101
|
Gober JW, Shapiro L. A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol Biol Cell 1992; 3:913-26. [PMID: 1392079 PMCID: PMC275648 DOI: 10.1091/mbc.3.8.913] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription of a group of flagellar genes is temporally and spatially regulated during the Caulobacter crescentus cell cycle. These genes all share the same 5' cis-regulatory elements: a sigma 54 promoter, a binding site for integration host factor (IHF), and an enhancer sequence, known as the ftr element. We have partially purified the ftr-binding proteins, and we show that they require the same enhancer sequences for binding as are required for transcriptional activation. We have also partially purified the Caulobacter homolog of IHF and demonstrate that it can facilitate in vitro integrase-mediated lambda recombination. Using site-directed mutagenesis, we provide the first demonstration that natural enhancer sequences and IHF binding elements that reside 3' to the sigma 54 promoter of a bacterial gene, flaNQ, are required for transcription of the operon, in vivo. The IHF protein and the ftr-binding protein is primarily restricted to the predivisional cell, the cell type in which these promoters are transcribed. flaNQ promoter expression is localized to the swarmer pole of the predivisional cell, as are other flagellar promoters that possess these regulatory sequences 5' to the start site. The requirement for an IHF binding site and an ftr-enhancer element in spatially transcribed flagellar promoters indicates that a common mechanism may be responsible for both temporal and polar transcription.
Collapse
Affiliation(s)
- J W Gober
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
102
|
Abstract
We have applied T4 ligase-mediated DNA cyclization kinetics to protein-induced bending in DNA. The presence and direction of a static bend can be inferred from J factors for cyclization of 150- to 160-base-pair minicircles, which include a catabolite activator protein binding site phased against a sequence-directed bend. We demonstrate a quasi-thermodynamic linkage between cyclization and protein binding; we find that properly phased DNAs bind catabolite activator protein approximately 200-fold more tightly as circles than as linear molecules. The results unambiguously distinguish DNA bends from isotropically flexible sites and can explain cooperative binding by proteins that need not contact each other.
Collapse
Affiliation(s)
- J D Kahn
- Department of Chemistry, Yale University, New Haven, CT 06511
| | | |
Collapse
|
103
|
Hoe NP, Minion FC, Goguen JD. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF. J Bacteriol 1992; 174:4275-86. [PMID: 1624422 PMCID: PMC206210 DOI: 10.1128/jb.174.13.4275-4286.1992] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Escherichia coli, a yopE::lacZ fusion was found to be regulated by temperature in the presence of the cloned BamHI G fragment of Yersinia pestis plasmid pCD1, which contains the lcrF locus. Increasing the copy number of lcrF relative to that of the yopE reporter had a negligible effect on the induction ratio (26 versus 37 degrees C) but caused large reductions in the absolute levels of yopE transcription. We localized the lcrF gene by monitoring the induction phenotype of BamHI G deletion derivatives. Sequencing revealed an open reading frame capable of encoding a protein of 30.8 kDa. A protein product of this size was detected in a T7 expression system, and LcrF-dependent yopE-specific DNA binding activity was observed. As expected, LcrF exhibited 98% homology to VirF of Yersinia enterocolitica and significant homology to the carboxy termini of other members of the AraC family of transcriptional regulatory proteins. These proteins could be divided into two classes according to function: those regulating operons involved in catabolism of carbon and energy sources and those involved in regulating virulence genes. lcrF::lacZ transcriptional fusions were constructed and analyzed in Y. pestis and E. coli. The activity of the fusions was not affected by the native pCD1 virulence plasmid, an intact lcrF gene, or temperature. Thus, induction of lcrF transcription is not essential for temperature-dependent activation of yopE transcription. A portion of LcrF was found associated with the membrane fraction in E. coli; however, pulse-chase experiments indicated that this result is an artifact of fractionation.
Collapse
Affiliation(s)
- N P Hoe
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester 01655
| | | | | |
Collapse
|
104
|
Kim S, Landy A. Lambda Int protein bridges between higher order complexes at two distant chromosomal loci attL and attR. Science 1992; 256:198-203. [PMID: 1533056 PMCID: PMC1904348 DOI: 10.1126/science.1533056] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The excisive recombination reaction of bacteriophage lambda involves a specific and efficient juxtaposition of two distant higher order protein-DNA complexes on the chromosome of Escherichia coli. These complexes, which mediate synapsis and strand exchange, consist of two DNA sequences, attL and attR, the bivalent DNA binding protein Int, and the sequence-specific DNA bending proteins, IHF, Xis, and Fis. The protein-protein and protein-DNA interactions within, and between, these complexes were studied by various biochemical techniques and the patterns of synergism among pairs of mutants with marginally impaired recombination function were analyzed. The DNA bending proteins facilitated long-range tethering of high- and low-affinity DNA sites by the bivalent Int protein, and a specific map is proposed for the resulting Int bridges. These structural motifs provide a basis for postulating the mechanism of site-specific recombination and may also be relevant to other pathways in which two distant chromosomal sites become associated.
Collapse
Affiliation(s)
- S Kim
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | |
Collapse
|
105
|
Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 1992; 69:185-95. [PMID: 1555239 DOI: 10.1016/0092-8674(92)90129-z] [Citation(s) in RCA: 547] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high mobility group (HMG) domain is a DNA-binding motif that is associated with several eukaryotic regulatory proteins, including the lymphoid enhancer-binding factor LEF-1 and the testis-determining factor SRY. Here, we provide evidence that DNA binding by the HMG domain of LEF-1 involves primarily minor groove contacts and induces a bend of approximately 130 degrees in the DNA helix. Bending was also found to accompany sequence-specific DNA binding by the SRY-HMG domain. Examining possible regulatory roles of HMG domain-induced DNA bends, we found that LEF-1 can function in a manner similar to bacterial integration host factor and facilitate communication between widely separated protein-binding sites in a recombination assay. Together with the previous observation that LEF-1 by itself is unable to augment basal promoter activity, these data suggest that HMG domain proteins can serve as "architectural" elements in the assembly of higher-order nucleoprotein structures.
Collapse
Affiliation(s)
- K Giese
- Howard Hughes Medical Institute, Department of Microbiology, University of California, San Francisco 94143-0414
| | | | | |
Collapse
|
106
|
Overdier DG, Csonka LN. A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc Natl Acad Sci U S A 1992; 89:3140-4. [PMID: 1557423 PMCID: PMC48820 DOI: 10.1073/pnas.89.7.3140] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proU operon of Salmonella typhimurium is induced by conditions of high osmolality. The cis-acting sequences that mediate osmotic control of transcription were characterized by deletion analysis. The nucleotide sequence between -60 and +274 (relative to the transcription start point) is sufficient for normal osmotic control. Deletions that removed sequences upstream of position +274 but left the promoter intact resulted in greatly increased expression from the proU promoter in the absence of osmotic stress. Thus, the transcription control region of the proU operon consists of two discrete components: (i) the promoter and (ii) a negatively acting site that overlaps the coding sequence of the first structural gene of the operon, proV. That this negative regulatory element is a transcriptional terminator or mRNA processing site was ruled out. Our results suggest that the negative regulatory element behaves as a transcriptional silencer that inhibits transcription initiation at the proU promoter in medium of low osmolality by some action at a distance. We propose several possible mechanisms for the function of this regulatory site.
Collapse
Affiliation(s)
- D G Overdier
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
107
|
Abstract
DNA-looping mechanisms are part of networks that regulate all aspects of DNA metabolism, including transcription, replication, and recombination. DNA looping is involved in regulation of transcriptional initiation in prokaryotic operons, including ara, gal, lac, and deo, and in phage systems. Similarly, in eukaryotic organisms, the effects of enhancers appear to be mediated at least in part by loop formation, and examples of DNA looping by hormone receptor proteins and developmental regulatory proteins have been found. In addition, instances of looped structures have been found in replication and in recombination in both prokaryotes and eukaryotes. DNA loop formation may have different functions in different cellular contexts; in some cases, the loop itself is requisite for regulation, while in others the increase in the effective local concentration of protein may account for the effects observed. The ability of DNA to form loops is affected by the distance between binding sites; by the DNA sequence, which determines deformability and bendability; and by the presence of other proteins that exert an influence on the conformation of a particular sequence. Alteration of the stability of DNA loops and/or protein-DNA binding by extra- or intracellular signals provides responsivity to changing metabolic or environmental conditions. The fundamental property of site-specific protein binding to DNA can be combined with protein-protein and protein-ligand interaction to generate a broad range of physiological states.
Collapse
Affiliation(s)
- K S Matthews
- Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77251
| |
Collapse
|
108
|
Abstract
Integration host factor (IHF), a multifunctional protein of E. coli, normally is required for the replication of plasmid pSC101. T. T. Stenzel, P. Patel, and D. Bastia (Cell 49:709-717, 1987) have reported that IHF binds to a DNA locus near the pSC101 replication origin and enhances a static bend present in this region; mutation of the IHF binding site affects the plasmid's ability to replicate. We report here studies indicating that the requirement for IHF binding near the pSC101 replication origin is circumvented partially or completely by (i) mutation of the plasmid-encoded repA (replicase) gene or the chromosomally encoded topA gene, (ii) the presence on the plasmid of the pSC101 partition (par) locus, or (iii) replacement of the par locus by a strong transcriptional promoter. With the exception of the repA mutation, the factors that substitute for a functional origin region IHF binding site are known to alter plasmid topology by increasing negative DNA supercoiling, as does IHF itself. These results are consistent with the proposal that IHF binding near the pSC101 replication origin promotes plasmid replication by inducing a conformational change leading to formation of a repA-dependent DNA-protein complex. A variety of IHF-independent mechanisms can facilitate formation of the putative replication-initiation complex.
Collapse
Affiliation(s)
- D P Biek
- Department of Microbiology and Immunology, University of Kentucky Medical Center, Lexington 40536
| | | |
Collapse
|
109
|
Wang PZ, Projan SJ, Henriquez V, Novick RP. Specificity of origin recognition by replication initiator protein in plasmids of the pT181 family is determined by a six amino acid residue element. J Mol Biol 1992; 223:145-58. [PMID: 1731066 DOI: 10.1016/0022-2836(92)90722-v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the specificity of replication origin recognition by the initiator proteins of a set of six closely related Staphylococcus aureus plasmids, the pT181 family. These plasmids replicate by an asymmetric rolling-circle mechanism using plasmid-coded initiators that nick the replication origins and form a phosphotyrosine bond at the 5' nick terminus. Five of the plasmids are in different incompatibility groups and their initiator proteins do not cross-complement the cloned origins of any but their own plasmid. One pair is weakly incompatible and their initiator proteins and origins do cross-complement for replication in vivo. This pattern of cross-reactivity led to the prediction that the determinant of specificity would correspond to a homologously positioned set of six residues in the C-terminal domain of the protein, some 80 residues away from the active site tyrosine, that are divergent for all of the compatible plasmids and identical for the incompatible pair. Site-directed mutagenesis was used to exchange these six residues among three pairs of plasmids and these exchanges brought about the predicted switching of origin recognition specificity. Single substitution within this six residue set reduced or eliminated the activity of the protein but did not alter the origin recognition specificity. These six and flanking residues cannot form an amphipathic alpha-helix nor do they conform to the classical helix-turn-helix or other known DNA binding motifs. A novel type of interaction is suggested in which the protein binds to its recognition site, bends and melts the DNA, and causes or enhances the extrusion of an adjacent cruciform containing the nick site. This configuration would juxtapose the nicking target and the active site tyrosine residue and would unwind the highly G + C-rich replication origin.
Collapse
Affiliation(s)
- P Z Wang
- Department of Plasmid Biology, Public Health Research Institute of the City of New York, Inc., NY 10016
| | | | | | | |
Collapse
|
110
|
Wuerffel RA, Kenter AL. Protein recognition motifs of S gamma 3 DNA are statistically correlated with switch recombination breakpoints. Curr Top Microbiol Immunol 1992; 182:149-56. [PMID: 1490350 DOI: 10.1007/978-3-642-77633-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R A Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60680
| | | |
Collapse
|
111
|
Ramani N, Huang L, Freundlich M. In vitro interactions of integration host factor with the ompF promoter-regulatory region of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:248-55. [PMID: 1736095 DOI: 10.1007/bf00279798] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous work has shown that integration host factor (IHF) mutants have increased expression and altered osmoregulation of OmpF, a major Escherichia coli outer membrane protein. By in vitro analysis the possibility was investigated that IHF interacts directly with the ompF promoter region. Gel retardation assays and DNase I protection experiments showed that IHF binds to two sites in the ompF promoter region centered at positions -180 and -60 relative to the start of transcription. Gel electrophoresis studies with circularly permuted ompF promoter fragments indicated that IHF binding strongly increased a small intrinsic bend in the ompF promoter region. The addition of IHF to a purified in vitro transcription system strongly and specifically inhibited ompF transcription. This inhibition was reversed by increasing the concentration of OmpR, a positive activator required for ompF expression, suggesting that IHF may inhibit ompF transcription by altering how OmpR interacts with the ompF promoter.
Collapse
Affiliation(s)
- N Ramani
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | | | |
Collapse
|
112
|
Abstract
mRNA synthesis can be controlled at some distance from the start of transcription in eukaryotes and prokaryotes. It is generally assumed that the distal elements of the transcriptional machinery directly interact with the proximal elements, forcing the DNA to bend in a loop. DNA loop formation and transcription can be affected by the distance between the sites, their helical positioning, their orientation, their concentration (responsible for a cis- or a trans-effect of the DNA sequences), and DNA compaction in chromatin. The corresponding in vitro and in vivo situations have been critically examined for a number of systems, mostly prokaryotic.
Collapse
Affiliation(s)
- M Amouyal
- Unité de physicochimie des macromolécules biologiques, département de biologie moléculaire, Paris, France
| |
Collapse
|
113
|
The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98688-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
114
|
Stenzel TT, MacAllister T, Bastia D. Cooperativity at a distance promoted by the combined action of two replication initiator proteins and a DNA bending protein at the replication origin of pSC101. Genes Dev 1991; 5:1453-63. [PMID: 1869049 DOI: 10.1101/gad.5.8.1453] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have investigated the interaction of the host-encoded DNA bending protein IHF, the host-encoded initiator DnaA, and the plasmid-encoded initiator RepA with the replication origin of pSC101. We have discovered that DNA bending induced by IHF in vitro promoted the interaction of DnaA protein with two physically separated binding sites called dnaAs and dnaAw. This cooperative interaction at a distance, most probably, caused looping out of the ihf site. We have also discovered that RepA protein binding to its cognate sites promoted enhanced binding of DnaA protein to the physically distant dnaAs site, probably also by DNA looping. The addition of RepA to a binding reaction containing IHF and DnaA further enhanced the binding of DnaA protein to the dnaAs site. Thus, the three DNA-binding proteins interacted with the origin, generating a higher order structure in vitro. On the basis of the results of the known requirement of all three proteins for replication initiation, we have proposed a model for the structure of a preinitiation complex at the replication origin.
Collapse
Affiliation(s)
- T T Stenzel
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
115
|
Kerppola TK, Curran T. Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations: implications for transcription factor cooperativity. Cell 1991; 66:317-26. [PMID: 1906785 DOI: 10.1016/0092-8674(91)90621-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Association of Fos and Jun with the AP-1 site results in a conformational change in the basic amino acid regions that constitute the DNA-binding domain. We show that Fos and Jun induce a corresponding alteration in the conformation of the DNA helix. Circular permutation analysis indicated that both Fos-Jun heterodimers and Jun homodimers induce flexure at the AP-1 site. Phasing analysis demonstrated that Fos-Jun heterodimers and Jun homodimers induce DNA bends that are directed in opposite orientations. Fos-Jun heterodimers bend DNA toward the major groove, whereas Jun homodimers bend DNA toward the minor groove. Fos and Jun peptides encompassing the dimerization and DNA-binding domains bend DNA in the same orientations as the full-length proteins. However, additional regions of both proteins influence the magnitude of the DNA bend angle. Thus, despite the amino acid sequence similarity in the basic region Fos-Jun heterodimers and Jun homodimers form topologically distinct DNA-protein complexes.
Collapse
Affiliation(s)
- T K Kerppola
- Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | |
Collapse
|
116
|
Lobell RB, Schleif RF. AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. J Mol Biol 1991; 218:45-54. [PMID: 1848302 DOI: 10.1016/0022-2836(91)90872-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The arabinose operon promoter, pBAD, is negatively regulated in the absence of arabinose by AraC protein, which forms a DNA loop by binding to two sites separated by 210 base-pairs, araO2 and araI1. pBAD is also positively regulated by AraC-arabinose and the cyclic AMP receptor protein, CRP. We provide evidence that CRP breaks the araO2-araI1 repression loop in vitro. The ability of CRP to break the loop in vitro and to activate pBAD in vivo is dependent upon the orientation and distance of the CRP binding site relative to araI1. An insertion of one DNA helical turn, 11 base-pairs, between CRP and araI only partially inhibits CRP loop breaking and activation of pBAD, while an insertion of less than one DNA helical turn, 4 base-pairs, not only abolishes CRP activation and loop breaking, but actually causes CRP to stabilize the loop and increases the araO2-mediated repression of pBAD. Both integral and non-integral insertions of greater than one helical turn completely abolish CRP activation and loop breaking in vitro.
Collapse
Affiliation(s)
- R B Lobell
- Department of Biochemistry, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
117
|
|
118
|
|
119
|
Boffelli D, De Santis P, Palleschi A, Savino M. The curvature vector in nucleosomal DNAs and theoretical prediction of nucleosome positioning. Biophys Chem 1991; 39:127-36. [PMID: 1647823 DOI: 10.1016/0301-4622(91)85014-h] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using our model for predicting DNA superstructures from the sequence, the average distribution of the phases of curvature along the sequences of the set of the 177 nucleosomal DNAs investigated by Satchwell et al. (J. Mol. Biol. 191 (1986) 659) was calculated. The diagram obtained shows very significant features which allow the visualization of the intrinsic nucleosomal superstructure characterized by two quasi-parallel tracts of a flat left-handed superhelical turn connected by a left-handed inflection in a perpendicular direction; such a superstructure appears to be closely related to the nucleosome model of Travers and Klug (Phil. Trans. R. Soc. Lond. 317 (1987) 537). The nucleosomal curvature phase diagram was then adopted as a sensitive determinant for the nucleosome virtual positioning in DNAs via correlation function, obtaining a good agreement with the experimental mapping of SV40 regulatory region as recently investigated by Ambrose et al. (J. Mol. Biol. 209 (1989) 255). This analysis shows also the presence of a constant phase relation between the virtual nucleosome positions which suggests its possible implication in the nucleosome condensation in chromatin.
Collapse
Affiliation(s)
- D Boffelli
- Dipartimento di Chimica, Università di Roma La Sapienza, Italy
| | | | | | | |
Collapse
|
120
|
Moitoso de Vargas L, Landy A. A switch in the formation of alternative DNA loops modulates lambda site-specific recombination. Proc Natl Acad Sci U S A 1991; 88:588-92. [PMID: 1824874 PMCID: PMC50857 DOI: 10.1073/pnas.88.2.588] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The virally encoded Xis protein is one of the components in the site-specific recombination reactions of bacteriophage lambda. It is required for excisive recombination and inhibits integrative recombination. The mechanism of Xis inhibition of the integration reaction was investigated by methylation protection assays (footprinting analyses) in conjunction with recombination assays. Xis is shown to mediate the formation of a specific attP looped structure involving cooperative and competitive long-range interactions among integrase, integration host factor, and Xis proteins. This higher-order structure precludes supercoiled attP from engaging in the productive partner interactions that lead to execution of the first strand exchange in integrative recombination. In addition to its previously characterized role in excision, Xis-induced DNA bending is postulated to act as a regulatory switch (in an alternative loop mechanism) that converts the attP intasome from an integrative-competent complex to a nonreactive one.
Collapse
|
121
|
Gamma delta transposase. Purification and analysis of its interaction with a transposon end. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52370-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
122
|
Tovar K, Hillen W. Large-scale preparation of DNA fragments for physical studies of protein binding. Methods Enzymol 1991; 208:54-63. [PMID: 1779847 DOI: 10.1016/0076-6879(91)08007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
123
|
Brenowitz M, Mandal N, Pickar A, Jamison E, Adhya S. DNA-binding properties of a lac repressor mutant incapable of forming tetramers. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35313-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
124
|
Abstract
The theory of mass transport coupled to reversible interactions under chemical kinetic control forms the basis of a numerical model that has been applied to systems such as lac repressor-lac operator DNA, in which a protein binds in two different modes to linear DNA carrying two specific binding sites. Three complexes may be formed: (1) a linear 1:1 complex with one protein molecule bound to one site on the DNA molecule; (2) a 1:1 complex in which a single protein molecule is bound to both sites simultaneously, thereby inducing a large DNA loop; and (3) a 2:1 linear complex in which two protein molecules are bound in tandem, each occupying a single site. The computational model affords a quantitative numerical simulation of the observed gel electrophoretic patterns produced by titration of the DNA with protein and provides new insights into the shape and nature of the patterns. In particular, the patterns may represent unimodal or bimodal reaction zones. Nevertheless, analysis of the peaks in the patterns obtained at low DNA and high protein concentration provides essential information as to the stoichiometry of the complexes and satisfactory estimates of association constants. The theory thus provides the experimenter with guidelines for quantitative evaluation of the results of gel retardation assays of the particular system under investigation, once protein-induced DNA (or RNA) loops have been established by independent physical or chemical methods. It is suggested that these insights might also find application to systems involving the binding of two or three different proteins to DNA with loop formation.
Collapse
Affiliation(s)
- J R Cann
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| |
Collapse
|
125
|
Kim S, Moitoso de Vargas L, Nunes-Düby SE, Landy A. Mapping of a higher order protein-DNA complex: two kinds of long-range interactions in lambda attL. Cell 1990; 63:773-81. [PMID: 2146029 DOI: 10.1016/0092-8674(90)90143-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To map the protein-protein and protein-DNA interactions involved in lambda site-specific recombination, Int cleavage assays with suicide substrates, nuclease protection patterns, gel retardation experiments, and quantitative Western blotting were applied to wild-type attL and attL mutants. The results lead to a model in which one IHF molecule bends the attL DNA and forms a higher order complex with the three bivalent Int molecules required for excisive recombination. It is proposed that each of the Int molecules binds in a unique manner: one bridges two DNA binding sites in cis, one is held via its high affinity amino-terminal DNA binding domain, and the third depends upon protein-protein interactions in addition to its low affinity carboxy-terminal DNA binding domain. This protein-DNA complex contains two unsatisfied DNA binding domains, each with a different sequence specificity, and is well suited to specific interactions with an appropriate recombination partner.
Collapse
Affiliation(s)
- S Kim
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | | | | | |
Collapse
|
126
|
Abstract
Expression of the L-arabinose BAD operon in Escherichia coli is regulated by AraC protein which acts both positively in the presence of arabinose to induce transcription and negatively in the absence of arabinose to repress transcription. The repression of the araBAD promoter is mediated by DNA looping between AraC protein bound at two sites near the promoter separated by 210 base pairs, araI and araO2. In vivo and in vitro experiments presented here show that an AraC dimer, with binding to half of araI and to araO2, maintains the repressed state of the operon. The addition of arabinose, which induces the operon, breaks the loop, and shifts the interactions from the distal araO2 site to the previously unoccupied half of the araI site. The conversion between the two states does not require additional binding of AraC protein and appears to be driven largely by properties of the protein rather than being specified by the slightly different DNA sequences of the binding sites. Slight reorientation of the subunits of AraC could specify looping or unlooping by the protein. Such a mechanism could account for regulation of DNA looping in other systems.
Collapse
Affiliation(s)
- R B Lobell
- Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
127
|
Franz B, Landy A. Interactions between lambda Int molecules bound to sites in the region of strand exchange are required for efficient Holliday junction resolution. J Mol Biol 1990; 215:523-35. [PMID: 2146396 DOI: 10.1016/s0022-2836(05)80165-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
lambda Site-specific recombination proceeds via two sequential single-strand exchanges that first generate and then resolve a Holliday recombination intermediate. The resolution of artificial Holliday junctions (chi-forms) is well suited to studying the mechanisms involved in reciprocal strand exchange because the linear products of this reaction are stable and easily quantitated. To study the interactions between Int molecules bound at the sites of strand exchange, artificial Holliday junctions containing only the seven base-pair overlap region and the four core-type Int binding sites were used as a model system. In vitro resolution of these structures yields products of both top- and bottom-strand exchange. An abortive product resulting from simultaneous cleavage of the top and bottom strands also occurs at low frequency. Inactivation of one of the four Int binding sites by multiple base substitutions does not significantly affect the efficiency of resolution but has a dramatic effect on the directionality, i.e. the choice of top- or bottom-strand exchange. When any two of the four core-type sites are similarly inactivated, strand exchange is very inefficient and the amount of aberrant cleavage is somewhat greater than for the Holliday junction with four intact Int binding sites. Analysis of the resolution products of Holliday junctions with various combinations of defective Int binding sites leads to the following conclusions: (1) three functional core-type Int binding sites are necessary and sufficient for a strand exchange; (2) the Int molecules that are partners in a strand exchange interact with Int bound to a "cross-core" site that is not directly involved in carrying out the reaction; (3) Int molecules bound to the core-type sites interact in a way that reduces the occurrence of abortive double-strand cleavage events.
Collapse
Affiliation(s)
- B Franz
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | |
Collapse
|
128
|
Hoover TR, Santero E, Porter S, Kustu S. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11-22. [PMID: 2208275 DOI: 10.1016/0092-8674(90)90284-l] [Citation(s) in RCA: 312] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regulatory protein NIFA activates transcription of nitrogen fixation (nif) operons by the sigma 54 holoenzyme form of RNA polymerase. NIFA from Klebsiella pneumoniae activates transcription from the nifH promoter in vitro; in addition, the integration host factor, IHF, binds between the nifH promoter and an upstream binding site for NIFA. We demonstrate here that IHF greatly stimulates NIFA-mediated activation of nifH transcription in vitro and thus that the two factors are functionally synergistic. Electron micrographs indicate that IHF bends the DNA in the nifH promoter regulatory region. Although IHF binds close to the nifH promoter, it does not directly stimulate binding of sigma 54 holoenzyme. Rather, the IHF-induced bend may facilitate productive contacts between NIFA and sigma 54 holoenzyme that lead to the formation of open complexes. IHF binds to nif promoter regulatory regions from a variety of organisms within the phylum "purple bacteria," suggesting a general ability to stimulate NIFA-mediated activation of nif transcription.
Collapse
Affiliation(s)
- T R Hoover
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
129
|
Tsui P, Freundlich M. Integration host factor bends the DNA in the Escherichia coli ilvBN promoter region. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:349-52. [PMID: 2250661 DOI: 10.1007/bf00265076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integration host factor (IHF) of Escherichia coli is a site-specific DNA binding protein involved in a wide variety of physiological activities in E. coli and its phages and plasmids. We have previously found that IHF binds specifically to a site just upstream from the ilvBN promoter and strongly decreases transcriptional pausing and termination in the ilvBN leader. In this work we show by gel retardation analysis that IHF binds to bent ilvBN DNA and greatly enhances the bend located within or near the IHF binding site. These data are consistent with the hypothesis that IHF-induced alterations in the conformation of ilvBN promoter-leader DNA is a key to its antitermination activity in this system.
Collapse
Affiliation(s)
- P Tsui
- Department of Biochemistry, State University of New York, Stony Brook 11794-5215
| | | |
Collapse
|
130
|
Gober JW, Shapiro L. Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev 1990; 4:1494-504. [PMID: 2253876 DOI: 10.1101/gad.4.9.1494] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several temporally controlled flagellar genes in Caulobacter crescentus require a sigma 54 promoter and upstream sites for transcription activation. We demonstrate here that in some of these genes, an AT-rich region containing an integration host factor (IHF) consensus binding site lies between the activator and the promoter, and that this region binds IHF in vitro. Analysis of mutations in the IHF-binding region of the hook operon demonstrated that an intact IHF-binding site is necessary for transcription in vivo. An adjacent and divergent promoter also has an IHF consensus sequence that binds IHF. The IHF and enhancer sites are 3' to the transcription start site in this promoter. We postulate that IHF mediates the formation of a higher order structure between the divergent promoter regions in a manner analogous to the nucleosome-like structure generated for lambda-Escherichia coli DNA recombination and that this higher order structure modulates transcription.
Collapse
Affiliation(s)
- J W Gober
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
131
|
Heichman KA, Johnson RC. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 1990; 249:511-7. [PMID: 2166334 DOI: 10.1126/science.2166334] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Hin protein binds to two cis-acting recombination sites and catalyzes a site-specific DNA inversion reaction that regulates the expression of flagellin genes in Salmonella. In addition to the Hin protein and the two recombination sites that flank the invertible segment, a third cis-acting recombinational enhancer sequence and the Fis protein, which binds to two sites within the enhancer, are required for efficient recombination. Intermediates of this reaction were trapped during DNA strand cleavage and analyzed by gel electrophoresis and electron microscopy in order to determine their structure and composition. The analyses demonstrate that the recombination sites are assembled at the enhancer into a complex nucleo-protein structure (termed the invertasome) with the looping of the three segments of intervening DNA. Antibody studies indicated that Fis physically interacts with Hin and that both proteins are intimately associated with the invertasome. In order to achieve this protein-protein interaction and assemble the invertasome, the substrate DNA must be supercoiled.
Collapse
Affiliation(s)
- K A Heichman
- Department of Biological Chemistry, UCLA School of Medicine
| | | |
Collapse
|
132
|
Numrych TE, Gumport RI, Gardner JF. A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res 1990; 18:3953-9. [PMID: 2142765 PMCID: PMC331098 DOI: 10.1093/nar/18.13.3953] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Triple-base changes were made in each of the five Integrase (Int) arm-type binding sites of bacteriophage lambda. These triple changes, called ten mutants, were compared with single-base changes (hen mutants) for their effects on integrative and excisive recombination. The presence of ten or hen mutations in the P1, P'2, or P'3 sites inhibited integration, but the ten P'3 mutant was 10-fold more defective than the analogous hen mutant. The results with these mutants suggest that the P1, P'2, P'3, and possibly the P'1 sites are required for integration. In wild-type E. coli, the ten P'1 mutant reduced the frequency of excision 5-fold, whereas the hen P'1 mutant had no effect. The presence of ten mutations in the P2, P'1, or P'2 sites inhibited lambda excision in an E. coli strain deficient in the production of FIS, while hen mutations in the P2 and P'2 sites had little or no effect. The results with the ten mutants suggest that the P2, P'1, and P'2 sites are required for excision. The differences in the severity of the effects between the ten and hen mutations may be due to the inability of cooperative interactions among Int, IHF, Xis, and FIS to overcome the disruption of Int binding to sites with triple-base changes compared to sites with single-base changes.
Collapse
Affiliation(s)
- T E Numrych
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
133
|
Characterization of the integration host factor binding site in the ilvPG1 promoter region of the ilvGMEDA operon of Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38778-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
134
|
Affiliation(s)
- A Becker
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
135
|
Parsons CA, Kemper B, West SC. Interaction of a four-way junction in DNA with T4 endonuclease VII. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38845-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
136
|
Abstract
Integration of the DNA of bacteriophage lambda into the chromosome of E. coli depends on the formation of a complex nucleoprotein array at a specific locus on the phage genome, the attachment site. Recent work shows how bending of this DNA (induced by a specific DNA-binding protein), and strain in this DNA (induced by supercoiling) contribute to the formation of the nucleoprotein structure. Further, there are new insights into the way this structure directs critical events during recombination.
Collapse
Affiliation(s)
- H A Nash
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
137
|
Dempsey WB, Fee BE. Integration host factor affects expression of two genes at the conjugal transfer origin of plasmid R100. Mol Microbiol 1990; 4:1019-28. [PMID: 2215210 DOI: 10.1111/j.1365-2958.1990.tb00674.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integration host factor (IHF) binds to two sites near the origin of transfer of the conjugative antibiotic resistance plasmid, R100. DNase I footprinting shows that one site is immediately adjacent to oriT and the gene X promoter, and another is adjacent to the traM promoter. A third site, known only from retardation gels, is near the traJ promoter. The relative promoter activities of genes X, traJ and traM are reduced in himA mutants (IHF-), as measured by chloramphenicol-resistance assays. Transcript analyses by Northern blots showed a reduction in size of the principal gene X and traJ transcripts in the absence of IHF.
Collapse
Affiliation(s)
- W B Dempsey
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
138
|
Abstract
Escherichia coli integration host factor (IHF) is a small dimeric protein that binds to a specific DNA consensus sequence and produces DNA bending. Transcription from the bacteriophage lambda pL promoter is stimulated three- to fourfold by IHF both in vivo and in vitro. IHF binds with high-affinity to two tandem sites located just upstream from the pL promoter and enhances the formation of RNA polymerase-promoter closed complexes. The rate of isomerization to open complex is not influenced by IHF. IHF may stimulate recognition of pL by one or more of several mechanisms: (1) by bending DNA; (2) by making protein-protein contacts with RNA polymerase; or (3) by occluding a competing promoter upstream from pL.
Collapse
Affiliation(s)
- H Giladi
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
139
|
Brenowitz M, Jamison E, Majumdar A, Adhya S. Interaction of the Escherichia coli Gal repressor protein with its DNA operators in vitro. Biochemistry 1990; 29:3374-83. [PMID: 2185837 DOI: 10.1021/bi00465a033] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The binding of Escherichia coli Gal repressor to linear DNA fragments containing two binding sites (OE and OI) within the gal operon was analyzed in vitro with quantitative footprint and mobility-shift techniques. In vivo analysis of the regulation of the gal operon [Haber, R., & Adhya, S. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 9683-9687] has suggested the role of a regulatory "looped complex" mediated by the association of Gal repressor dimers bound at OE and OI. The binding of Gal repressor to a single site can be described by a model in which monomer and dimer are in equilibrium and only the dimer binds to DNA. At pH 7.0, 25 mM KCl, and 20 degrees C, the binding and dimerization free energies are comparable, suggesting that the equilibrium governing the formation of dimers may be important to regulation. The two intrinsic binding constants, delta GI and delta GE, and a constant describing cooperativity, delta GIE, were determined by footprint titration analysis as a function of pH, [KCl], and temperature. Only at 4 and 0 degrees C was delta GIE negative, signifying cooperative binding. These results are thought to be due to a weak dimer to tetramer association interface. delta GE and delta GI had maximal values between pH 6 and pH 7. The dependence of these constants on [KCl] corresponded to the displacement of approximately 2 ion equiv. The temperature dependence could be described by a change in the heat capacity, delta Cp, of -2.3 kcal mol-1 deg-1. Mobility-shift titration experiments conducted at 20 and 0 degrees C yielded values for delta GIE that were consistent with those resolved from the footprint analysis. Unique values of delta GIE were determined by analysis of mobility-shift titrations of Gal repressor with wild-type operator subject to the constraint that delta GE = delta GI: a procedure that eliminates the need to simultaneously analyze wild-type titrations with titrations of OE- and OI- operators.
Collapse
Affiliation(s)
- M Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | |
Collapse
|
140
|
Elferink CJ, Whitlock JP. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-inducible, Ah receptor-mediated bending of enhancer DNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39422-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
141
|
Bellomy GR, Record MT. Stable DNA loops in vivo and in vitro: roles in gene regulation at a distance and in biophysical characterization of DNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 39:81-128. [PMID: 2247613 DOI: 10.1016/s0079-6603(08)60624-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- G R Bellomy
- Department of Chemistry, University of Wisconsin, Madison 53706
| | | |
Collapse
|
142
|
Conrad M, Topal MD. DNA and spermidine provide a switch mechanism to regulate the activity of restriction enzyme Nae I. Proc Natl Acad Sci U S A 1989; 86:9707-11. [PMID: 2602372 PMCID: PMC298570 DOI: 10.1073/pnas.86.24.9707] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sequence-specific DNA-protein interactions are basic to DNA function. To better understand these interactions, we studied the effect of position on cleavage of DNA by the type II restriction enzyme (EC 3.1.21.4) Nae I. We discovered two classes of Nae I restriction sites: sites susceptible and sites resistant to cleavage. Kinetic analysis showed that Nae I was activated by DNA containing cleavable Nae I sites to rapidly cleave resistant Nae I sites by a noncompetitive mechanism with a Km for substrate DNA of about 2 nM and a KA for activating DNA of about 6 nM; activation increased catalysis but not substrate binding. Deletion mutagenesis in vitro showed that sequences flanking the Nae I recognition site were responsible for the differences between activating and nonactivating Nae I sites. The polyamine spermidine had a dramatic effect on the interaction of Nae I with DNA; in the presence of 1 mM spermidine, resistant sites were cleaved rapidly and cleavable DNA inhibited cleavage. The direct regulation of enzymatic activity by DNA sequences in trans, and the modulation of this regulation by a polyamine that is sensitive to the cell cycle, provides a regulatory switch mechanism. The implications of this switch for biological control functions are discussed.
Collapse
Affiliation(s)
- M Conrad
- Lineberger Cancer Research Center, University of North Carolina Medical School, Chapel Hill 27599-7295
| | | |
Collapse
|
143
|
Nunes-Düby SE, Matsumoto L, Landy A. Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination. Cell 1989; 59:197-206. [PMID: 2529039 DOI: 10.1016/0092-8674(89)90881-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The early events in site-specific excisive recombination were studied with phage lambda half-att sites that have no DNA to one side of the strand exchange region; they carry a single core-type integrase binding site and either P or P' arm flanking DNA. These half-attR and half-attL sites exhibit normal properties for the initial (covalent) top-strand transfer and form stable intermediates independent of later steps in the reaction. With these novel substrates we show that Xis specifically promotes the first strand exchange and that attL enhances Int cleavage at the top-strand site of attR. It is also shown that synapsis and initial strand transfers do not require DNA-DNA pairing but are mediated by protein-protein and protein-DNA interactions. These involve the two top-strand Int binding sites (required for the first strand exchange) and, in addition, one of the two bottom-strand sites (C') responsible for the second strand exchange.
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | | | |
Collapse
|
144
|
Snyder UK, Thompson JF, Landy A. Phasing of protein-induced DNA bends in a recombination complex. Nature 1989; 341:255-7. [PMID: 2528698 DOI: 10.1038/341255a0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many of the structures responsible for replication, transcription initiation and recombination arise from complex sets of protein-protein interactions and the folding of DNA in three dimensions, with protein-induced bending of DNA often playing an integral role. The magnitude and orientation of DNA bending induced by various single proteins has been estimated by gel mobility shift methods and by modelling of crystallographic data. The site-specific recombination by which bacteriophage lambda (phage lambda) integrates into the chromosome of its host Escherichia coli requires a host protein, 'integration host factor' (IHF), which is known to be able to bend the DNA to which it binds. To determine the three-dimensional path of DNA within the higher order structure responsible for phage lambda site-specific recombination, we have determined the relative direction of IHF-induced bending at each of the three binding sites within the complex. IHF, which appears to bend DNA by more than 140 degrees, is a major determinant of the DNA path in the recombination complex and is also involved in a wide range of other cellular events.
Collapse
Affiliation(s)
- U K Snyder
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | | | |
Collapse
|
145
|
|
146
|
Goodman SD, Nash HA. Functional replacement of a protein-induced bend in a DNA recombination site. Nature 1989; 341:251-4. [PMID: 2528697 DOI: 10.1038/341251a0] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years the capacity of proteins to bend DNA by binding to specific sites has become a widely appreciated phenomenon. In many cases, the protein-DNA interaction is known to be functionally significant because destruction of the DNA site or the protein itself results in an altered phenotype. An important question to be answered in these cases is whether bending of DNA is important per se or is merely a consequence of the way a particular protein binds to DNA. Here we report direct evidence from the bacteriophage lambda integration system that a bend introduced by a protein is intrinsically important. We find that a binding site for a specific recombination protein known to bend DNA can be successfully replaced by two other modules that also bend DNA; related modules that fail to bend DNA are ineffective.
Collapse
Affiliation(s)
- S D Goodman
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland 20892
| | | |
Collapse
|