101
|
Chen G, Li J, Wang S, Han J, Wang X, She P, Fan W, Guan B, Tian P, Yu J. Construction of Single-Crystalline Hierarchical ZSM-5 with Open Nanoarchitectures via Anisotropic-Kinetics Transformation for the Methanol-to-Hydrocarbons Reaction. Angew Chem Int Ed Engl 2022; 61:e202200677. [PMID: 35199436 DOI: 10.1002/anie.202200677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/25/2022]
Abstract
We report an anisotropic-kinetics transformation strategy to prepare single-crystalline aluminosilicate MFI zeolites (ZSM-5) with highly open nanoarchitectures and hierarchical porosities. The methodology relies on the cooperative effect of in situ etching and recrystallization on the evolution of pure-silica MFI zeolite (silicalite-1) nanotemplates under hydrothermal conditions. The strategy enables a controllable preparation of ZSM-5 nanostructures with diverse open geometries by tuning the relative rate difference between etching and recrystallization processes. Meanwhile, it can also be extended to synthesize other heteroatom-substituted MFI zeolite nanocages. Compared with conventional ZSM-5 microcrystals, nanocrystals, and nanoboxes, the ZSM-5 nanocages with single-crystalline nature, highly open nanoarchitectures, and hierarchical porosities exhibit remarkably enhanced catalytic lifetime and low coking rate in the methanol-to-hydrocarbons (MTH) reaction.
Collapse
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, P.R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P.R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Peihong She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P.R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
102
|
Tan H, Tang B, Lu Y, Ji Q, Lv L, Duan H, Li N, Wang Y, Feng S, Li Z, Wang C, Hu F, Sun Z, Yan W. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat Commun 2022; 13:2024. [PMID: 35440547 PMCID: PMC9019087 DOI: 10.1038/s41467-022-29710-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Tuning the local reaction environment is an important and challenging issue for determining electrochemical performances. Herein, we propose a strategy of intentionally engineering the local reaction environment to yield highly active catalysts. Taking Ptδ− nanoparticles supported on oxygen vacancy enriched MgO nanosheets as a prototypical example, we have successfully created a local acid-like environment in the alkaline medium and achieve excellent hydrogen evolution reaction performances. The local acid-like environment is evidenced by operando Raman, synchrotron radiation infrared and X-ray absorption spectroscopy that observes a key H3O+ intermediate emergence on the surface of MgO and accumulation around Ptδ− sites during electrocatalysis. Further analysis confirms that the critical factors of the forming the local acid-like environment include: the oxygen vacancy enriched MgO facilitates H2O dissociation to generate H3O+ species; the F centers of MgO transfers its unpaired electrons to Pt, leading to the formation of electron-enriched Ptδ− species; positively charged H3O+ migrates to negatively charged Ptδ− and accumulates around Ptδ− nanoparticles due to the electrostatic attraction, thus creating a local acidic environment in the alkaline medium. While catalysts have intrinsic activities toward reactions, such performances often require further optimization. Here, authors engineer an acid-like environment in alkaline media by fine-tuning the reaction environment of platinum nanoparticles on oxide nanosheets for H2 evolution electrocatalysis.
Collapse
Affiliation(s)
- Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Ying Lu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liyang Lv
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhi Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
103
|
Du D, Geng Q, Ma L, Ren S, Li JX, Dong W, Hua Q, Fan L, Shao R, Wang X, Li C, Yamauchi Y. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chem Sci 2022; 13:3819-3825. [PMID: 35432914 PMCID: PMC8966753 DOI: 10.1039/d1sc06314f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
An effective yet simple approach was developed to synthesize mesoporous PdBi nanocages for electrochemical applications. This technique relies on the subtle utilization of the hydrolysis of a metal salt to generate precipitate cores in situ as templates for navigating the growth of mesoporous shells with the assistance of polymeric micelles. The mesoporous PdBi nanocages are then obtained by excavating vulnerable cores and regulating the crystals of mesoporous metallic skeletons. The resultant mesoporous PdBi nanocages exhibited excellent electrocatalytic performance toward the ethanol oxidation reaction with a mass activity of 3.56 A mg-1_Pd, specific activity of 17.82 mA cm-2 and faradaic efficiency of up to 55.69% for C1 products.
Collapse
Affiliation(s)
- Dawei Du
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Qinghong Geng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Lian Ma
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Siyu Ren
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jun-Xuan Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Weikang Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Qingfeng Hua
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Longlong Fan
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Xiaoming Wang
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University Shantou 515063 China
| | - Cuiling Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
104
|
Chen G, Li J, Wang S, Han J, Wang X, She P, Fan W, Guan B, Tian P, Yu J. Construction of Single‐Crystalline Hierarchical ZSM‐5 with Open Nanoarchitectures via Anisotropic‐Kinetics Transformation for the Methanol‐to‐Hydrocarbons Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- Center for High-resolution Electron Microscopy (CħEM) School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 P.R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences 27 South Taoyuan Road Taiyuan 030001 P.R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Peihong She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences 27 South Taoyuan Road Taiyuan 030001 P.R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| |
Collapse
|
105
|
Kabiraz MK, Ruqia B, Kim J, Kim H, Kim HJ, Hong Y, Kim MJ, Kim YK, Kim C, Lee WJ, Lee W, Hwang GH, Ri HC, Baik H, Oh HS, Lee YW, Gao L, Huang H, Paek SM, Jo YJ, Choi CH, Han SW, Choi SI. Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Bibi Ruqia
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hee Jin Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Youngmin Hong
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Mi Ji Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Young Kyoung Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Chan Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Won-Jae Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Wonkyun Lee
- Heterogeneous Catalysis PJT, LG Chem Research Park, Daejeon 34122, Korea
| | - Gyo Hyun Hwang
- Heterogeneous Catalysis PJT, LG Chem Research Park, Daejeon 34122, Korea
| | - Hyeong Cheol Ri
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Young Wook Lee
- Department of Chemistry Education, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Lei Gao
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Seung Min Paek
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Youn-Jung Jo
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the Nano Century, KAIST, Daejeon 34141, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
- Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
106
|
Ding H, Wang P, Su C, Liu H, Tai X, Zhang N, Lv H, Lin Y, Chu W, Wu X, Wu C, Xie Y. Epitaxial Growth of Ultrathin Highly Crystalline Pt-Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109188. [PMID: 35077589 DOI: 10.1002/adma.202109188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Structure engineering strategies such as core-shell and hollow nanostructures are effective pathways to improve the utilization of noble metals for catalysis. However, nowadays materials design based on these strategies still largely rely on precious metal templates. Herein, the epitaxial growth of highly crystalline Pt3 Ni overlayer on earth-abundant nickel carbide is reported, forming Ni3 C@Pt3 Ni core-shell nanoparticles with a well-defined interface through a new lattice-match-directed synthetic strategy. Derived from such core-shell nanostructures, ultrathin highly crystalline Pt3 Ni nanocages have an advantageous configuration of oxygen reduction reaction (ORR)-favored facets and inherently high active surface area for the ORR, bringing high mass activity and specific activity as much as 4.71 A mgPt -1 and 5.14 mA cm-2 , which are 26 and 20 times to that of commercial Pt/C, respectively. This novel epitaxial growth of platinum opens up new avenues to rationally design highly active and economical electrocatalysts.
Collapse
Affiliation(s)
- Hui Ding
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Wang
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Caijie Su
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongfei Liu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolin Tai
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Nan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yue Lin
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230026, P. R. China
| | - Yi Xie
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230026, P. R. China
| |
Collapse
|
107
|
Wang Y, Tian H, Li H, Deng X, Zhang Q, Ai Y, Sun Z, Wang Y, Liu L, Hu ZN, Zhang X, Guo R, Xu W, Liang Q, Sun HB. Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconciling the Electron-Preference Conflict of the Catalyst for Cascade Condensation via Nitro Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7949-7961. [PMID: 35130694 DOI: 10.1021/acsami.1c22256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cascade reactions take advantage of step-saving and facile operation for obtaining chemicals. Herein, catalytic hydrogenation of nitroarene coupled condensation with β-diketone to afford β-ketoenamines is achieved by an integrated nanocatalyst, Pd-e@UiO-66. The catalyst has the structure of an acid-rich metal-organic framework (MOF), UiO-66-encapsulated electron-rich Pd nanoparticles, and it reconciles the electron-effect contradiction of cascade catalytic reactions: catalytic hydrogenation requires an electron-rich catalyst, while condensation requires electron-deficient Lewis acid sites. The catalyst showed good activity, high chemoselectivity, and universal applicability for the synthesis of β-ketoenamines using nitroarenes. More than 30 β-ketoenamines have been successfully prepared with up to 99% yield via the methodology of relay catalysis. The catalyst exhibited excellent stability to maintain its catalytic performance for more than five cycles. Furthermore, we conducted an in-depth exploration of the reaction mechanism with theoretical calculations.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Haimeng Tian
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinchen Deng
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qiao Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, People's Republic of China
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ze-Nan Hu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Rongxiu Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wenjuan Xu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
108
|
Leng Z, Wu X, Li X, Li J, Qian N, Ji L, Yang D, Zhang H. PdPtRu nanocages with tunable compositions for boosting the methanol oxidation reaction. NANOSCALE ADVANCES 2022; 4:1158-1163. [PMID: 36131762 PMCID: PMC9418811 DOI: 10.1039/d1na00842k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
PtRu/C is a well-known commercial electrocatalyst with promising performance for the methanol oxidation reaction (MOR). Further improving the MOR properties of PtRu-based electrocatalysts is highly desirable, especially through structure design. Here we report a facile approach for the synthesis of PdPtRu nanocages with different components through a seed-mediated approach followed by chemical etching. The Pd@PtRu nanocubes were first generated using Pd nanocubes as the seeds and some Pd atoms were subsequently etched away, leading to the nanocages. When evaluated as electrocatalysts for the MOR in acidic media, the PdPtRu nanocages exhibited substantially enhanced catalytic activity and stability relative to commercial Pt/C and PtRu/C. Specifically, PdPt2.5Ru2.4 achieved the highest specific (8.2 mA cm-2) and mass (0.75 mA mgPt -1) activities for the MOR, which are 2.2 and 4.2 times higher than those of commercial Pt/C. Such an enhancement can be attributed to the highly open structure of the nanocages, and the possible synergistic effect between the three components.
Collapse
Affiliation(s)
- Zihan Leng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xiao Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Liang Ji
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| |
Collapse
|
109
|
Matsui H, Takao S, Higashi K, Kaneko T, Samjeské G, Uruga T, Tada M, Iwasawa Y. Operando Imaging of Ce Radical Scavengers in a Practical Polymer Electrolyte Fuel Cell by 3D Fluorescence CT-XAFS and Depth-Profiling Nano-XAFS-SEM/EDS Techniques. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6762-6776. [PMID: 35077130 DOI: 10.1021/acsami.1c22336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is little information on the spatial distribution, migration, and valence of Ce species doped as an efficient radical scavenger in a practical polymer electrolyte fuel cell (PEFC) for commercial fuel cell vehicles (FCVs) closely related to a severe reliability issue for long-term PEFC operation. An in situ three-dimensional fluorescence computed tomography-X-ray absorption fine structure (CT-XAFS) imaging technique and an in situ same-view nano-XAFS-scanning electron microscopy (SEM)/energy-dispersive spectrometry (EDS) combination technique were applied for the first time to perform operando spatial visualization and depth-profiling analysis of Ce radical scavengers in a practical PEFC of Toyota MIRAI FCV under PEFC operating conditions. Using these in situ techniques, we successfully visualized and analyzed the domain, density, valence, and migration of Ce scavengers that were heterogeneously distributed in the components of PEFC, such as anode microporous layer, anode catalyst layer, polymer electrolyte membrane (PEM), cathode catalyst layer, and cathode microporous layer. The average Ce valence states in the whole PEFC and PEM were 3.9+ and 3.4+, respectively, and the Ce3+/Ce4+ ratios in the PEM under H2 (anode)-N2 (cathode) at an open-circuit voltage (OCV), H2-air at 0.2 A cm-2, and H2-air at 0.0 A cm-2 were 70 ± 5:30 ± 5%, as estimated by both in situ fluorescence CT-X-ray absorption near-edge spectroscopy (XANES) and nano-XANES-SEM/EDS techniques. The Ce3+ migration rates in the electrolyte membrane toward the anode and cathode electrodes ranged from 0.3 to 3.8 μm h-1, depending on the PEFC operating conditions. Faster Ce3+ migration was not observed with voltage transient response processes by highly time-resolved (100 ms) and spatially resolved (200 nm) nano-XANES imaging. Ce3+ ions were suggested to be coordinated with both Nafion sulfonate (Nfsul) groups and water to form [Ce(Nfsul)x(H2O)y]3+. The Ce migration behavior may also be affected by the spatial density of Ce, interactions of Ce with Nafion, thickness and states of the PEM, and H2O convection, in addition to the PEFC operating conditions. The unprecedented operando imaging of Ce radical scavengers in the practical PEFCs by both in situ three-dimensional (3D) fluorescence CT-XAFS imaging and in situ depth-profiling nano-XAFS-SEM/EDS techniques yields intriguing insights into the spatial distribution, chemical states, and behavior of Ce scavengers under the working conditions for the development of next-generation PEFCs with high long-term reliability and durability.
Collapse
Affiliation(s)
- Hirosuke Matsui
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Shinobu Takao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Gabor Samjeské
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Tomoya Uruga
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
- Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
110
|
Zhu Z, Feng K, Li C, Tang R, Xiao M, Song R, Yang D, Yan B, He L. Stabilization of Exposed Metal Nanocrystals in High-Temperature Heterogeneous Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108727. [PMID: 34816506 DOI: 10.1002/adma.202108727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Colloidal metal nanocrystals with uniform sizes, shapes, compositions, and architectures are ideal building blocks for constructing heterogeneous catalysts with well-defined characteristics toward the investigation of accurate structure-property relationships and better understanding of catalytic mechanism. However, their applications in high-temperature heterogeneous catalysis are often restricted by the difficulty in maintaining the high metal dispersity and easy accessibility to active sites under harsh operating conditions. Here, a partial-oxide-coating strategy is proposed to stabilize metal nanocrystals against sintering and meanwhile enable an effective exposure of active sites. As a proof-of-concept, controlled partial silica coating of colloidally prepared Pd0.82 Ni0.18 nanocrystals with the size of 8 nm is demonstrated. This partially coated catalyst exhibits excellent activity, selectivity, and stability, outperforming its counterparts with fully coated and supported structures, in reverse water gas shift (RWGS) catalysis particularly at high operating temperatures. This study opens a new avenue for the exploration of colloidal metal nanocrystals in high-temperature heterogeneous catalysis.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kai Feng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mengqi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Di Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
111
|
Wang W, Dai G, Yang H, Liu X, Chen X, Meng Z, He Q. Highly efficient catalytic reduction of 4-nitrophenol and organic dyes by ultrafine palladium nanoparticles anchored on CeO 2 nanorods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8242-8252. [PMID: 34482459 DOI: 10.1007/s11356-021-16276-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Uniformly dispersed Pd nanoparticles on certain supports exhibit exceptional catalytic performance toward various environmental applications. In this work, ultrafine Pd nanoparticles anchored on CeO2 nanorods were synthesized via an absorption-in situ reduction method. The activity of the CeO2/Pd nanocomposites was systematically investigated toward reduction of 4-nitrophenol (4-NP) and organic dyes including methyl blue, rhodamine B, methyl orange, and Congo red. The results indicated that the CeO2/Pd nanocomposites with different weight ratios of Pd nanoparticles (10.23 wt%, 11.01 wt%, and 14.27 wt%) can almost completely reduce 4-NP with a rate constant of 3.31×10-1, 3.22×10-1, and 2.23×10-1 min-1. Besides, the 10.23 wt% CeO2/Pd nanocomposites exhibit remarkable enhanced catalytic activity toward reduction of organic dyes. The catalysts display ideal stability after being used for three times for the reduction of 4-NP. We believe that our strategy demonstrated here offers insights into the design and fabrication of novel Pd-based nanocomposites for various heterogeneous catalysis applications.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guodong Dai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haibin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xi Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenbang Meng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
112
|
Narnaware PK, Ravikumar C. Influence of solvents, reaction temperature, and aging time on the morphology of iron oxide nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prashil K. Narnaware
- Department of Chemical Engineering, Colloids and Nanomaterials Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India
| | - C. Ravikumar
- Department of Chemical Engineering, Colloids and Nanomaterials Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
113
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
114
|
Ruan M, Liu J, Song P, Xu W. Meta-analysis of commercial Pt/C measurements for oxygen reduction reactions via data mining. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63854-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
115
|
Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63896-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
116
|
Yang N, Bao Y, Guo X, Lian J, Wu C, Qi Y, Zhang F. Understanding the morphology evolution of 1D BiVO 4 nanoarrays from nanorods to nanocones with enhanced photocatalytic performance. CrystEngComm 2022. [DOI: 10.1039/d2ce00248e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controllable synthesis of BiVO4 nanocone and nanorod arrays is reported. The morphology transformation of BiVO4 nanoarrays is accompanied with growth mechanism transformation and the tip structure results in superior photocatalytic performance.
Collapse
Affiliation(s)
- Nengcong Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Juhong Lian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Chao Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Yu Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
117
|
Govindarajan N, Kastlunger G, Heenen HH, Chan K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem Sci 2021; 13:14-26. [PMID: 35059146 PMCID: PMC8694373 DOI: 10.1039/d1sc04775b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022] Open
Abstract
As we are in the midst of a climate crisis, there is an urgent need to transition to the sustainable production of fuels and chemicals. A promising strategy towards this transition is to use renewable energy for the electrochemical conversion of abundant molecules present in the earth's atmosphere such as H2O, O2, N2 and CO2, to synthetic fuels and chemicals. A cornerstone to this strategy is the development of earth abundant electrocatalysts with high intrinsic activity towards the desired products. In this perspective, we discuss the importance and challenges involved in the estimation of intrinsic activity both from the experimental and theoretical front. Through a thorough analysis of published data, we find that only modest improvements in intrinsic activity of electrocatalysts have been achieved in the past two decades which necessitates the need for a paradigm shift in electrocatalyst design. To this end, we highlight opportunities offered by tuning three components of the electrochemical environment: cations, buffering anions and the electrolyte pH. These components can significantly alter catalytic activity as demonstrated using several examples, and bring us a step closer towards complete system level optimization of electrochemical routes to sustainable energy conversion.
Collapse
Affiliation(s)
- Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Hendrik H Heenen
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark .,Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| |
Collapse
|
118
|
Wei K, Zheng H, Hou J, Tang Z, Zheng J, Lai Q, Liang Y. In Situ Activation/Dedoping‐Induced Defective Carbon Sponge for Enhanced Oxygen Reduction Electrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keyan Wei
- Jiangsu key Laboratory of Electrochemical Energy Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics No. 29 Yudao St. Nanjing 210016 P. R. China
| | - Hongmei Zheng
- Jiangsu key Laboratory of Electrochemical Energy Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics No. 29 Yudao St. Nanjing 210016 P. R. China
| | - Jingting Hou
- Jiangsu key Laboratory of Electrochemical Energy Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics No. 29 Yudao St. Nanjing 210016 P. R. China
| | - Zeming Tang
- Jiangsu key Laboratory of Electrochemical Energy Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics No. 29 Yudao St. Nanjing 210016 P. R. China
| | - Jing Zheng
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University No.159 Longpan Road Nanjing 210037 P. R. China
| | - Qingxue Lai
- Jiangsu key Laboratory of Electrochemical Energy Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics No. 29 Yudao St. Nanjing 210016 P. R. China
| | - Yanyu Liang
- Jiangsu key Laboratory of Electrochemical Energy Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics No. 29 Yudao St. Nanjing 210016 P. R. China
| |
Collapse
|
119
|
|
120
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
121
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN, Izanloo C, Masoumi A. Pt core confined within an Au skeletal frame: Pt@Void@Au nanoframes in a molecular dynamics Perspective. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
122
|
Li C, Yan S, Fang J. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102244. [PMID: 34363320 DOI: 10.1002/smll.202102244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress-induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice-strain modification via their morphologies, sizes, shell-thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice-strain-engineered bimetallic NCs, including the de-alloying process, atomic layer-by-layer deposition, thermal treatment evolution, one-pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core-shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice-strain-based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaohui Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
123
|
Ahn CY, Park JE, Kim S, Kim OH, Hwang W, Her M, Kang SY, Park S, Kwon OJ, Park HS, Cho YH, Sung YE. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chem Rev 2021; 121:15075-15140. [PMID: 34677946 DOI: 10.1021/acs.chemrev.0c01337] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.
Collapse
Affiliation(s)
- Chi-Yeong Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ji Eun Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ok-Hee Kim
- Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Her
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, South Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yong-Hun Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,Department of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
124
|
Ying J. Atomic-Scale Design of High-Performance Pt-Based Electrocatalysts for Oxygen Reduction Reaction. Front Chem 2021; 9:753604. [PMID: 34604177 PMCID: PMC8481695 DOI: 10.3389/fchem.2021.753604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Fuel cells are regarded as one of the most promising energy conversion devices because of their high energy density and zero emission. Development of high-performance Pt-based electrocatalysts for the oxygen reduction reaction (ORR) is vital to the commercial application of these fuel cell devices. Herein, we review the most significant breakthroughs in the development of high-performance Pt-based ORR electrocatalysts in the past decade. Novel and preferred nanostructures, including biaxially strained core-shell nanoplates, ultrafine jagged nanowires, nanocages with subnanometer-thick walls and nanoframes with three-dimensional surfaces, for excellent performance in ORR are emphasized. Important effects of strain, particle proximity, and surface morphology are fully discussed. The remaining changes and prospective research directions are also proposed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
125
|
He T, Wang W, Shi F, Yang X, Li X, Wu J, Yin Y, Jin M. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021; 598:76-81. [PMID: 34616058 DOI: 10.1038/s41586-021-03870-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Platinum (Pt) has found wide use as an electrocatalyst for sustainable energy conversion systems1-3. The activity of Pt is controlled by its electronic structure (typically, the d-band centre), which depends sensitively on lattice strain4,5. This dependence can be exploited for catalyst design4,6-8, and the use of core-shell structures and elastic substrates has resulted in strain-engineered Pt catalysts with drastically improved electrocatalytic performances7,9-13. However, it is challenging to map in detail the strain-activity correlations in Pt-catalysed conversions, which can involve a number of distinct processes, and to identify the optimal strain modification for specific reactions. Here we show that when ultrathin Pt shells are deposited on palladium-based nanocubes, expansion and shrinkage of the nanocubes through phosphorization and dephosphorization induces strain in the Pt(100) lattice that can be adjusted from -5.1 per cent to 5.9 per cent. We use this strain control to tune the electrocatalytic activity of the Pt shells over a wide range, finding that the strain-activity correlation for the methanol oxidation reaction and hydrogen evolution reaction follows an M-shaped curve and a volcano-shaped curve, respectively. We anticipate that our approach can be used to screen out lattice strain that will optimize the performance of Pt catalysts-and potentially other metal catalysts-for a wide range of reactions.
Collapse
Affiliation(s)
- Tianou He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weicong Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Yang
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, People's Republic of China
| | - Xiang Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China. .,Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA.
| | - Mingshang Jin
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China. .,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
126
|
Li X, Liu Y, Zhu J, Tsiakaras P, Shen PK. Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M = Co, Ni) nanoflowers. J Colloid Interface Sci 2021; 607:1411-1423. [PMID: 34587528 DOI: 10.1016/j.jcis.2021.09.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
Herein, we introduce a facile approach to synthesize a unique class of Pt-M (M = Ni, Co) catalysts with a nanoflower structure for boosting both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). By controlling the surface-active agents, we modified the functional groups surrounding the Pt atoms, tuned the alloying of Pt and the transition metals Ni and Co, and prepared two different kinds of nanodendrites. Their successful synthesis depends on the selection and amount of surfactants (hexadecyltrimethylammonium bromide (CTAB), Polyvinylpyrrolidone (PVP)). Besides, by controlling reaction time, we also explored the forming procedures for Pt-Co globularia nanodendrite (Pt-Co GND) and Pt-Ni petalody nanodendrite (Pt-Ni PND). Our investigation highlights the importance of complex nanoarchitecture, which enables surface and interface modification to achieve excellent catalytic performance in fuel cell electrocatalysis. The characterization of the as-prepared catalysts reveals a high electrochemical surface area and mass activity (2041 mAmgPt-1and 950 mAmgPt-1 for Pt-Co GND and Pt-Ni PND, respectively, for ORR). Furthermore, Pt-Co GND showed a high MOR activity, with a mass activity value recorded at 1615 mAmgPt-1 which is far superior to that for Pt/C. Moreover, both catalysts retain high activity after accelerated durability tests (ADTs). The electron transfer number was calculated by performing the rotating ring-disk electrode (RRDE) measurements. Due to abundant active sites of Pt, both Pt-Co GND and Pt-Ni PND exhibit a 4e- pathway for ORR with electron transfer number of >3.95.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Physical Science and Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Collaborative Innovation Centre for Sustainable Energy Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Province, China
| | - Yang Liu
- School of Physical Science and Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Collaborative Innovation Centre for Sustainable Energy Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Province, China
| | - Jinliang Zhu
- School of Physical Science and Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Collaborative Innovation Centre for Sustainable Energy Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Province, China.
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, Volos 38334, Greece.
| | - Pei Kang Shen
- School of Physical Science and Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Collaborative Innovation Centre for Sustainable Energy Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Province, China.
| |
Collapse
|
127
|
Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat Commun 2021; 12:5661. [PMID: 34580299 PMCID: PMC8476615 DOI: 10.1038/s41467-021-25969-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Hybrid nanocrystals combining different properties together are important multifunctional materials that underpin further development in catalysis, energy storage, et al., and they are often constructed using heterogeneous seeded growth. Their spatial configuration (shape, composition, and dimension) is primarily determined by the heterogeneous deposition process which depends on the lattice mismatch between deposited material and seed. Precise control of nanocrystals spatial configuration is crucial to applications, but suffers from the limited tunability of lattice mismatch. Here, we demonstrate that surface lattice engineering can be used to break this bottleneck. Surface lattices of various Au nanocrystal seeds are fine-tuned using this strategy regardless of their shape, size, and crystalline structure, creating adjustable lattice mismatch for subsequent growth of other metals; hence, diverse hybrid nanocrystals with fine-tuned spatial configuration can be synthesized. This study may pave a general approach for rationally designing and constructing target nanocrystals including metal, semiconductor, and oxide.
Collapse
|
128
|
Xiao YX, Ying J, Tian G, Yang X, Zhang YX, Chen JB, Wang Y, Symes MD, Ozoemena KI, Wu J, Yang XY. Hierarchically Fractal PtPdCu Sponges and their Directed Mass- and Electron-Transfer Effects. NANO LETTERS 2021; 21:7870-7878. [PMID: 34318680 DOI: 10.1021/acs.nanolett.1c02268] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fractal Pt-based materials with hierarchical structures and high self-similarity have attracted more and more attention due to their bioinspiring maximum optimization of energy utilization and mass transfer. However, their high-efficiency design of the mass- and electron-transfer still remains to be a great challenge. Herein, fractal PtPdCu hollow sponges (denoted as PtPdCu-HS) facilitating both directed mass- and electron-transfer are presented. Such directed transfer effects greatly promote electrocatalytic activity, regarded as 3.9 times the mass activity, 7.3 times the specific activity, higher poison tolerance, and higher stability than commercial Pt/C for the methanol oxidation reaction (MOR). A new "directed mass- and electron-transfer" concept, characteristics, and mechanism are proposed at the micro/nanoscale to clarify the structural design and functional enhancement of fractal electrocatalyst. This work displays new possibilities for designing novel nanomaterials with high activity and superior stability toward electrocatalysis or other practical applications.
Collapse
Affiliation(s)
- Yu-Xuan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Xiong Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Yue-Xing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiang-Bo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
129
|
Mehek R, Iqbal N, Noor T, Amjad MZB, Ali G, Vignarooban K, Khan MA. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021; 11:29247-29266. [PMID: 35479575 PMCID: PMC9040901 DOI: 10.1039/d1ra05073g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) with efficient surface and structural properties have risen as a distinctive class of porous materials through the last few decades, which has enabled MOFs to gain attention in a wide range of applications like drug delivery, gas separation and storage, catalysis and sensors. Likewise, they have also emerged as efficient active materials in energy storage devices owing to their remarkable conducting properties. Metal-organic frameworks (MOFs) have garnered great interest in high-energy-density rechargeable batteries and super-capacitors. Herein the study presents their expanding diversity, structures and chemical compositions which can be tuned at the molecular level. It also aims to evaluate their inherently porous framework and how it facilitates electronic and ionic transportation through the charging and discharging cycles of lithium-ion batteries. In this review we have summarized the various synthesis paths to achieve a particular metal-organic framework. This study focuses mainly on the implementation of metal-organic frameworks as efficient anode and cathode materials for lithium-ion batteries (LIBs) with an evaluation of their influence on cyclic stability and discharge capacity. For this purpose, a brief assessment is made of recent developments in metal-organic frameworks as anode or cathode materials for lithium-ion batteries which would provide enlightenment in optimizing the reaction conditions for designing a MOF structure for the battery community and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Rimsha Mehek
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - M Zain Bin Amjad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Ghulam Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - K Vignarooban
- Department of Physics, Faculty of Science, University of Jaffna Jaffna 40000 Sri Lanka
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
130
|
Shi F, Peng J, Li F, Qian N, Shan H, Tao P, Song C, Shang W, Deng T, Zhang H, Wu J. Design of Highly Durable Core-Shell Catalysts by Controlling Shell Distribution Guided by In-Situ Corrosion Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101511. [PMID: 34346100 DOI: 10.1002/adma.202101511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Most degradations in electrocatalysis are caused by corrosion in operation, for example the corrosion of the core in a core-shell electrocatalyst during the oxygen reduction reaction (ORR). Herein, according to the in-situ study on nanoscale corrosion kinetics via liquid cell transmission electron microscopy (LC-TEM) in the authors' previous work, they sequentially designed an optimized nanocube with the protection of more layers on the corners by adjusting the Pt atom distribution on corners and terraces. This modified nanocube (MNC) is much more corrosion resistant in the in-situ observation. Furthermore, in the practical electrochemical stability testing, the MNC catalyst also showed the best stability performance with the 0.37% and 9.01% loss in specific and mass activity after 30 000 cycles accelerated durability test (ADT). This work also demonstrates that how an in-situ study can guide the design of desired materials with improved properties and build a bridge between in-situ study and practical application.
Collapse
Affiliation(s)
- Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
- Hydrogen Science Research Center, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
- Hydrogen Science Research Center, Shanghai Jiao Tong University, Shanghai, P. R. China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
131
|
Wu CY, Hsu YH, Chen Y, Yang LC, Tseng SC, Chen WR, Huang CC, Wan D. Robust O 2 Supplementation from a Trimetallic Nanozyme-Based Self-Sufficient Complementary System Synergistically Enhances the Starvation/Photothermal Therapy against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38090-38104. [PMID: 34342219 DOI: 10.1021/acsami.1c10656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 μM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.
Collapse
Affiliation(s)
- Cheng-Yun Wu
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yu-Hsuan Hsu
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Ling-Chu Yang
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Wan-Ru Chen
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
132
|
Wang H, Jiao S, Liu S, Zhang H, Xu Y, Li X, Wang Z, Wang L. PdNi/Ni Nanotubes Assembled by Mesoporous Nanoparticles for Efficient Alkaline Ethanol Oxidation Reaction. Chemistry 2021; 27:14472-14477. [PMID: 34328663 DOI: 10.1002/chem.202101957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/08/2022]
Abstract
The optimization of structure and composition is essential to improve the performance of catalysts. Herein, mesoporous nanoparticles assembled PdNi/Ni nanotubes (mPdNi/Ni NTs) are successfully fabricated using nickel nanowires as sacrificial template. The combination of nanotubular structure with mesoporous nanoparticle morphology can provide facilitated transfer channels and sufficient active sites, allowing the full contact and reaction between catalysts and reactants. Therefore, the synthesized mPdNi/Ni NTs exhibited superior ethanol oxidation performance to mesoporous Pd nanotubes and commercial Pd black. This study proposes a rational strategy for the development of nanoparticle assembled nanotubes with surface mesoporous morphology, which can greatly improve catalytic performance in various electrocatalytic fields.
Collapse
Affiliation(s)
- Hongjing Wang
- Zhejiang University of Technology, College of Chemical Engineering, No. 18 Chaowang Road, 310014, Hangzhou, CHINA
| | - Shiqian Jiao
- Zhejiang University of Technology, College of Chemical Engineering, CHINA
| | - Songliang Liu
- Zhejiang University of Technology, College of Chemical Engineering, CHINA
| | - Hugang Zhang
- Zhejiang University of Technology, College of Chemical Engineering, CHINA
| | - You Xu
- Zhejiang University of Technology, College of Chemical Engineering, No. 18 Chaowang Road, 310014, Hangzhou, CHINA
| | - Xiaonian Li
- Zhejiang University of Technology, College of Chemical Engineering, No. 18 Chaowang Road, 310014, Hangzhou, CHINA
| | - Ziqiang Wang
- Zhejiang University of Technology, College of Chemical Engineering, No. 18 Chaowang Road, 310014, Hangzhou, CHINA
| | - Liang Wang
- Zhejiang University of Technology, College of Chemical Engineering, No. 18, Chaowang Road, 310014, Hangzhou, CHINA
| |
Collapse
|
133
|
Moreno-Hernandez IA, Crook MF, Ondry JC, Alivisatos AP. Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. J Am Chem Soc 2021; 143:12082-12089. [PMID: 34319106 DOI: 10.1021/jacs.1c03906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liquid cell electron microscopy enables the study of nanoscale transformations in solvents with high spatial and temporal resolution, but for the technique to achieve its potential requires a new level of control over the reactivity caused by radical generation under electron beam irradiation. An understanding of how to control electron-solvent interactions is needed to further advance the study of structural dynamics for complex materials at the nanoscale. We developed an approach that scavenges radicals with redox species that form well-defined redox couples and control the electrochemical potential in situ. This approach enables the observation of electrochemical structural dynamics at near-atomic resolution with precise control of the liquid environment. Analysis of nanocrystal etching trajectories indicates that this approach can be generalized to several chemical systems. The ability to simultaneously observe heterogeneous reactions at near-atomic resolution and precisely control the electrochemical potential enables the fundamental study of complex nanoscale dynamics with unprecedented detail.
Collapse
Affiliation(s)
- Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
134
|
Liu G, Zhou W, Ji Y, Chen B, Fu G, Yun Q, Chen S, Lin Y, Yin PF, Cui X, Liu J, Meng F, Zhang Q, Song L, Gu L, Zhang H. Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core-Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. J Am Chem Soc 2021; 143:11262-11270. [PMID: 34281338 DOI: 10.1021/jacs.1c05856] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lattice engineering on specific facets of metal catalysts is critically important not only for the enhancement of their catalytic performance but also for deeply understanding the effect of facet-based lattice engineering on catalytic reactions. Here, we develop a facile two-step method for the lattice expansion on specific facets, i.e., Pt(100) and Pt(111), of Pt catalysts. We first prepare the Pd@Pt core-shell nanoparticles exposed with the Pt(100) and Pt(111) facets, respectively, via the Pd-seeded epitaxial growth, and then convert the Pd core to PdH0.43 by hydrogen intercalation. The lattice expansion of the Pd core induces the lattice enlargement of the Pt shell, which can significantly promote the alcohol oxidation reaction (AOR) on both Pt(100) and Pt(111) facets. Impressively, Pt mass specific activities of 32.51 A mgPt-1 for methanol oxidation and 14.86 A mgPt-1 for ethanol oxidation, which are 41.15 and 25.19 times those of the commercial Pt/C catalyst, respectively, have been achieved on the Pt(111) facet. Density functional theory (DFT) calculations indicate that the remarkably improved catalytic performance on both the Pt(100) and the Pt(111) facets through lattice expansion arises from the enhanced OH adsorption. This work not only paves the way for lattice engineering on specific facets of nanomaterials to enhance their electrocatalytic activity but also offers a promising strategy toward the rational design and preparation of highly efficient catalysts.
Collapse
Affiliation(s)
- Guigao Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.,National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Zhou
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics, Preparing Technology Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Yiru Ji
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Gengtao Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 Singapore
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yunxiang Lin
- National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Peng-Fei Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaoya Cui
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Fanqi Meng
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Lin Gu
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon,Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
135
|
Kumar R, Naz Ansari S, Deka R, Kumar P, Saraf M, Mobin SM. Progress and Perspectives on Covalent-organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry 2021; 27:13669-13698. [PMID: 34288163 DOI: 10.1002/chem.202101587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
136
|
Xue S, Chen G, Li F, Zhao Y, Zeng Q, Peng J, Shi F, Zhang W, Wang Y, Wu J, Che R. Understanding of Strain-Induced Electronic Structure Changes in Metal-Based Electrocatalysts: Using Pd@Pt Core-Shell Nanocrystals as an Ideal Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100559. [PMID: 34185440 DOI: 10.1002/smll.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/18/2021] [Indexed: 06/13/2023]
Abstract
While metal-based electrocatalysts have garnered extensive attention owing to the large variety of enzyme-mimic properties, the search for such highly-efficient catalysts still relies on empirical explorations, owing to the lack of predictive indicators as well as the ambiguity of structure-activity relationships. Notably, surface electronic structures play a crucial role in metal-based catalysts yet remain unexplored in enzyme-mimics. Herein, the authors investigate the electronic structure as a possible indicator of electrocatalytic activities of H2 O2 decomposition and glucose oxidation using Pd@Pt core-shell nanocrystals as a well-defined platform. The electron densities of the Pd@Pt are modulated with the correlation of strain through precise control of surface orientation and the number of atomic layers. The close relationships between the electrocatalytic activities and the surface charge accumulation are found, in which the increase of the electron accumulation can enhance both the enzyme-mimic activities. As a result, the Pd@Pt3L icosahedra with compressive strain in Pt shells exhibit the highest electrocatalytic activities for H2 O2 decomposition and glucose oxidation. Such systematic and comprehensive study provides the structure-activity relationships and paves a new way for the rational design of metal-based electrocatalysts. Especially, the charge accumulation degrees may serve as a general performance indicator for metal-based catalysts.
Collapse
Affiliation(s)
- Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunhao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yizhe Wang
- Materials Genome Institute, International Centre of Quantum and Molecular Structures, and Physics Department, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
137
|
Kim JM, Jo A, Lee KA, Han HJ, Kim YJ, Kim HY, Lee GR, Kim M, Park Y, Kang YS, Jung J, Chae KH, Lee E, Ham HC, Ju H, Jung YS, Kim JY. Conformation-modulated three-dimensional electrocatalysts for high-performance fuel cell electrodes. SCIENCE ADVANCES 2021; 7:7/30/eabe9083. [PMID: 34290086 PMCID: PMC8294758 DOI: 10.1126/sciadv.abe9083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/26/2021] [Indexed: 05/19/2023]
Abstract
Unsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.
Collapse
Affiliation(s)
- Jong Min Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ahrae Jo
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kyung Ah Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeuk Jin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Ye Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ho Young Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Minjoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yemin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yun Sik Kang
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Juhae Jung
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eoyoon Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Hyunchul Ju
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Jin Young Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
138
|
Hashiguchi Y, Watanabe F, Honma T, Nakamura I, Poly SS, Kawaguchi T, Tsuji T, Murayama H, Tokunaga M, Fujitani T. Continuous-flow synthesis of Pd@Pt core-shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
139
|
Hao J, Wang Y, Qiu X, Liu M, Li W, Li J. Dual Inorganic Sacrificial Template Synthesis of Hierarchically Porous Carbon with Specific N Sites for Efficient Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28140-28149. [PMID: 34111922 DOI: 10.1021/acsami.1c04942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is still a challenge to achieve efficiently controlled preparation of functional oxygen reduction reaction (ORR) carbon electrocatalysts with multi-preferred structures (hierarchically porous networks and specific carbon-nitrogen bonds) from carbohydrate-containing small molecules via simple one-step pyrolysis. Based on the step-by-step spontaneous gas-foaming strategy, we successfully prepare 3D hierarchically porous networks with tunable N sites (NP/NG ≈ 1:1) by pyrolyzing diverse carbohydrates (glucose, maltose, and cyclodextrin) using nonmetal-metal dual inorganic sacrificial templates. In situ evaporation templates can simplify the procedure of the experiments and avoid the active site loss compared with traditional hard templates. Crucially, dual inorganic sacrificial templates can induce abundant defects and microscopic pore structures (the specific surface area increased from 922.403 to 1898.792 m2·g-1) and tunable N sites compared with single nonmetal sacrificial templates. The regulatory mechanism of dual inorganic templates on N sites (NP/NG ≈ 1:1) is independent of the polymeric state of carbohydrate precursors or even the carbonization condition of the pyrolysis process. A series of carbon materials prepared by this strategy all have ORR-preferred structures and exhibit low ORR overpotentials compared with Pt/C. For instance, the Zn-air battery with βCD-DSC-950-1 exhibits an open-circuit potential of 1.51 V and a peak power density of 180.89 mW·cm-2, higher than those of Pt/C (1.47 V, 174.94 mW·cm-2). In general, the conversion of carbohydrate-containing small molecules to functional carbon materials provides a new strategy for the development of carbonaceous electrocatalysts.
Collapse
Affiliation(s)
- Jiayu Hao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yanqiu Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha 410083, Hunan, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
140
|
Zhang J, Zhao T, Yuan M, Li Z, Wang W, Bai Y, Liu Z, Li S, Zhang G. Trimetallic synergy in dendritic intermetallic PtSnBi nanoalloys for promoting electrocatalytic alcohol oxidation. J Colloid Interface Sci 2021; 602:504-512. [PMID: 34144304 DOI: 10.1016/j.jcis.2021.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Developing effective and robust novel electrocatalysts for direct alcohol fuel cells has been gaining much attention. However, the widely used Pt catalyst suffers from limitations including the sluggish kinetics, severe CO poisoning, and catalyst lost caused by aggregation and Ostwald ripening during alcohol oxidation reaction. Herein, dendritic intermetallic PtSnBi nanoalloys were synthesized via a facile hydrothermal approach with high electrocatalytic performance and enhanced CO resistance for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) owing to the synergism of the chosen three elements and unique three-dimensional morphology. Specifically, the PtSnBi nanoalloys display 4.6 and 6.7 times higher of mass activity (7.02 A mg-1Pt) and specific activity (16.65 mA cm-2) toward MOR than those of commercial Pt/C, respectively. The mass activity of PtSnBi nanoalloys still retains 75.7% of the initial value after 800 cycles of stability test, superior to Pt/C (38.0%). The dual-functional effect of Sn, optimized electronic structure by the ligand effect, and unique atomic arrangement are responsible for the enhanced MOR activity and stability of PtSnBi nanoalloys. Furthermore, the PtSnBi nanoalloys with highlighted anti-CO poisoning capacity also improve the electrocatalytic performance toward EOR, indicating their great promise as broad energy electrocatalysts.
Collapse
Affiliation(s)
- Jingxian Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Tongkun Zhao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Menglei Yuan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenbo Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Synfuels China Technology Co. Ltd., Huairou District, Beijing 101407 China
| | - Zhanjun Liu
- Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China; State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Shuwei Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Guangjin Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China.
| |
Collapse
|
141
|
Wu X, Li X, Yan Y, Luo S, Huang J, Li J, Yang D, Zhang H. Facile Synthesis of Pd@PtM ( M = Rh, Ni, Pd, Cu) Multimetallic Nanorings as Efficient Catalysts for Ethanol Oxidation Reaction. Front Chem 2021; 9:683450. [PMID: 34095088 PMCID: PMC8170318 DOI: 10.3389/fchem.2021.683450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pt-based multimetallic nanorings with a hollow structure are attractive as advanced catalysts due to their fantastic structure feature. However, the general method for the synthesis of such unique nanostructures is still lack. Here we report the synthesis of Pd@PtM (M = Rh, Ni, Pd, Cu) multimetallic nanorings by selective epitaxial growth of Pt alloyed shells on the periphery of Pd nanoplates in combination with oxidative etching of partial Pd in the interior. In situ generation of CO and benzoic acid arising from interfacial catalytic reactions between Pd nanoplates and benzaldehyde are critical to achieve high-quality Pt-based multimetallic nanorings. Specifically, the in-situ generated CO promotes the formation of Pt alloyed shells and their epitaxial growth on Pd nanoplates. In addition, the as-formed benzoic acid and residual oxygen are responsible for selective oxidative etching of partial Pd in the interior. When evaluated as electrocatalysts, the Pd@PtRh nanorings exhibit remarkably enhanced activity and stability for ethanol oxidation reaction (EOR) compared to the Pd@PtRh nanoplates and commercial Pt/C due to their hollow nanostructures.
Collapse
Affiliation(s)
- Xingqiao Wu
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiao Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.,BTR New Material Group CO., LTD., Shenzhen, China
| | - Sai Luo
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Junjie Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Innovation Center, Institute of Advanced Semiconductors, Zhejiang University, Hangzhou, China
| |
Collapse
|
142
|
Gao W, Elnabawy AO, Hood ZD, Shi Y, Wang X, Roling LT, Pan X, Mavrikakis M, Xia Y, Chi M. Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals. Nat Commun 2021; 12:3215. [PMID: 34078886 PMCID: PMC8173021 DOI: 10.1038/s41467-021-23290-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Despite the large number of reports on colloidal nanocrystals, very little is known about the mechanistic details in terms of nucleation and growth at the atomistic level. Taking bimetallic core-shell nanocrystals as an example, here we integrate in situ liquid-cell transmission electron microscopy with first-principles calculations to shed light on the atomistic details involved in the nucleation and growth of Pt on Pd cubic seeds. We elucidate the roles played by key synthesis parameters, including capping agent and precursor concentration, in controlling the nucleation site, diffusion path, and growth pattern of the Pt atoms. When the faces of a cubic seed are capped by Br-, Pt atoms preferentially nucleate from corners and then diffuse to edges and faces for the creation of a uniform shell. The diffusion does not occur until the Pt deposited at the corner has reached a threshold thickness. At a high concentration of the precursor, self-nucleation takes place and the Pt clusters then randomly attach to the surface of a seed for the formation of a non-uniform shell. These atomistic insights offer a general guideline for the rational synthesis of nanocrystals with diverse compositions, structures, shapes, and related properties.
Collapse
Affiliation(s)
- Wenpei Gao
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Ahmed O Elnabawy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Zachary D Hood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xue Wang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luke T Roling
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA.
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
143
|
Wan XK, Samjeské G, Matsui H, Chen C, Muratsugu S, Tada M. Ultrafine Pt-Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis. Dalton Trans 2021; 50:6811-6822. [PMID: 33890597 DOI: 10.1039/d1dt00647a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultrafine bimetallic Pt-Ni nanoparticles, which catalyze the oxygen reduction reaction (ORR) efficiently, were successfully prepared in hollow porous carbon spheres (HPCSs) under the assistance of organic molecules. 2,2'-Dipyridylamine (dpa) was found to be most effective in preparing homogeneous small Pt-Ni nanoparticles (2.0 ± 0.4 nm) without the phase separation of Pt and Ni during synthesis, and the assistance of the organic molecules was investigated for the alloy nanoparticle formation. The Pt-Ni nanoparticle/HPCS catalyst synthesized in the presence of dpa exhibited remarkable electrochemical performance in the ORR showing a high mass activity of 3.25 ± 0.14 A mg-1Pt at 0.9 VRHE (13.5-fold higher relative to a commercial Pt/C catalyst), a large electrochemical surface area of 105 ± 8 m2 g-1Pt, and high durability. After 60 000 cycles of accelerated durability testing, the mass activity was still 12.3 times higher than that of the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Xian-Kai Wan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Gabor Samjeské
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Hirosuke Matsui
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Mizuki Tada
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan. and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
144
|
Liu Y, Zhang Z, Park Y, Lee SE. Ultraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007610. [PMID: 33856109 DOI: 10.1002/smll.202007610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Optical manipulation and imaging of nano-objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real-time super-resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction (iNC) method to enable multimodal nanomanipulation-nanoimaging is reported. The iNC consists of a multimodal voltage-tunable power modulator, polarization rotator, and polarizer. Using the iNC, plasmonic nano-objects which are below the diffraction limit and which can be distinguished by direct observation without post processing are demonstrated. Furthermore, such direct observations with enhanced nanometer spatial stability and millisecond high speed are shown. Precise trapping and rapid rotation of gold nanorods with the iNC are demonstrated successfully. With non-invasive post-processing free nanoimaging and nanomanipulation, it is anticipated that the iNC will make contributions in the nanomaterial and biological sciences requiring precision optics.
Collapse
Affiliation(s)
- Yunbo Liu
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhijia Zhang
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Younggeun Park
- Department of Mechanical Engineering, Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Somin Eunice Lee
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
145
|
High-quality and deeply excavated PtPdNi nanocubes as efficient catalysts toward oxygen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63703-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Wang W, He T, Yang X, Liu Y, Wang C, Li J, Xiao A, Zhang K, Shi X, Jin M. General Synthesis of Amorphous PdM (M = Cu, Fe, Co, Ni) Alloy Nanowires for Boosting HCOOH Dehydrogenation. NANO LETTERS 2021; 21:3458-3464. [PMID: 33825464 DOI: 10.1021/acs.nanolett.1c00074] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noble metal-based nanomaterials with amorphous structures are promising candidates for developing efficient electrocatalysts. However, their synthesis remains a significant challenge, especially under mild conditions. In this paper, we report a general strategy for preparing amorphous PdM nanowires (a-PdM NWs, M = Fe, Co, Ni, and Cu) at low temperatures by exploiting glassy non-noble metal (M) nuclei generated by special ligand adsorption as the amorphization dictator. When evaluated as electrocatalysts toward formic acid oxidation, a-PdCu NWs can deliver the mass and specific activities as high as 2.93 A/mgPd and 5.33 mA/cm2, respectively; these are the highest values for PdCu-based catalysts reported thus far, far surpassing the crystalline-dominant counterparts and commercial Pd/C. Theoretical calculations suggest that the outstanding catalytic performance of a-PdCu NWs arises from the amorphization-induced high surface reactivity, which can efficiently activate the chemically stable C-H bond and thereby significantly facilitate the dissociation of HCOOH.
Collapse
Affiliation(s)
- Weicong Wang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tianou He
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Yang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yaming Liu
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chaoqi Wang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiao Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Andong Xiao
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ke Zhang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiatong Shi
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mingshang Jin
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
147
|
He T, Wang W, Yang X, Shi F, Ye Z, Zheng Y, Li F, Wu J, Yin Y, Jin M. Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. ACS NANO 2021; 15:7348-7356. [PMID: 33754689 DOI: 10.1021/acsnano.1c00602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an excellent electrocatalyst, platinum (Pt) is often deposited as a thin layer on a nanoscale substrate to achieve high utilization efficiency. However, the practical application of the as-designed catalysts has been substantially restricted by the poor durability arising from the leaching of cores. Herein, by employing amorphous palladium phosphide (a-Pd-P) as substrates, we develop a class of leaching-free, ultrastable core-shell Pt catalysts with well-controlled shell thicknesses and surface structures for fuel cell electrocatalysis. When a submonolayer of Pt is deposited on the 6 nm nanocubes, the resulting Pd@a-Pd-P@PtSML core-shell catalyst can deliver a mass activity as high as 4.08 A/mgPt and 1.37 A/mgPd+Pt toward the oxygen reduction reaction at 0.9 V vs the reversible hydrogen electrode and undergoes 50 000 potential cycles with only ∼9% activity loss and negligible structural deformation. As elucidated by the DFT calculations, the superior durability of the catalysts originates from the high corrosion resistance of the disordered a-Pd-P substrates and the strong interfacial Pt-P interactions between the Pt shell and amorphous Pd-P layer.
Collapse
Affiliation(s)
- Tianou He
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Weicong Wang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Yang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yangzi Zheng
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Mingshang Jin
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
148
|
Zhu J, Xu L, Lyu Z, Xie M, Chen R, Jin W, Mavrikakis M, Xia Y. Janus Nanocages of Platinum-Group Metals and Their Use as Effective Dual-Electrocatalysts. Angew Chem Int Ed Engl 2021; 60:10384-10392. [PMID: 33600031 DOI: 10.1002/anie.202102275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 11/07/2022]
Abstract
Janus nanocages with distinctive platinum-group metals on the outer and inner surfaces can naturally catalyze at least two different reactions. Here we report a general method based on successive deposition and then selective etching for the facile synthesis of such nanocages. We have fabricated 11 different types of Janus nanocages characterized by a uniform size and well-defined {100} facets, together with porous, ultrathin, asymmetric walls up to 1.6 nm thick. When tested as dual-electrocatalysts toward oxygen reduction and evolution reactions, the Janus nanocages based on Pt and Ir exhibited superior activities depending on the thickness and relative position of the metal layer. Density functional theory studies suggest that the alloy composition and surface structure of the nanocages both play important roles in enhancing the electrocatalytic activities by modulating the stability of key reaction intermediates.
Collapse
Affiliation(s)
- Jiawei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Minghao Xie
- School of Chemistry and Biochemistry, School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry, School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Chemistry and Biochemistry, School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
149
|
Zhang X, Li H, Yang J, Lei Y, Wang C, Wang J, Tang Y, Mao Z. Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Adv 2021; 11:13316-13328. [PMID: 35423850 PMCID: PMC8697640 DOI: 10.1039/d0ra05468b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023] Open
Abstract
In order to reduce the cost and improve the performance of proton exchange membrane fuel cells (PEMFCs), it is imperative to further enhance the activity and durability of Pt based electrocatalysts for the oxygen reduction reaction (ORR). This article analyzes the latest advances in Pt-based ORR electrocatalysts, including the Pt alloys, Pt–M core–shell structures, particle size effects, support effects, doping in Pt/PtM and post treatment. In addition, the performance of some of the developed novel electrocatalysts in membrane electrode assemblies (MEA) is also included for comparison, as they are rarely available and the superior activity and durability exhibited in RDE frequently doesn't translate into MEA. In this paper, the latest progress in the design of Pt-based ORR electrocatalysts is reviewed, including the understanding of research progress in the synthesis of high activity and high stability catalysts.![]()
Collapse
Affiliation(s)
- Xuewei Zhang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China.,Weichai Power Co., Ltd. Weifang 261061 Shandong China
| | - Haiou Li
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China.,Weichai Power Co., Ltd. Weifang 261061 Shandong China
| | - Jian Yang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Yijie Lei
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Cheng Wang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Jianlong Wang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Yaping Tang
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| | - Zongqiang Mao
- Weichai Power Intelligent Manufacturing Joint Research Institute, INET, Tsinghua University Beijing China
| |
Collapse
|
150
|
Sun M, Tian J, Chen Q. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 2021; 231:113271. [PMID: 33879369 DOI: 10.1016/j.ultramic.2021.113271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|