondrial respiratory chain in mitochondria of the vital cells is a significant source of the damaging reactive oxygen species superoxide and hydrogen peroxide. However, despite the clinical importance of mitochondrial oxidative damage, antioxidants have been of limited therapeutic success. This may be because the antioxidants are not selectively taken up by mitochondria, but instead are dispersed throughout the body, ocular tissues and fluids' moieties. This work is an attempt to integrate how mitochondrial reactive oxygen species (ROS) are altered in the aging eye, along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. The authors developed and patented the new ophthalmic compositions including N-acetylcarnosine acting as a prodrug of naturally targeted to mitochondria l-carnosine endowed with pluripotent antioxidant activities, combined with mitochondria-targeted rechargeable antioxidant (either MitoVit E, Mito Q or SkQs) as a potent medicine to treat ocular diseases. Such specificity is explained by the fact that developed compositions might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo and outside mitochondria in the cellular and tissue structures of the lens and eye compartments. Mitochondrial targeting of compounds with universal types of antioxidant activity represents a promising approach for treating a number of ROS-related ocular diseases of the aging eye and can be implicated in the management of cataracts and primary open-angle glaucoma.
Collapse
Affiliation(s)
- Mark A Babizhayev
- Innovative Vision Products, Inc., 3511 Silverside Road, Suite 105, County of New Castle, DE 19810, USA
| |
Collapse
|
110
|
Gault J, Donlan JAC, Liko I, Hopper JTS, Gupta K, Housden NG, Struwe WB, Marty MT, Mize T, Bechara C, Zhu Y, Wu B, Kleanthous C, Belov M, Damoc E, Makarov A, Robinson CV. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat Methods 2016; 13:333-6. [PMID: 26901650 PMCID: PMC4856209 DOI: 10.1038/nmeth.3771] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/13/2016] [Indexed: 12/24/2022]
Abstract
Small molecules are known to stabilize membrane proteins and to modulate their function and oligomeric state, but such interactions are often hard to precisely define. Here we develop and apply a high-resolution, Orbitrap mass spectrometry-based method for analyzing intact membrane protein-ligand complexes. Using this platform, we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.
Collapse
Affiliation(s)
- Joseph Gault
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Joseph A C Donlan
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Idlir Liko
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Jonathan T S Hopper
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kallol Gupta
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | | | - Weston B Struwe
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Michael T Marty
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Todd Mize
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Cherine Bechara
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Ya Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, China
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, China
| | | | | | | | | | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
111
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
112
|
Ewing MA, Glover MS, Clemmer DE. Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 2016; 1439:3-25. [DOI: 10.1016/j.chroma.2015.10.080] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
113
|
Chen F, Gülbakan B, Weidmann S, Fagerer SR, Ibáñez AJ, Zenobi R. Applying mass spectrometry to study non-covalent biomolecule complexes. MASS SPECTROMETRY REVIEWS 2016; 35:48-70. [PMID: 25945814 DOI: 10.1002/mas.21462] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/09/2014] [Indexed: 05/10/2023]
Abstract
Non-covalent interactions are essential for the structural organization of biomacromolecules and play an important role in molecular recognition processes, such as the interactions between proteins, glycans, lipids, DNA, and RNA. Mass spectrometry (MS) is a powerful tool for studying of non-covalent interactions, due to the low sample consumption, high sensitivity, and label-free nature. Nowadays, native-ESI MS is heavily used in studies of non-covalent interactions and to understand the architecture of biomolecular complexes. However, MALDI-MS is also becoming increasingly useful. It is challenging to detect the intact complex without fragmentation when analyzing non-covalent interactions with MALDI-MS. There are two methodological approaches to do so. In the first approach, different experimental and instrumental parameters are fine-tuned in order to find conditions under which the complex is stable, such as applying non-acidic matrices and collecting first-shot spectra. In the second approach, the interacting species are "artificially" stabilized by chemical crosslinking. Both approaches are capable of studying non-covalently bound biomolecules even in quite challenging systems, such as membrane protein complexes. Herein, we review and compare native-ESI and MALDI MS for the study of non-covalent interactions.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Basri Gülbakan
- Institute of Child Health, Division of Pediatric Basic Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Simon Weidmann
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Stephan R Fagerer
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Alfredo J Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
114
|
Bornschein RE, Niu S, Eschweiler J, Ruotolo BT. Ion Mobility-Mass Spectrometry Reveals Highly-Compact Intermediates in the Collision Induced Dissociation of Charge-Reduced Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:41-49. [PMID: 26323618 DOI: 10.1007/s13361-015-1250-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
Protocols that aim to construct complete models of multiprotein complexes based on ion mobility and mass spectrometry data are becoming an important element of integrative structural biology efforts. However, the usefulness of such data is predicated, in part, on an ability to measure individual subunits removed from the complex while maintaining a compact/folded state. Gas-phase dissociation of intact complexes using collision induced dissociation is a potentially promising pathway for acquiring such protein monomer size information, but most product ions produced are possessed of high charge states and elongated/string-like conformations that are not useful in protein complex modeling. It has previously been demonstrated that the collision induced dissociation of charge-reduced protein complexes can produce compact subunit product ions; however, their formation mechanism is not well understood. Here, we present new experimental evidence for the avidin (64 kDa) and aldolase (157 kDa) tetramers that demonstrates significant complex remodeling during the dissociation of charge-reduced assemblies. Detailed analysis and modeling indicates that highly compact intermediates are accessed during the dissociation process by both complexes. Here, we present putative pathways that describe the formation of such ions, as well as discuss the broader significance of such data for structural biology applications moving forward.
Collapse
Affiliation(s)
| | - Shuai Niu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph Eschweiler
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
115
|
Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 391:54-61. [PMID: 26869850 PMCID: PMC4708066 DOI: 10.1016/j.ijms.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 05/10/2023]
Abstract
Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-β-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.
Collapse
Affiliation(s)
- Thomas G. Watkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
116
|
Marcoux J, Cianférani S. Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods 2015; 89:4-12. [DOI: 10.1016/j.ymeth.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023] Open
|
117
|
Saliba AE, Vonkova I, Gavin AC. The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol 2015; 16:753-61. [PMID: 26507169 DOI: 10.1038/nrm4080] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipids tailor membrane identities and function as molecular hubs in all cellular processes. However, the ways in which lipids modulate protein function and structure are poorly understood and still require systematic investigation. In this Innovation article, we summarize pioneering technologies, including lipid-overlay assays, lipid pull-down assays, affinity-purification lipidomics and the liposome microarray-based assay (LiMA), that will enable protein-lipid interactions to be deciphered on a systems level. We discuss how these technologies can be applied to the charting of system-wide networks and to the development of new pharmaceutical strategies.
Collapse
Affiliation(s)
- Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology and Core Unit Systems Medicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Ivana Vonkova
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit and Molecular Medicine Partnership Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
118
|
Schmidt C, Beilsten-Edmands V, Robinson CV. Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. J Mol Biol 2015; 428:344-356. [PMID: 26497764 DOI: 10.1016/j.jmb.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
Translation initiation in eukaryotes requires the interplay of at least 10 initiation factors that interact at the different steps of this phase of gene expression. The interactions of initiation factors and related proteins are in general controlled by phosphorylation, which serves as a regulatory switch to turn protein translation on or off. The structures of initiation factors and a complete description of their post-translational modification (PTM) status are therefore required in order to fully understand these processes. In recent years, mass spectrometry has contributed considerably to provide this information and nowadays is proving to be indispensable when studying dynamic heterogeneous protein complexes such as the eukaryotic initiation factors. Herein, we highlight mass spectrometric approaches commonly applied to identify interacting subunits and their PTMs and the structural techniques that allow the architecture of protein complexes to be assessed. We present recent structural investigations of initiation factors and their interactions with other factors and with ribosomes and we assess the models generated. These models allow us to locate PTMs within initiation factor complexes and to highlight possible roles for phosphorylation sites in regulating interaction interfaces.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Victoria Beilsten-Edmands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
119
|
Jiang J, Zhang H, Lu X, Lu Y, Cuneo MJ, O'Neill HM, Urban V, Lo CS, Blankenship RE. Oligomerization state and pigment binding strength of the peridinin-Chl a-protein. FEBS Lett 2015; 589:2713-9. [PMID: 26241331 DOI: 10.1016/j.febslet.2015.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022]
Abstract
The peridinin-chlorophyll a-protein (PCP) is one of the major light harvesting complexes (LHCs) in photosynthetic dinoflagellates. We analyzed the oligomeric state of PCP isolated from the dinoflagellate Symbiodinium, which has received increasing attention in recent years because of its role in coral bleaching. Size-exclusion chromatography (SEC) and small angle neutron scattering (SANS) analysis indicated PCP exists as monomers. Native mass spectrometry (native MS) demonstrated two oligomeric states of PCP, with the monomeric PCP being dominant. The trimerization may not be necessary for PCP to function as a light-harvesting complex.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xun Lu
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Matthew J Cuneo
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hugh M O'Neill
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Volker Urban
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Cynthia S Lo
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
120
|
Finger S, Kerth A, Dathe M, Blume A. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2998-3006. [PMID: 26367060 DOI: 10.1016/j.bbamem.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
Abstract
Various models have been proposed for the sequence of events occurring after binding of specific antimicrobial peptides to lipid membranes. The lipid clustering model arose by the finding that antimicrobial peptides can induce a segregation of certain negatively charged lipids in lipid model membranes. Anionic lipid segregation by cationic peptides is initially an effect of charge interaction where the ratio of peptide and lipid charges is thought to be the decisive parameter in the peptide induced lipid demixing. However, the sequence of events following this initial lipid clustering is more complex and can lead to deactivation of membrane proteins involved in cell division or perturbation of lipid reorganization essential for cell division. In this study we used DSC and ITC techniques to investigate the effect of binding different cyclic hexapeptides with varying antimicrobial efficacy, to phosphatidylglycerol (PG)/phosphatidylethanolamine (PE) lipid membranes and their ability to induce lipid segregation in these mixtures. We found that these cyclic hexapeptides consisting of three charged and three aromatic amino acids showed indeed different abilities to induce lipid demixing depending on their amino acid composition and their sequence. The results clearly showed that the cationic amino acids are essential for electrostatic binding but that the three hydrophobic amino acids in the peptides and their position in the sequence also contribute to binding affinity and to the extent of induction of lipid clustering. The efficacy of these different hexapeptides to induce PG clusters in PG/PE membranes was found to be correlated with their antimicrobial activity.
Collapse
Affiliation(s)
- Sebastian Finger
- Martin-Luther-Universität Halle-Wittenberg, Institute of Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Andreas Kerth
- Martin-Luther-Universität Halle-Wittenberg, Institute of Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Margitta Dathe
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alfred Blume
- Martin-Luther-Universität Halle-Wittenberg, Institute of Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
121
|
Borysik AJ. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations. Anal Chem 2015; 87:8970-6. [PMID: 26266526 DOI: 10.1021/acs.analchem.5b02172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.
Collapse
Affiliation(s)
- Antoni J Borysik
- Department of Chemistry, King's College London , Britannia House, London SE1 1DB, United Kingdom
| |
Collapse
|
122
|
Nyon MP, Prentice T, Day J, Kirkpatrick J, Sivalingam GN, Levy G, Haq I, Irving JA, Lomas DA, Christodoulou J, Gooptu B, Thalassinos K. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding. Protein Sci 2015; 24:1301-12. [PMID: 26011795 PMCID: PMC4534181 DOI: 10.1002/pro.2706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/11/2022]
Abstract
Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1 -antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1 -antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1 -antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1 -antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.
Collapse
Affiliation(s)
- Mun Peak Nyon
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Tanya Prentice
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Jemma Day
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - John Kirkpatrick
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Ganesh N Sivalingam
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Geraldine Levy
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Imran Haq
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - James A Irving
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - David A Lomas
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| | - Bibek Gooptu
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom.,Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| |
Collapse
|
123
|
Qin S, Ren Y, Fu X, Shen J, Chen X, Wang Q, Bi X, Liu W, Li L, Liang G, Yang C, Shui W. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. Anal Chim Acta 2015; 886:98-106. [PMID: 26320641 DOI: 10.1016/j.aca.2015.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery.
Collapse
Affiliation(s)
- Shanshan Qin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yiran Ren
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xu Fu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jie Shen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xin Chen
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Quan Wang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xin Bi
- Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Wenjing Liu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Lixin Li
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Guangxin Liang
- Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Wenqing Shui
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
124
|
Structural Characterisation of Non-Deamidated Acidic Variants of Erwinia chrysanthemi L-asparaginase Using Small-Angle X-ray Scattering and Ion-Mobility Mass Spectrometry. Pharm Res 2015; 32:3636-48. [DOI: 10.1007/s11095-015-1722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
|
125
|
Dang Q, Xu F, Xie X, Xu C, Dai X, Fang X, Ding L, Ding CF. Enhancement of Ion Activation and Collision-Induced Dissociation by Simultaneous Dipolar Excitation of Ions in x- and y-Directions in a Linear Ion Trap. Anal Chem 2015; 87:5561-7. [PMID: 25919746 DOI: 10.1021/acs.analchem.5b00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collision-induced dissociation (CID) in linear ion traps is usually performed by applying a dipolar alternating current (AC) signal to one pair of electrodes, which results in ion excitation mainly in one direction. In this paper, we report simulation and experimental studies of the ion excitation in two coordinate directions by applying identical dipolar AC signals to two pairs of electrodes simultaneously. Theoretical analysis and simulation results demonstrate that the ion kinetic energy is higher than that using the conventional CID method. Experimental results show that more activation energy (as determined by the intensity ratio of the a4/b4 fragments from the CID of protonated leucine enkephalin) can be deposited into parent ions in this method. The dissociation rate constant in this method was about 3.8 times higher than that in the conventional method under the same experimental condition, at the Mathieu parameter qu (where u = x, y) value of 0.25. The ion fragmentation efficiency is also significantly improved. Compared with the conventional method, the smaller qu value can be used in this method to obtain the same internal energy deposited into ions. Consequently, the "low mass cut-off" is redeemed and more fragment ions can be detected. This excitation method can be implemented easily without changing any experimental parameters.
Collapse
Affiliation(s)
- Qiankun Dang
- †Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| | - Fuxing Xu
- †Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| | - Xiaodong Xie
- †Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| | - Chongsheng Xu
- †Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| | - Xinhua Dai
- ‡National Institute of Metrology, Beijing 100013, China
| | - Xiang Fang
- ‡National Institute of Metrology, Beijing 100013, China
| | - Li Ding
- †Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| | - Chuan-Fan Ding
- †Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| |
Collapse
|
126
|
Politis A, Borysik AJ. Assembling the pieces of macromolecular complexes: Hybrid structural biology approaches. Proteomics 2015; 15:2792-803. [DOI: 10.1002/pmic.201400507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
|
127
|
Bechara C, Robinson CV. Different Modes of Lipid Binding to Membrane Proteins Probed by Mass Spectrometry. J Am Chem Soc 2015; 137:5240-7. [DOI: 10.1021/jacs.5b00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chérine Bechara
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
128
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
129
|
Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1886-96. [PMID: 25791349 DOI: 10.1016/j.bbamem.2015.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
130
|
Rawson S, Phillips C, Huss M, Tiburcy F, Wieczorek H, Trinick J, Harrison MA, Muench SP. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights. Structure 2015; 23:461-471. [PMID: 25661654 PMCID: PMC4353692 DOI: 10.1016/j.str.2014.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.
Collapse
Affiliation(s)
- Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Felix Tiburcy
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - John Trinick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
131
|
A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat Chem 2015; 7:255-62. [DOI: 10.1038/nchem.2172] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022]
|
132
|
Chang YH, Gregorich ZR, Chen AJ, Hwang L, Guner H, Yu D, Zhang J, Ge Y. New mass-spectrometry-compatible degradable surfactant for tissue proteomics. J Proteome Res 2015; 14:1587-99. [PMID: 25589168 DOI: 10.1021/pr5012679] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue proteomics is increasingly recognized for its role in biomarker discovery and disease mechanism investigation. However, protein solubility remains a significant challenge in mass spectrometry (MS)-based tissue proteomics. Conventional surfactants such as sodium dodecyl sulfate (SDS), the preferred surfactant for protein solubilization, are not compatible with MS. Herein, we have screened a library of surfactant-like compounds and discovered an MS-compatible degradable surfactant (MaSDeS) for tissue proteomics that solubilizes all categories of proteins with performance comparable to SDS. The use of MaSDeS in the tissue extraction significantly improves the total number of protein identifications from commonly used tissues, including tissue from the heart, liver, and lung. Notably, MaSDeS significantly enriches membrane proteins, which are often under-represented in proteomics studies. The acid degradable nature of MaSDeS makes it amenable for high-throughput MS-based proteomics. In addition, the thermostability of MaSDeS allows for its use in experiments requiring high temperature to facilitate protein extraction and solubilization. Furthermore, we have shown that MaSDeS outperforms the other MS-compatible surfactants in terms of overall protein solubility and the total number of identified proteins in tissue proteomics. Thus, the use of MaSDeS will greatly advance tissue proteomics and realize its potential in basic biomedical and clinical research. MaSDeS could be utilized in a variety of proteomics studies as well as general biochemical and biological experiments that employ surfactants for protein solubilization.
Collapse
Affiliation(s)
- Ying-Hua Chang
- Department of Cell and Regenerative Biology, ‡Molecular and Cellular Pharmacology Program, §Department of Chemistry, ∥Human Proteomics Program, and ⊥Molecular and Environmental Toxicology Program, University of Wisconsin-Madison , 1300 University Avenue, Madison 53706, Wisconsin, United States
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Muro E, Atilla-Gokcumen GE, Eggert US. Lipids in cell biology: how can we understand them better? Mol Biol Cell 2015; 25:1819-23. [PMID: 24925915 PMCID: PMC4055261 DOI: 10.1091/mbc.e13-09-0516] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lipids are a major class of biological molecules and play many key roles in different processes. The diversity of lipids is on the same order of magnitude as that of proteins: cells express tens of thousands of different lipids and hundreds of proteins to regulate their metabolism and transport. Despite their clear importance and essential functions, lipids have not been as well studied as proteins. We discuss here some of the reasons why it has been challenging to study lipids and outline technological developments that are allowing us to begin lifting lipids out of their “Cinderella” status. We focus on recent advances in lipid identification, visualization, and investigation of their biophysics and perturbations and suggest that the field has sufficiently advanced to encourage broader investigation into these intriguing molecules.
Collapse
Affiliation(s)
- Eleonora Muro
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Ulrike S Eggert
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
134
|
Liu W, Chen Q, Lin X, Lin JM. Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions. Analyst 2015; 140:1551-4. [PMID: 25597452 DOI: 10.1039/c4an02370f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To establish an automatic and online microfluidic chip-mass spectrometry (chip-MS) system, a device was designed and fabricated for microsampling by a hybrid capillary. The movement of the capillary was programmed by a computer to aspirate samples from different microfluidic channels in the form of microdroplets (typically tens of nanoliters in volume), which were separated by air plugs. The droplets were then directly analyzed by MS via paper spray ionization without any pretreatment. The feasibility and performance were demonstrated by a concentration gradient experiment. Furthermore, after eliminating the effect of nonuniform response factors by an internal standard method, determination of the association constant within a noncovalent protein-protein complex was successfully accomplished with the MS-based titration indicating the versatility and the potential of this novel platform for widespread applications.
Collapse
Affiliation(s)
- Wu Liu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | |
Collapse
|
135
|
Calabrese AN, Watkinson TG, Henderson PJF, Radford SE, Ashcroft AE. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 2014; 87:1118-26. [PMID: 25495802 PMCID: PMC4636139 DOI: 10.1021/ac5037022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology and ‡School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
136
|
Landreh M, Robinson CV. A new window into the molecular physiology of membrane proteins. J Physiol 2014; 593:355-62. [PMID: 25630257 PMCID: PMC4303381 DOI: 10.1113/jphysiol.2014.283150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
Integral membrane proteins comprise ∼25% of the human proteome. Yet, our understanding of their molecular physiology is still in its infancy. This can be attributed to two factors: the experimental challenges that arise from the difficult chemical nature of membrane proteins, and the unclear relationship between their activity and their native environment. New approaches are therefore required to address these challenges. Recent developments in mass spectrometry have shown that it is possible to study membrane proteins in a solvent-free environment and provide detailed insights into complex interactions, ligand binding and folding processes. Interestingly, not only detergent micelles but also lipid bilayer nanodiscs or bicelles can serve as a means for the gentle desolvation of membrane proteins in the gas phase. In this manner, as well as by direct addition of lipids, it is possible to study the effects of different membrane components on the structure and function of the protein components allowing us to add functional data to the least accessible part of the proteome.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | | |
Collapse
|
137
|
Martin N, Kraffe E, Le Grand F, Marty Y, Bureau DP, Guderley H. Dietary fatty acid composition and the homeostatic regulation of mitochondrial phospholipid classes in red muscle of rainbow trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 2014; 323:60-71. [PMID: 25418791 DOI: 10.1002/jez.1896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 01/03/2023]
Abstract
Although dietary lipid quality markedly affects fatty acid (FA) composition of mitochondrial membranes from rainbow trout red muscle (Oncorhynchus mykiss), mitochondrial processes are relatively unchanged. As certain classes of phospholipids interact more intimately with membrane proteins than others, we examined whether specific phospholipid classes from these muscle mitochondria were more affected by dietary FA composition than others. To test this hypothesis, we fed trout with two diets differing only in their FA composition: Diet 1 had higher levels of 18:1n-9 and 18:2n-6 than Diet 2, while 22:6n-3 and 22:5n-6 were virtually absent from Diet 1 and high in Diet 2. After 5 months, trout fed Diet 2 had higher proportions of phosphatidylcholine (PC) and less phosphatidylethanolamine (PE) in mitochondrial membranes than those fed Diet 1. The FA composition of PC, PE and cardiolipin (CL) showed clear evidence of regulated incorporation of dietary FA. For trout fed Diet 2, 22:6n-3 was the most abundant FA in PC, PE and CL. The n-6 FA were consistently higher in all phospholipid classes of trout fed Diet 1, with shorter n-6 FA being favoured in CL than in PC and PE. Despite these marked changes in individual FA levels with diet, general characteristics such as total polyunsaturated FA, total monounsaturated FA and total saturated FA were conserved in PE and CL, confirming differential regulation of the FA composition of PC, PE and CL. The regulated changes of phospholipid classes presumably maintain critical membrane characteristics despite varying nutritional quality. We postulate that these changes aim to protect mitochondrial function.
Collapse
Affiliation(s)
- Nicolas Martin
- Département de Biologie, Université Laval, Québec, Québec, Canada; Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Plouzané, France
| | | | | | | | | | | |
Collapse
|
138
|
Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proc Natl Acad Sci U S A 2014; 111:17170-5. [PMID: 25404294 DOI: 10.1073/pnas.1413118111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility-mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins.
Collapse
|
139
|
Evidence of functional trimeric chlorophyll a/c-peridinin proteins in the dinoflagellate Symbiodinium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1904-1912. [DOI: 10.1016/j.bbabio.2014.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/17/2022]
|
140
|
Zhou M, Robinson CV. Flexible membrane proteins: functional dynamics captured by mass spectrometry. Curr Opin Struct Biol 2014; 28:122-30. [DOI: 10.1016/j.sbi.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
141
|
O'Brien JP, Li W, Zhang Y, Brodbelt JS. Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. J Am Chem Soc 2014; 136:12920-8. [PMID: 25148649 DOI: 10.1021/ja505217w] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry (MS) was used to characterize the sequences of proteins in native protein-ligand and protein-protein complexes and to provide auxiliary information about the binding sites of the ligands and protein-protein interfaces. UVPD outperformed collisional induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) in terms of yielding the most comprehensive diagnostic primary sequence information about the proteins in the complexes. UVPD also generated noncovalent fragment ions containing a portion of the protein still bound to the ligand which revealed some insight into the nature of the binding sites of myoglobin/heme, eIF4E/m(7)GTP, and human peptidyl-prolyl cis-trans isomerase 1 (Pin1) in complex with the peptide derived from the C-terminal domain of RNA polymerase II (CTD). Noncovalently bound protein-protein fragment ions from oligomeric β-lactoglobulin dimers and hexameric insulin complexes were also produced upon UVPD, providing some illumination of tertiary and quaternary protein structural features.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, ‡Department of Molecular Biosciences, and §Institute for Cellular and Molecular Biology, The University of Texas at Austin , 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
142
|
Cardiolipin interaction with subunit c of ATP synthase: solid-state NMR characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:260-5. [PMID: 25168468 DOI: 10.1016/j.bbamem.2014.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 01/29/2023]
Abstract
The interaction of lipids with subunit c from F1F0 ATP synthase is studied by biophysical methods. Subunit c from both Escherichia coli and Streptococcus pneumoniae interacts and copurifies with cardiolipin. Solid state NMR data on oligomeric rings of F0 show that the cardiolipin interacts with the c subunit in membrane bilayers. These studies offer strong support for the hypothesis that F0 has specific interactions with cardiolipin.
Collapse
|
143
|
Xiao Y, Ding Z, Xu C, Dai X, Fang X, Ding CF. Novel Linear Ion Trap Mass Analyzer Built with Triangular Electrodes. Anal Chem 2014; 86:5733-9. [DOI: 10.1021/ac404209a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Xiao
- Department
of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| | - Zhengzhi Ding
- Department
of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| | - Chongsheng Xu
- Department
of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| | - Xinhua Dai
- National Institute of Metrology, Beijing 100013, China
| | - Xiang Fang
- National Institute of Metrology, Beijing 100013, China
| | - Chuan-Fan Ding
- Department
of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, 200433, China
| |
Collapse
|
144
|
Chingin K, Xu N, Chen H. Soft supercharging of biomolecular ions in electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:928-934. [PMID: 24733276 DOI: 10.1007/s13361-014-0887-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.
Collapse
Affiliation(s)
- Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi Province, 330013, China,
| | | | | |
Collapse
|
145
|
Boeri Erba E. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14:1259-70. [PMID: 24723549 DOI: 10.1002/pmic.201300333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
MS has emerged as an important tool to investigate noncovalent interactions between proteins and various ligands (e.g. other proteins, small molecules, or drugs). In particular, ESI under so-called "native conditions" (a.k.a. "native MS") has considerably expanded the scope of such investigations. For instance, ESI quadrupole time of flight (Q-TOF) instruments have been used to probe the precise stoichiometry of protein assemblies, the interactions between subunits and the position of subunits within the complex (i.e. defining core and peripheral subunits). This review highlights several illustrative native Q-TOF-based investigations and recent seminal contributions of top-down MS (i.e. Fourier transform (FT) MS) to the characterization of noncovalent complexes. Combined top-down and native MS, recently demonstrated in "high-mass modified" orbitrap mass spectrometers, and further improvements needed for the enhanced investigation of biologically significant noncovalent interactions by MS will be discussed.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institute of Structural Biology (Institut de Biologie Structurale), Centre National de la Recherche Scientifique (CNRS), University of Grenoble Alpes (Université de Grenoble Alpes), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), DSV, Grenoble, France
| |
Collapse
|
146
|
Marcoux J, Politis A, Rinehart D, Marshall DP, Wallace MI, Tamm LK, Robinson CV. Mass spectrometry defines the C-terminal dimerization domain and enables modeling of the structure of full-length OmpA. Structure 2014; 22:781-90. [PMID: 24746938 DOI: 10.1016/j.str.2014.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022]
Abstract
The transmembrane domain of the outer membrane protein A (OmpA) from Escherichia coli is an excellent model for structural and folding studies of β-barrel membrane proteins. However, full-length OmpA resists crystallographic efforts, and the link between its function and tertiary structure remains controversial. Here we use site-directed mutagenesis and mass spectrometry of different constructs of OmpA, released in the gas phase from detergent micelles, to define the minimal region encompassing the C-terminal dimer interface. Combining knowledge of the location of the dimeric interface with molecular modeling and ion mobility data allows us to propose a low-resolution model for the full-length OmpA dimer. Our model of the dimer is in remarkable agreement with experimental ion mobility data, with none of the unfolding or collapse observed for full-length monomeric OmpA, implying that dimer formation stabilizes the overall structure and prevents collapse of the flexible linker that connects the two domains.
Collapse
Affiliation(s)
- Julien Marcoux
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Argyris Politis
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Dennis Rinehart
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - David P Marshall
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Mark I Wallace
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
147
|
Twenty years of gas phase structural biology. Structure 2014; 21:1541-50. [PMID: 24010713 DOI: 10.1016/j.str.2013.08.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023]
Abstract
Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20(th) anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology.
Collapse
|
148
|
Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 2014; 6:281-94. [DOI: 10.1038/nchem.1889] [Citation(s) in RCA: 655] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/11/2014] [Indexed: 02/07/2023]
|
149
|
Rouse SL, Marcoux J, Robinson CV, Sansom MSP. Dodecyl maltoside protects membrane proteins in vacuo. Biophys J 2014; 105:648-56. [PMID: 23931313 DOI: 10.1016/j.bpj.2013.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022] Open
Abstract
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
150
|
Zhou M, Politis A, Davies R, Liko I, Wu KJ, Stewart AG, Stock D, Robinson CV. Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nat Chem 2014; 6:208-215. [PMID: 24557135 PMCID: PMC4067995 DOI: 10.1038/nchem.1868] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.
Collapse
Affiliation(s)
- Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Roberta Davies
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Idlir Liko
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Kuan-Jung Wu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|