101
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
102
|
Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
103
|
Do DCH, Vasko P, Fuentes MÁ, Hicks J, Aldridge S. Probing the non-innocent nature of an amino-functionalised β-diketiminate ligand in silylene/iminosilane systems. Dalton Trans 2020; 49:8701-8709. [PMID: 32555871 DOI: 10.1039/d0dt01447h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron-rich β-diketiminate ligands, featuring amino groups at the backbone β positions ("N-nacnac" ligands) have been employed in the synthesis of a range of silylene (SiII) complexes of the type (N-nacnac)SiX (where X = H, Cl, N(SiMe3)2, P(SiMe3)2 and Si(SiMe3)3). A combination of experimental and quantum chemical approaches reveals (i) that in all cases rearrangement to give an aza-butadienyl SiIV imide featuring a contracted five-membered heterocycle is thermodynamically favourable (and experimentally viable); (ii) that the kinetic lability of systems of the type (N-nacnac)SiX varies markedly as a function of X, such that compounds of this type can be isolated under ambient conditions for X = Cl and P(SiMe3)2, but not for X = H, N(SiMe3)2 and Si(SiMe3)3; and (iii) that the ring contraction process is most facile for systems bearing strongly electron-donating and sterically less encumbered X groups, since these allow most ready access to a transition state accessed via intramolecular nucleophilic attack by the SiII centre at the β-carbon position of the N-nacnac ligand backbone.
Collapse
Affiliation(s)
- Dinh Cao Huan Do
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | | | | | | | | |
Collapse
|
104
|
Reiners M, Baabe D, Münster K, Zaretzke MK, Freytag M, Jones PG, Coppel Y, Bontemps S, Rosal ID, Maron L, Walter MD. NH 3 formation from N 2 and H 2 mediated by molecular tri-iron complexes. Nat Chem 2020; 12:740-746. [PMID: 32601410 DOI: 10.1038/s41557-020-0483-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/05/2020] [Indexed: 01/27/2023]
Abstract
Living systems carry out the reduction of N2 to ammonia (NH3) through a series of protonation and electron transfer steps under ambient conditions using the enzyme nitrogenase. In the chemical industry, the Haber-Bosch process hydrogenates N2 but requires high temperatures and pressures. Both processes rely on iron-based catalysts, but molecular iron complexes that promote the formation of NH3 on addition of H2 to N2 have remained difficult to devise. Here, we isolate the tri(iron)bis(nitrido) complex [(Cp'Fe)3(μ3-N)2] (in which Cp' = η5-1,2,4-(Me3C)3C5H2), which is prepared by reduction of [Cp'Fe(μ-I)]2 under an N2 atmosphere and comprises three iron centres bridged by two μ3-nitrido ligands. In solution, this complex reacts with H2 at ambient temperature (22 °C) and low pressure (1 or 4 bar) to form NH3. In the solid state, it is converted into the tri(iron)bis(imido) species, [(Cp'Fe)3(μ3-NH)2], by addition of H2 (10 bar) through an unusual solid-gas, single-crystal-to-single-crystal transformation. In solution, [(Cp'Fe)3(μ3-NH)2] further reacts with H2 or H+ to form NH3.
Collapse
Affiliation(s)
- Matthias Reiners
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Dirk Baabe
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Katharina Münster
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Marc-Kevin Zaretzke
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Matthias Freytag
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Yannick Coppel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sébastien Bontemps
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Iker Del Rosal
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Laurent Maron
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Marc D Walter
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany.
| |
Collapse
|
105
|
Abstract
Activation of dinitrogen plays an important role in daily anthropogenic life, and the processes by which this fixation occurs have been a longstanding and significant research focus within the community. One of the major fields of dinitrogen activation research is the use of multimetallic compounds to reduce and/or activate N2 into a more useful nitrogen-atom source, such as ammonia. Here we report a comprehensive review of multimetallic-dinitrogen complexes and their utility toward N2 activation, beginning with the d-block metals from Group 4 to Group 11, then extending to Group 13 (which is exclusively populated by B complexes), and finally the rare-earth and actinide species. The review considers all polynuclear metal aggregates containing two or more metal centers in which dinitrogen is coordinated or activated (i.e., partial or complete cleavage of the N2 triple bond in the observed product). Our survey includes complexes in which mononuclear N2 complexes are used as building blocks to generate homo- or heteromultimetallic dinitrogen species, which allow one to evaluate the potential of heterometallic species for dinitrogen activation. We highlight some of the common trends throughout the periodic table, such as the differences between coordination modes as it relates to N2 activation and potential functionalization and the effect of polarizing the bridging N2 ligand by employing different metal ions of differing Lewis acidities. By providing this comprehensive treatment of polynuclear metal dinitrogen species, this Review aims to outline the past and provide potential future directions for continued research in this area.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - William R. Buratto
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Juan F. Torres
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Leslie J. Murray
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
106
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
107
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
108
|
Li ZY, Li Y, Mou LH, Chen JJ, Liu QY, He SG, Chen H. A Facile N≡N Bond Cleavage by the Trinuclear Metal Center in Vanadium Carbide Cluster Anions V 3C 4. J Am Chem Soc 2020; 142:10747-10754. [PMID: 32450693 DOI: 10.1021/jacs.0c02021] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cleavage of the triple N≡N bond by metal clusters is of fundamental interest and practical importance in nitrogen fixation. Previous studies of N≡N bond cleavage by gas-phase metal clusters emphasized the importance of the dinuclear metal centers. Herein, the dissociative adsorption of N2 and subsequent C-N coupling on trinuclear carbide cluster anions V3C4- under thermal collision conditions have been characterized by employing mass spectrometry (collision induced dissociation), cryogenic photoelectron imaging spectroscopy, and quantum chemistry calculations. A theoretical analysis identified a crucial adsorption intermediate with N2 bonded with the V3 metal core in the end-on/side-on/side-on (ESS) mode, which most likely enables the facile cleavage of the N≡N bond. Such a vital N2 coordination in the ESS mode is a result of symmetry-matched interactions between the occupied orbitals of the metal core and both of the two empty π* orbitals of N2. Furthermore, carbon ligands also play a considerable role in enhancing the reactivity of the metal core toward N2. This study strongly suggests a new mechanism of N≡N bond cleavage by gas-phase metal clusters.
Collapse
Affiliation(s)
- Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yao Li
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
109
|
Barriopedro P, Caballo J, Mena M, Pérez-Redondo A, Yélamos C. Successive Protonation and Methylation of Bridging Imido and Nitrido Ligands at Titanium Complexes. Inorg Chem 2020; 59:7631-7643. [PMID: 32396009 DOI: 10.1021/acs.inorgchem.0c00550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of nitrido complexes [{Ti(η5-C5Me5)(μ-NH)}3(μ3-N)] (1) and [{Ti(η5-C5Me5)}4(μ3-N)4] (2) with electrophilic reagents ROTf (R = H, Me; OTf = OSO2CF3) in different molar ratios have allowed the structural characterization of a series of titanium intermediates en route to the formation of the ammonium salts [NR4]OTf and [NR4][Ti(η5-C5Me5)(OTf)4]. The treatment of the trinuclear imido-nitrido complex 1 with 5.5 equiv of triflic acid in toluene at room temperature led to the dinuclear complex [Ti2(η5-C5Me5)2(μ-N)(NH3)(μ-O2SOCF3)2(OTf)] (3) and [NH4]OTf. Compound 3, along with the ammonium salts [NMe4]OTf and [NMe4][Ti(η5-C5Me5)(OTf)4] (5), was also obtained in the reaction of 1 with 8 equiv of methyl triflate in toluene at 100 °C. The trinuclear complex [Ti3(η5-C5Me5)3(μ-N)(μ-NH)2(μ-O2SOCF3)(OTf)] (4), an intermediate in the formation of 3, was isolated in the treatment of 1 with 4 equiv of MeOTf, although compound 4 was prepared in better yield by treatment of 1 with Me3SiOTf (2 equiv). Addition of a large excess of MeOTf or HOTf reagents to solutions of 3 resulted in the clean formation of ammonium salts [NR4][Ti(η5-C5Me5)(OTf)4] (R = Me (5), H (6)). Treatment of the tetranuclear nitrido complex [{Ti(η5-C5Me5)}4(μ3-N)4] (2) with 1 equiv of ROTf in toluene afforded the precipitation of the ionic compounds [{Ti(η5-C5Me5)}4(μ3-N)3(μ3-NR)][OTf] (R = H (8), Me (9)), while a large excess of HOTf led to the formation of [{Ti(η5-C5Me5)}4(μ3-N)3(μ3-NH)][Ti(η5-C5Me5)(OTf)4(NH3)] (10) by rupture of a fraction of tetranuclear molecules. Complex 2 reacted with 1 equiv of [M(η5-C5H5)(CO)3H] (M = Mo, Cr) via hydrogenation of one nitrido ligand to give the molecular derivative [{Ti(η5-C5Me5)}4(μ3-N)3(μ3-NH)] (11) and [{M(η5-C5H5)(CO)3}2], while a second 1 equiv of [M(η5-C5H5)(CO)3H] produced the ionic compounds [{Ti(η5-C5Me5)}4(μ3-N)2(μ3-NH)2][M(η5-C5H5)(CO)3] (M = Mo (12), Cr (13)) by protonation of another nitrido group. The X-ray crystal structures of 3-5, 9, 10, and 13 were determined.
Collapse
Affiliation(s)
- Paula Barriopedro
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Jorge Caballo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
110
|
Tanifuji K, Ohki Y. Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry. Chem Rev 2020; 120:5194-5251. [DOI: 10.1021/acs.chemrev.9b00544] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yasuhiro Ohki
- Department of Chemsitry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
111
|
Shi L, Yin Y, Wang S, Sun H. Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01081] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Shi
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Yu Yin
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide South Australia 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
112
|
Arnold PL, Ochiai T, Lam FYT, Kelly RP, Seymour ML, Maron L. Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines. Nat Chem 2020; 12:654-659. [DOI: 10.1038/s41557-020-0457-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/12/2020] [Indexed: 11/09/2022]
|
113
|
Chalkley MJ, Drover MW, Peters JC. Catalytic N 2-to-NH 3 (or -N 2H 4) Conversion by Well-Defined Molecular Coordination Complexes. Chem Rev 2020; 120:5582-5636. [PMID: 32352271 DOI: 10.1021/acs.chemrev.9b00638] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrogen fixation, the six-electron/six-proton reduction of N2, to give NH3, is one of the most challenging and important chemical transformations. Notwithstanding the barriers associated with this reaction, significant progress has been made in developing molecular complexes that reduce N2 into its bioavailable form, NH3. This progress is driven by the dual aims of better understanding biological nitrogenases and improving upon industrial nitrogen fixation. In this review, we highlight both mechanistic understanding of nitrogen fixation that has been developed, as well as advances in yields, efficiencies, and rates that make molecular alternatives to nitrogen fixation increasingly appealing. We begin with a historical discussion of N2 functionalization chemistry that traverses a timeline of events leading up to the discovery of the first bona fide molecular catalyst system and follow with a comprehensive overview of d-block compounds that have been targeted as catalysts up to and including 2019. We end with a summary of lessons learned from this significant research effort and last offer a discussion of key remaining challenges in the field.
Collapse
Affiliation(s)
- Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcus W Drover
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
114
|
Eaton MC, Knight BJ, Catalano VJ, Murray LJ. Evaluating Metal Ion Identity on Catalytic Silylation of Dinitrogen Using a Series of Trimetallic Complexes. Eur J Inorg Chem 2020; 2020:1519-1524. [PMID: 33071629 DOI: 10.1002/ejic.201901335] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report catalytic silylation of dinitrogen to tris(trimethylsilyl)amine by a series of trinuclear first row transition metal complexes (M = Cr, Mn, Fe, Co, Ni) housed in our tris(β-diketiminate) cyclophane (L 3- ). Yields are expectedly dependent on metal ion type ranging from 14 to 199 equiv NH4 +/complex after protonolysis for the Mn to Co congeners, respectively. For the series of complexes, the number of turnovers trend observed is Co > Fe > Cr > Ni > Mn, consistent with prior reports of greater efficacy of Co over Fe in other ligand systems for this reaction.
Collapse
Affiliation(s)
- Mary C Eaton
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| | - Brian J Knight
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| | | | - Leslie J Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (USA)
| |
Collapse
|
115
|
Liu T, Gau MR, Tomson NC. Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate. J Am Chem Soc 2020; 142:8142-8146. [PMID: 32203663 DOI: 10.1021/jacs.0c01861] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Both biological and industrial nitrogen reduction catalysts activate N2 at multinuclear binding sites with constrained Fe-Fe distances. This contrasts with molecular diiron systems, which routinely form linear N2 bridges to minimize steric interactions. Model compounds that capture the salient geometric features of N2 binding by the nitrogenase enzymes and Mittasch catalysts would contribute to understanding their high N2-reduction activity. It is shown in the present study that use of a geometrically flexible, dinucleating macrocycle allows for the formation of a bridging N2 ligand with an unusual Fe-CtN2-Fe angle of 150° (CtN2 = centroid of N2), a geometry that approximates the α-N2 binding mode on Fe(111) surfaces that precedes N2 bond cleavage. The cavity size of the macrocycle prevents the formation of a linear Fe-N2-Fe unit and leads to orbital interactions that are distinct from those available to the linear configuration.
Collapse
Affiliation(s)
- Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
116
|
Shima T, Yang J, Luo G, Luo Y, Hou Z. Dinitrogen Activation and Hydrogenation by C5Me4SiMe3-Ligated Di- and Trinuclear Chromium Hydride Complexes. J Am Chem Soc 2020; 142:9007-9016. [DOI: 10.1021/jacs.0c02939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Takanori Shima
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
117
|
Mo Z, Shima T, Hou Z. Synthesis and Diverse Transformations of a Dinitrogen Dititanium Hydride Complex Bearing Rigid Acridane‐Based PNP‐Pincer Ligands. Angew Chem Int Ed Engl 2020; 59:8635-8644. [DOI: 10.1002/anie.201916171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Zhenbo Mo
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
118
|
Mo Z, Shima T, Hou Z. Synthesis and Diverse Transformations of a Dinitrogen Dititanium Hydride Complex Bearing Rigid Acridane‐Based PNP‐Pincer Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenbo Mo
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
119
|
Yang J, Luo G, Yu Y, Qu J, Hou Z, Luo Y. Theoretical Mechanistic Insights into Dinitrogen Activation by a Diniobium Tetrahydride: Two-State Reactivity and the Role of Potassium Cation Promoter. Inorg Chem 2020; 59:4626-4633. [DOI: 10.1021/acs.inorgchem.9b03733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jimin Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhaomin Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, and Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
120
|
Shima T, Hou Z. Dinitrogen Activation by a Titanium/Ruthenium Heteromultimetallic Hydride Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takanori Shima
- Advanced Catalysis Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako 351-0198 Saitama Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako 351-0198 Saitama Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako 351-0198 Saitama Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako 351-0198 Saitama Japan
| |
Collapse
|
121
|
Rouf AM, Dai C, Xu F, Zhu J. Dinitrogen Activation by Tricoordinated Boron Species: A Systematic Design. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900205] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alvi Muhammad Rouf
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Fangzhou Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
122
|
Makino T, Kanakubo M. NH 3 absorption in Brønsted acidic imidazolium- and ammonium-based ionic liquids. NEW J CHEM 2020. [DOI: 10.1039/d0nj04743k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Brønsted ionic liquids, consisting of sulfo and carboxy groups, absorbed larger amounts of NH3 than the nonfunctionalized ionic liquids. The spectroscopic analyses indicated that the Brønsted ionic liquids absorbed NH3 physically and chemically.
Collapse
Affiliation(s)
- Takashi Makino
- National Institute of Advanced Industrial Science and Technology
- Sendai 983-8551
- Japan
| | - Mitsuhiro Kanakubo
- National Institute of Advanced Industrial Science and Technology
- Sendai 983-8551
- Japan
| |
Collapse
|
123
|
Nagelski AL, Fataftah MS, Bollmeyer MM, McWilliams SF, MacMillan SN, Mercado BQ, Lancaster KM, Holland PL. The influences of carbon donor ligands on biomimetic multi-iron complexes for N 2 reduction. Chem Sci 2020; 11:12710-12720. [PMID: 34094466 PMCID: PMC8163302 DOI: 10.1039/d0sc03447a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active site clusters of nitrogenase enzymes possess the only examples of carbides in biology. These are the only biological FeS clusters that are capable of reducing N2 to NH4+, implicating the central carbon and its interaction with Fe as important in the mechanism of N2 reduction. This biological question motivates study of the influence of carbon donors on the electronic structure and reactivity of unsaturated, high-spin iron centers. Here, we present functional and structural models that test the impacts of carbon donors and sulfide donors in simpler iron compounds. We report the first example of a diiron complex that is bridged by an alkylidene and a sulfide, which serves as a high-fidelity structural and spectroscopic model of a two-iron portion of the active-site cluster (FeMoco) in the resting state of Mo-nitrogenase. The model complexes have antiferromagnetically coupled pairs of high-spin iron centers, and sulfur K-edge X-ray absorption spectroscopy shows comparable covalency of the sulfide for C and S bridged species. The sulfur-bridged compound does not interact with N2 even upon reduction, but upon removal of the sulfide it becomes capable of reducing N2 to NH4+ with the addition of protons and electrons. This provides synthetic support for sulfide extrusion in the activation of nitrogenase cofactors. High-spin diiron alkylidenes give insight into the electronic structure and functional relevance of carbon in the FeMoco active site of nitrogenase.![]()
Collapse
Affiliation(s)
| | | | - Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | |
Collapse
|
124
|
Murugesapandian B, Ganguly R, Lee PTK, Petković M, Clyburne JAC, Vidović D. Electronically Induced Steric Clash: Synthesis of NMe2-Modified β-Diketiminate-Supported Boron Difluoride Compounds. Aust J Chem 2020. [DOI: 10.1071/ch20188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the synthesis and structural features of NMe2-modified β-diketiminate-supported boron difluoride compounds (LArBF2: LAr=[HC(NAr)2(CNMe2)2]–; LPh: Ar=Ph; LTol: Ar=p-tolyl; LXyl: Ar=m-xylyl). The title compounds were prepared in moderate yields (~65%) by insitu deprotonation of the corresponding ligands LArH using KH, followed by the addition of BF3OEt2. According to solid-state and theoretical analyses of the BF2 compounds, the lone pair at each NMe2 group is involved in electron delocalization within the central BC3N2 ring. As a result, the N-aryl substituents sterically clash with the NMe2 groups, causing this central ring to pucker. Several attempts were made to prepare heavy analogues (e.g. LArBX2, X=Cl, Br, I) but only unidentifiable product mixtures were observed. It appears that the observed steric clash between the N-aryl substituents and the NMe2 groups prevented the formation of these heavy analogues.
Collapse
|
125
|
Liu P, Fu C, Li Y, Wei H. Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N2 reduction reactions: a DFT study. Phys Chem Chem Phys 2020; 22:9322-9329. [DOI: 10.1039/c9cp06112f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of molecular dinitrogen (N2) to ammonia (NH3) under mild conditions is attractive due to the wide application of ammonia.
Collapse
Affiliation(s)
- Pingping Liu
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Jiangsu Key Lab for NSLSCS
- Nanjing Normal University
- Nanjing 210097
| | - Cheng Fu
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Jiangsu Key Lab for NSLSCS
- Nanjing Normal University
- Nanjing 210097
| | - Yafei Li
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Jiangsu Key Lab for NSLSCS
- Nanjing Normal University
- Nanjing 210097
| | - Haiyan Wei
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Jiangsu Key Lab for NSLSCS
- Nanjing Normal University
- Nanjing 210097
| |
Collapse
|
126
|
Kokubo Y, Wasada‐Tsutsui Y, Yomura S, Yanagisawa S, Kubo M, Kugimiya S, Kajita Y, Ozawa T, Masuda H. Syntheses, Characterizations, and Crystal Structures of Dinitrogen‐Divanadium Complexes Bearing Triamidoamine Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yoshiaki Kokubo
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Yuko Wasada‐Tsutsui
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Shunsuke Yomura
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science Graduate School of Engineering University of Hyogo 3‐2‐1 Koto 678‐1297 Kamigori‐cho Ako‐gun Hyogo Japan
| | - Minoru Kubo
- Graduate School of Life Science Graduate School of Engineering University of Hyogo 3‐2‐1 Koto 678‐1297 Kamigori‐cho Ako‐gun Hyogo Japan
| | - Shinichi Kugimiya
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Yuji Kajita
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Tomohiro Ozawa
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Hideki Masuda
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| |
Collapse
|
127
|
Zheng J, Liao F, Wu S, Jones G, Chen T, Fellowes J, Sudmeier T, McPherson IJ, Wilkinson I, Tsang SCE. Efficient Non‐dissociative Activation of Dinitrogen to Ammonia over Lithium‐Promoted Ruthenium Nanoparticles at Low Pressure. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianwei Zheng
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | - Fenglin Liao
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | - Simson Wu
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | - Glenn Jones
- Johnson Matthey Technology Centre Blount's Court, Sonning Common Reading RG4 9NH UK
| | - Tian‐Yi Chen
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | - Joshua Fellowes
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | - Tim Sudmeier
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | - Ian J. McPherson
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| | | | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of Oxford Oxford OX1 3QR UK
| |
Collapse
|
128
|
Bruch QJ, Connor GP, Chen CH, Holland PL, Mayer JM, Hasanayn F, Miller AJM. Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer. J Am Chem Soc 2019; 141:20198-20208. [DOI: 10.1021/jacs.9b10031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
129
|
Buscagan TM, Rees DC. Rethinking the Nitrogenase Mechanism: Activating the Active Site. JOULE 2019; 3:2662-2678. [PMID: 32864580 PMCID: PMC7451245 DOI: 10.1016/j.joule.2019.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metalloenzymes called nitrogenases (N2ases) harness the reactivity of transition metals to reduce N2 to NH3. Specifically, N2ases feature a multimetallic active site, called a cofactor, which binds and reduces N2. The seven Fe centers and one additional metal center (Mo, V, or Fe) that make up the cofactor are all potential substrate binding sites. Unraveling the mechanism by which the cofactor binds N2 and reduces N2 to NH3 represents a multifaceted challenge because cofactor activation is required for N2 binding and functionalization to NH3. Despite decades of fascinating contributions, the nature of N2 binding to the active site and the structure of the activated cofactor remain unknown. Herein, we discuss the challenges associated with N2 reduction and how transition metal complexes facilitate N2 functionalization by coordinating N2. We also review the activation and/or reaction mechanisms reported for small molecule catalysts and the Haber-Bosch catalyst and discuss their potential relevance to biological N2 fixation. Finally, we survey what is known about the mechanism of N2ase and highlight recent X-ray crystallographic studies supporting Fe-S bond cleavage at the active site to generate reactive Fe centers as a potential, underexplored route for cofactor activation. We propose that structural rearrangements, beyond electron and proton transfers, are key in generating the catalytically active state(s) of the cofactor. Understanding the mechanism of activation will be key to understanding N2 binding and reduction.
Collapse
Affiliation(s)
- Trixia M. Buscagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 USA
| | - Douglas C. Rees
- to whom correspondence concerning the manuscript may be addressed, , telephone: 1-626-395-8393
| |
Collapse
|
130
|
Zheng J, Liao F, Wu S, Jones G, Chen TY, Fellowes J, Sudmeier T, McPherson IJ, Wilkinson I, Tsang SCE. Efficient Non-dissociative Activation of Dinitrogen to Ammonia over Lithium-Promoted Ruthenium Nanoparticles at Low Pressure. Angew Chem Int Ed Engl 2019; 58:17335-17341. [PMID: 31560158 DOI: 10.1002/anie.201907171] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Indexed: 11/11/2022]
Abstract
There is an exciting possibility to decentralize ammonia synthesis for fertilizer production or energy storage without carbon emission from H2 obtained from renewables at small units operated at lower pressure. However, no suitable catalyst has yet been developed. Ru catalysts are known to be promoted by heavier alkali dopants. Instead of using heavy alkali metals, Li is herein shown to give the highest rate through surface polarisation despite its poorest electron donating ability. This exceptional promotion rate makes Ru-Li catalysts suitable for ammonia synthesis, which outclasses industrial Fe counterparts by at least 195 fold. Akin to enzyme catalysis, it is for the first time shown that Ru-Li catalysts hydrogenate end-on adsorbed N2 stabilized by Li+ on Ru terrace sites to ammonia in a stepwise manner, in contrast to typical N2 dissociation on stepped sites adopted by Ru-Cs counterparts, giving new insights in activating N2 by metallic catalysts.
Collapse
Affiliation(s)
- Jianwei Zheng
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Fenglin Liao
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Simson Wu
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Glenn Jones
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK
| | - Tian-Yi Chen
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Joshua Fellowes
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Tim Sudmeier
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Ian J McPherson
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Ian Wilkinson
- Siemens plc, CT NTF, Wharf Road, Oxford, OX29 4BP, UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| |
Collapse
|
131
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
132
|
Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nat Chem 2019; 11:1019-1025. [PMID: 31611632 PMCID: PMC6858550 DOI: 10.1038/s41557-019-0341-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/19/2019] [Indexed: 11/25/2022]
Abstract
Iron-sulfur clusters are emerging as reactive sites for the reduction of small-molecule substrates. However, the four-coordinate iron sites of typical iron-sulfur clusters rarely react with substrates, implicating three-coordinate iron. This idea is untested because fully sulfide-coordinated three-coordinate iron is unprecedented. Here we report a new type of [4Fe-3S] cluster featuring an iron center with three bonds to sulfides. Although a high-spin electronic configuration is characteristic of other iron-sulfur clusters, the planar geometry and short Fe–S bonds lead to a surprising low-spin electronic configuration at the three-coordinate Fe center as determined by spectroscopy and ab initio calculations. In a demonstration of biomimetic reactivity, the [4Fe-3S] cluster reduces hydrazine, a natural substrate of nitrogenase. The product is the first example of NH2 bound to an iron-sulfur cluster. Our results demonstrate that three-coordinate iron supported by sulfide donors is a plausible precursor to reactivity in iron-sulfur clusters like the FeMoco of nitrogenase.
Collapse
|
133
|
Xu G, Zhou J, Wang Z, Holm RH, Chen XD. Controlled Incorporation of Nitrides into W-Fe-S Clusters. Angew Chem Int Ed Engl 2019; 58:16469-16473. [PMID: 31489739 DOI: 10.1002/anie.201908968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/08/2022]
Abstract
Incorporation of monatomic 2p ligands into the core of iron-sulfur clusters has been researched since the discovery of interstitial carbide in the FeMo cofactor of Mo-dependent nitrogenase, but has proven to be a synthetic challenge. Herein, two distinct synthetic pathways are rationalized to install nitride ligands into targeted positions of W-Fe-S clusters, generating unprecedented nitride-ligated iron-sulfur clusters, namely [(Tp*)2 W2 Fe6 (μ4 -N)2 S6 L4 ]2- (Tp*=tris(3,5-dimethyl-1-pyrazolyl)hydroborate(1-), L=Cl- or Br- ). 57 Fe Mössbauer study discloses metal oxidation states of WIV 2 FeII 4 FeIII 2 with localized electron distribution, which is analogous to the mid-valent iron centres of FeMo cofactor at resting state. Good agreement of Mössbauer data with the empirical linear relationship for Fe-S clusters indicates similar ligand behaviour of nitride and sulfide in such clusters, providing useful reference for reduced nitrogen in a nitrogenase-like environment.
Collapse
Affiliation(s)
- Gan Xu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jie Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Zheng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Richard H Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Xu-Dong Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
134
|
Xu G, Zhou J, Wang Z, Holm RH, Chen X. Controlled Incorporation of Nitrides into W‐Fe‐S Clusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gan Xu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| | - Jie Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| | - Zheng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| | - Richard H. Holm
- Department of Chemistry and Chemical BiologyHarvard University Cambridge MA 02138 USA
| | - Xu‐Dong Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| |
Collapse
|
135
|
Katayama A, Ohta T, Wasada‐Tsutsui Y, Inomata T, Ozawa T, Ogura T, Masuda H. Dinitrogen‐Molybdenum Complex Induces Dinitrogen Cleavage by One‐Electron Oxidation. Angew Chem Int Ed Engl 2019; 58:11279-11284. [DOI: 10.1002/anie.201905299] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Akira Katayama
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takehiro Ohta
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
- Present address: Department of Applied ChemistryFaculty of EngineeringSanyo-Onoda City University Sanyo-Onoda Yamaguchi 756-0884 Japan
| | - Yuko Wasada‐Tsutsui
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takashi Ogura
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
| | - Hideki Masuda
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| |
Collapse
|
136
|
Connor GP, Mercado BQ, Lant HMC, Mayer JM, Holland PL. Chemical Oxidation of a Coordinated PNP-Pincer Ligand Forms Unexpected Re–Nitroxide Complexes with Reversal of Nitride Reactivity. Inorg Chem 2019; 58:10791-10801. [PMID: 31389243 DOI: 10.1021/acs.inorgchem.9b01075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Hannah M. C. Lant
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
137
|
Shon JH, Sittel S, Teets TS. Synthesis and Characterization of Strong Cyclometalated Iridium Photoreductants for Application in Photocatalytic Aryl Bromide Hydrodebromination. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02759] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| | - Steven Sittel
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
138
|
Hickey AK, Greer SM, Valdez-Moreira JA, Lutz SA, Pink M, DeGayner JA, Harris TD, Hill S, Telser J, Smith JM. A Dimeric Hydride-Bridged Complex with Geometrically Distinct Iron Centers Giving Rise to an S = 3 Ground State. J Am Chem Soc 2019; 141:11970-11975. [PMID: 31283232 DOI: 10.1021/jacs.9b04389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural and spectroscopic characterization of the dimeric iron hydride complex [Ph2B(tBuIm)2FeH]2 reveals an unusual structure in which a tetrahedral iron(II) site (S = 2) is connected to a square planar iron(II) site (S = 1) by two bridging hydride ligands. Magnetic susceptibility reveals strong ferromagnetic coupling between iron centers, with a coupling constant of J = +110(12) cm-1, to give an S = 3 ground state. High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy confirms this model. A qualitative molecular orbital analysis of the electronic structure, as supported by electronic structure calculations, reveals that the observed spin configuration results from the orthogonal alignment of two geometrically distinct four-coordinate iron fragments held together by highly covalent hydride ligands.
Collapse
Affiliation(s)
- Anne K Hickey
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Samuel M Greer
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Juan A Valdez-Moreira
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Sean A Lutz
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jordan A DeGayner
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - T David Harris
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Stephen Hill
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| | - Jeremy M Smith
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
139
|
Katayama A, Ohta T, Wasada‐Tsutsui Y, Inomata T, Ozawa T, Ogura T, Masuda H. Dinitrogen‐Molybdenum Complex Induces Dinitrogen Cleavage by One‐Electron Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akira Katayama
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takehiro Ohta
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
- Present address: Department of Applied ChemistryFaculty of EngineeringSanyo-Onoda City University Sanyo-Onoda Yamaguchi 756-0884 Japan
| | - Yuko Wasada‐Tsutsui
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takashi Ogura
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
| | - Hideki Masuda
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| |
Collapse
|
140
|
DeRosha DE, Arnet NA, Mercado BQ, Holland PL. A [2Fe-1S] Complex That Affords Access to Bimetallic and Higher-Nuclearity Iron-Sulfur Clusters. Inorg Chem 2019; 58:8829-8834. [PMID: 31247861 DOI: 10.1021/acs.inorgchem.9b01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small, coordinatively unsaturated iron-sulfur clusters are conceived as building blocks for the diverse set of shapes of iron-sulfur clusters in biological and synthetic chemistry. Here we describe a synthetic method for preparing [2Fe-1S] clusters containing two iron(II) ions, which are supported by a relatively unhindered β-diketiminate supporting ligand. The [2Fe-1S] cluster can be isolated in the presence of trimethylphosphine, and the compound with one PMe3 on each iron(II) ion has been crystallographically characterized. The PMe3 ligands may be removed with B(C6F5)3 to give a spectroscopically characterized species with solvent ligands. This species is a versatile synthon for [2Fe-2S], [4Fe-3S], and [10Fe-8S] clusters. Crystallographic characterization of the 10Fe cluster shows that it has all iron(II) ions, and the core has two [4Fe-4S] cubes that share a face in a novel arrangement. This cluster also has two iron sites that are coordinated to solvent donors, suggesting the potential for using this type of cluster for reactivity in the future.
Collapse
Affiliation(s)
- Daniel E DeRosha
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| | - Nicholas A Arnet
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| | - Patrick L Holland
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| |
Collapse
|
141
|
Itabashi T, Arashiba K, Tanaka H, Konomi A, Eizawa A, Nakajima K, Yoshizawa K, Nishibayashi Y. Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | | |
Collapse
|
142
|
|
143
|
Fuller J, Fortunelli A, Goddard WA, An Q. Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface. Phys Chem Chem Phys 2019; 21:11444-11454. [PMID: 31112166 DOI: 10.1039/c9cp01611b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To provide guidelines to accelerate the Haber-Bosch (HB) process for synthesis of ammonia from hydrogen and nitrogen, we used Quantum Mechanics (QM) to determine the reaction mechanism and free energy reaction barriers under experimental reaction conditions (400 °C and 20 atm) for all 10 important surface reactions on the Fe(211) reconstructed (Fe(211)R) surface. These conditions were then used in full kMC modeling for 30 minutes to attain steady state. We find that the stable surface under Haber-Bosch conditions is the missing row 2 × 1 reconstructed surface (211)R and that the Turn Over Frequency (TOF) is 18.7 s-1 per 2 × 2 surface site for 1.5 Torr NH3 pressure, but changes to 3.5 s-1 for 1 atm, values close (within 6%) to the ones on Fe(111). The experimental ratio between (211) and (111) rates at low (undisclosed) NH3 pressure was reported to be 0.75. The excellent agreement with experiment on two very different surfaces and reaction mechanisms is a testament of the accuracy of QM modeling. In addition, our kinetic analysis indicates that Fe(211)R is more active than Fe(111) at high pressure, close to HB industrial conditions, and that (211)R is more abundant than (111) via a steady-state Wulff construction under HB conditions. Thus, at variance with common thinking, we advocate the Fe(211)R surface as the catalytically active phase of pure iron ammonia synthesis catalyst under HB industrial conditions.
Collapse
Affiliation(s)
- Jon Fuller
- Department of Chemical and Materials Engineering, University of Nevada - Reno, Nevada 89577, USA.
| | - Alessandro Fortunelli
- Materials and Procs Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, USA. and CNR-ICCOM, Consiglio Nazionale delle Ricerche, THC2-Lab, Pisa, 56124, Italy.
| | - William A Goddard
- Materials and Procs Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, USA.
| | - Qi An
- Department of Chemical and Materials Engineering, University of Nevada - Reno, Nevada 89577, USA.
| |
Collapse
|
144
|
Doyle LR, Wooles AJ, Liddle ST. Bimetallic Cooperative Cleavage of Dinitrogen to Nitride and Tandem Frustrated Lewis Pair Hydrogenation to Ammonia. Angew Chem Int Ed Engl 2019; 58:6674-6677. [DOI: 10.1002/anie.201902195] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Laurence R. Doyle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
145
|
Bhutto SM, Holland PL. Dinitrogen Activation and Functionalization using β-Diketiminate Iron Complexes. Eur J Inorg Chem 2019; 2019:1861-1869. [PMID: 31213945 DOI: 10.1002/ejic.201900133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Iron catalysts are adept at breaking the N-N bond of N2, as exemplified by the iron-catalyzed Haber-Bosch process and the iron-containing clusters at the active sites of nitrogenase enzymes. This Minireview summarizes recent work that has identified a well-characterized set of multi-iron complexes that are capable of breaking and functionalizing N2, and are amenable to detailed mechanistic studies. We discuss the redox balancing, the potential intermediates during N2 activation, the variation of alkali metal reductant, the reversibility of N2 cleavage, and the formation of N-H and N-C bonds from N2.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT 06520, USA
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT 06520, USA
| |
Collapse
|
146
|
Doyle LR, Wooles AJ, Liddle ST. Bimetallic Cooperative Cleavage of Dinitrogen to Nitride and Tandem Frustrated Lewis Pair Hydrogenation to Ammonia. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laurence R. Doyle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
147
|
Barluzzi L, Chatelain L, Fadaei-Tirani F, Zivkovic I, Mazzanti M. Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. Chem Sci 2019; 10:3543-3555. [PMID: 30996946 PMCID: PMC6438153 DOI: 10.1039/c8sc05721d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
148
|
Zhao W, Zhang L, Luo Q, Hu Z, Zhang W, Smith S, Yang J. Single Mo1(Cr1) Atom on Nitrogen-Doped Graphene Enables Highly Selective Electroreduction of Nitrogen into Ammonia. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05061] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wanghui Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lifu Zhang
- School of Physics, Nankai University, Tianjin 300071, China
| | - Qiquan Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, China
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Mathematics, School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Sean Smith
- Department of Applied Mathematics, School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
149
|
Zhu J. Rational Design of a Carbon‐Boron Frustrated Lewis Pair for Metal‐free Dinitrogen Activation. Chem Asian J 2019; 14:1413-1417. [DOI: 10.1002/asia.201900010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM), andCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
150
|
Field LD, Li HL, Abeysinghe PM, Bhadbhade M, Dalgarno SJ, McIntosh RD. Reduction of Dinitrogen to Ammonia and Hydrazine on Low-Valent Ruthenium Complexes. Inorg Chem 2019; 58:1929-1934. [DOI: 10.1021/acs.inorgchem.8b02850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leslie D. Field
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hsiu L. Li
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Scott J. Dalgarno
- School of EPS-Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Ruaraidh D. McIntosh
- School of EPS-Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| |
Collapse
|