101
|
Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 2005; 22:717-41. [PMID: 16311632 DOI: 10.1039/b416648p] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Daptomycin (Cubicin) is a lipopeptide antibiotic approved in the USA in 2003 for the treatment of skin and skin structure infections caused by Gram-positive pathogens. It is a member of the 10-membered cyclic lipopeptide family of antibiotics that includes A54145, calcium-dependent antibiotic (CDA), amphomycin, friulimicin, laspartomycin, and others. This review highlights research on this class of antibiotics from 1953 to 2005, focusing on more recent studies with particular emphasis on the interplay between structural features and antibacterial activities; chemical modifications to improve activity; the genetic organization and biosynthesis of lipopeptides; and the genetic engineering of the daptomycin biosynthetic pathway to produce novel derivatives for further chemical modification to develop candidates for clinical evaluation.
Collapse
|
102
|
Fraimow H, Knob C, Herrero IA, Patel R. Putative VanRS-like two-component regulatory system associated with the inducible glycopeptide resistance cluster of Paenibacillus popilliae. Antimicrob Agents Chemother 2005; 49:2625-33. [PMID: 15980329 PMCID: PMC1168687 DOI: 10.1128/aac.49.7.2625-2633.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus popilliae contains vanF encoding a putative D-Ala:D-lactate (D-Lac) ligase, VanF, as part of the vanY(F)Z(F)H(F)FX(F) cluster that is similar in structure to the enterococcal vanA and vanB clusters. Using growth curves, we demonstrated that vancomycin resistance in P. popilliae is inducible. Using degenerate oligonucleotides targeted at bacterial cell wall ligases, we identified a second ligase gene with features of a D-Ala:D-Ala ligase in both P. popilliae and the related, vancomycin-susceptible, Paenibacillus lentimorbus. The 3,380-bp region upstream of vanY(F)Z(F)H(F)FX(F) in P. popilliae ATCC 14706 was sequenced and found to contain genes encoding a putative two-component regulator, VanR(F)S(F), similar to VanRS but more closely related to a family of two-component regulators linked to VanY-like carboxypeptidases in several glycopeptide-susceptible Bacillus species. This upstream region also included a transposase similar to a transposase found in Bacillus halodurans and, in some strains, a 99-bp insertion of unknown function with 95% nucleotide identity to a portion of the Tn1546 transposase gene. Analysis of glycopeptide resistance-associated clusters from soil and/or insect-dwelling organisms may provide important clues to the molecular evolution of acquired glycopeptide resistance elements in human pathogens.
Collapse
Affiliation(s)
- Henry Fraimow
- Division of Infectious Diseases, Cooper Health System and University of Medicine and Dentistry of New Jersey, 401 Haddon Avenue, Room 274, Camden, New Jersey 08103, USA.
| | | | | | | |
Collapse
|
103
|
Guardabassi L, Christensen H, Hasman H, Dalsgaard A. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB. Antimicrob Agents Chemother 2005; 48:4915-8. [PMID: 15561881 PMCID: PMC529237 DOI: 10.1128/aac.48.12.4915-4918.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.
Collapse
Affiliation(s)
- L Guardabassi
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
104
|
Woodford N. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect 2005; 11 Suppl 3:2-21. [PMID: 15811020 DOI: 10.1111/j.1469-0691.2005.01140.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of antibiotic resistance by bacteria is an evolutionary inevitability, a convincing demonstration of their ability to adapt to adverse environmental conditions. Since the emergence of penicillinase-producing Staphylococcus aureus in the 1940s, staphylococci, enterococci and streptococci have proved themselves adept at developing or acquiring mechanisms that confer resistance to all clinically available antibacterial classes. The increasing problems of methicillin-resistant S. aureus and coagulase-negative staphylococci (MRSA and MRCoNS), glycopeptide-resistant enterococci and penicillin-resistant pneumococci in the 1980s, and recognition of glycopeptide-intermediate S. aureus in the 1990s and, most recently, of fully vancomycin-resistant isolates of S. aureus have emphasised our need for new anti-Gram-positive agents. Antibiotic resistance is one of the major public health concerns for the beginning of the 21st century. The pharmaceutical industry has responded with the development of oxazolidinones, lipopeptides, injectable streptogramins, ketolides, glycylcyclines, second-generation glycopeptides and novel fluoroquinolones. However, clinical use of these novel agents will cause new selective pressures and will continue to drive the development of resistance. This review describes the various antibiotic resistance mechanisms identified in isolates of staphylococci, enterococci and streptococci, including mechanisms of resistance to recently introduced anti-Gram-positive agents.
Collapse
Affiliation(s)
- N Woodford
- Antibiotic Resistance Monitoring and Reference Laboratory, Centre for Infections, Health Protection Agency, London NW9 5HT, UK.
| |
Collapse
|
105
|
Serina S, Radice F, Maffioli S, Donadio S, Sosio M. Glycopeptide resistance determinants from the teicoplanin producerActinoplanes teichomyceticus. FEMS Microbiol Lett 2004; 240:69-74. [PMID: 15500981 DOI: 10.1016/j.femsle.2004.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/09/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022] Open
Abstract
In enterococci and other pathogenic bacteria, high-level resistance to vancomycin and other glycopeptide antibiotics requires the action of the van genes, which direct the synthesis of peptidoglycan terminating in the depsipeptide D-alanyl-D-lactate, in place of the usual D-Ala-D-Ala. The Actinoplanes teichomyceticus tcp cluster, devoted to the biosynthesis of the glycopeptide antibiotic teicoplanin, contains van genes associated to a murF-like sequence (murF2). We show that A. teichomyceticus contains also a house-keeping murF1 gene, capable of complementing a temperature sensitive Escherichia coli murF mutant. MurF1, expressed in Streptomyces lividans, can catalyze the addition of either D-Ala-D-Ala or D-Ala-D-Lac to the UDP-N-acetyl-muramyl-L-Ala-D-Glu-d-Lys. However, similarly expressed MurF2 shows a small enzymatic activity only with D-Ala-D-lactate. Introduction of a single copy of the entire set of van genes confers resistance to teicoplanin-type glycopeptides to S. coelicolor.
Collapse
Affiliation(s)
- Stefania Serina
- Vicuron Pharmaceuticals - Microbial Technologies, via R. Lepetit 34, 21040 Gerenzano, Italy
| | | | | | | | | |
Collapse
|
106
|
Sutcliffe IC, Harrington DJ. Lipoproteins ofMycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev 2004; 28:645-59. [PMID: 15539077 DOI: 10.1016/j.femsre.2004.06.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 03/16/2004] [Accepted: 06/18/2004] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis remains the predominant bacterial scourge of mankind. Understanding of its biology and pathogenicity has been greatly advanced by the determination of whole genome sequences for this organism. Bacterial lipoproteins are a functionally diverse class of membrane-anchored proteins. The signal peptides of these proteins direct their export and post-translational lipid modification. These signal peptides are amenable to bioinformatic analysis, allowing the lipoproteins encoded in whole genomes to be catalogued. This review applies bioinformatic methods to the identification and functional characterisation of the lipoproteins encoded in the M. tuberculosis genomes. Ninety nine putative lipoproteins were identified and so this family of proteins represents ca. 2.5% of the M. tuberculosis predicted proteome. Thus, lipoproteins represent an important class of cell envelope proteins that may contribute to the virulence of this major pathogen.
Collapse
|
107
|
Mascher T, Zimmer SL, Smith TA, Helmann JD. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 2004; 48:2888-96. [PMID: 15273097 PMCID: PMC478541 DOI: 10.1128/aac.48.8.2888-2896.2004] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil bacteria are among the most prodigious producers of antibiotics. The Bacillus subtilis LiaRS (formerly YvqCE) two-component system is one of several antibiotic-sensing systems that coordinate the genetic response to cell wall-active antibiotics. Upon the addition of vancomycin or bacitracin, LiaRS autoregulates the liaIHGFSR operon. We have characterized the promoter of the lia operon and defined the cis-acting sequences necessary for antibiotic-inducible gene expression. A survey for compounds that act as inducers of the lia promoter revealed that it responds strongly to a subset of cell wall-active antibiotics that interfere with the lipid II cycle in the cytoplasmic membrane (bacitracin, nisin, ramoplanin, and vancomycin). Chemicals that perturb the cytoplasmic membrane, such as organic solvents, are also weak inducers. Thus, the reporter derived from P(liaI) (the liaI promoter) provides a tool for the detection and classification of antimicrobial compounds.
Collapse
Affiliation(s)
- Thorsten Mascher
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
108
|
Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 2004; 279:52346-52. [PMID: 15452119 DOI: 10.1074/jbc.m409573200] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tetracycline antibiotics block microbial translation and constitute an important group of antimicrobial agents that find broad clinical utility. Resistance to this class of antibiotics is primarily the result of active efflux or ribosomal protection; however, a novel mechanism of resistance has been reported to be oxygen-dependent destruction of the drugs catalyzed by the enzyme TetX. Paradoxically, the tetX genes have been identified on transposable elements found in anaerobic bacteria of the genus Bacteroides. Overexpression of recombinant TetX in Escherichia coli followed by protein purification revealed a stoichiometric complex with flavin adenine dinucleotide. Reconstitution of in vitro enzyme activity demonstrated a broad tetracycline antibiotic spectrum and a requirement for molecular oxygen and NADPH in antibiotic degradation. The tetracycline products of TetX activity were unstable at neutral pH, but mass spectral and NMR characterization under acidic conditions supported initial monohydroxylation at position 11a followed by intramolecular cyclization and non-enzymatic breakdown to other undefined products. TetX is therefore a FAD-dependent monooxygenase. The enzyme not only catalyzed efficient degradation of a broad range of tetracycline analogues but also conferred resistance to these antibiotics in vivo. This is the first molecular characterization of an antibiotic-inactivating monooxygenase, the origins of which may lie in environmental bacteria.
Collapse
Affiliation(s)
- Wangrong Yang
- Antimicrobial Research Center, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Avoparcin, a glycopeptide antimicrobial agent related to vancomycin, has been used extensively as a growth promoter in animal feeds for more than 2 decades, and evidence has shown that such use contributed to the development of vancomycin-resistant enterococci. A cluster that includes three genes, vanH, vanA, and vanX, is required for high-level resistance to glycopeptides. In the vancomycin producer Amycolatopsis orientalis C329.2, homologs of these genes are present, suggesting an origin for the cluster. We found substantial bacterial DNA contamination in animal-feed-grade avoparcin. Furthermore, nucleotide sequences related to the cluster vanHAX are present in this DNA, suggesting that the prolonged use of avoparcin in agriculture led to the uptake of glycopeptide resistance genes by animal commensal bacteria, which were subsequently transferred to humans.
Collapse
Affiliation(s)
- Karen Lu
- University of British Columbia, Vancouver, B.C., Canada
| | - Rumi Asano
- University of California, Berkeley, California, USA
| | - Julian Davies
- University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
110
|
Guardabassi L, Dalsgaard A. Occurrence, structure, and mobility of Tn1546-like elements in environmental isolates of vancomycin-resistant enterococci. Appl Environ Microbiol 2004; 70:984-90. [PMID: 14766580 PMCID: PMC348935 DOI: 10.1128/aem.70.2.984-990.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The occurrence, structure, and mobility of Tn1546-like elements were studied in environmental vancomycin-resistant enterococci (VRE) isolated from municipal sewage, activated sludge, pharmaceutical waste derived from antibiotic production, seawater, blue mussels, and soil. Of 200 presumptive VRE isolates tested, 71 (35%) harbored vanA. Pulsed-field gel electrophoresis analysis allowed the detection of 26 subtypes, which were identified as Enterococcus faecium (n = 13), E. casseliflavus (n = 6), E. mundtii (n = 3), E. faecalis (n = 3), and E. durans (n = 1) by phenotypic tests and 16S ribosomal DNA sequencing. Long PCR-restriction fragment length polymorphism (L-PCR-RFLP) analysis of Tn1546-like elements and PCR analysis of internal regions revealed the presence of seven groups among the 29 strains studied. The most common group (group 1) corresponded to the structure of Tn1546 in the prototype strain E. faecium BM4147. Two novel L-PCR-RFLP patterns (groups 3 and 4) were found for E. casseliflavus strains. Indistinguishable Tn1546-like elements occurred in VRE strains belonging to different species or originating from different sources. Interspecies plasmid-mediated transfer of vancomycin resistance to E. faecium BM4105 was demonstrated for E. faecalis, E. mundtii, and E. durans. This study indicates that VRE, including species other than E. faecium and E. faecalis, are widespread in nature and in environments that are not exposed to vancomycin selection and not heavily contaminated with feces, such as seawater, blue mussels, and nonagricultural soil. Tn1546-like elements can readily transfer between enterococci of different species and ecological origins, therefore raising questions about the origin of these transposable elements and their possible transfer between environmental and clinical settings.
Collapse
Affiliation(s)
- L Guardabassi
- Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, 1870 Frederiksberg, Denmark.
| | | |
Collapse
|
111
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
112
|
References. Antibiotics (Basel) 2003. [DOI: 10.1128/9781555817886.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
113
|
Boneca IG, Chiosis G. Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin Ther Targets 2003; 7:311-28. [PMID: 12783569 DOI: 10.1517/14728222.7.3.311] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vancomycin has long been considered the antibiotic of last resort against serious and multi-drug-resistant infections caused by Gram-positive bacteria. However, vancomycin resistance has emerged, first in enterococci and, more recently, in Staphylococcus aureus. Here, the authors attempt to review the prevalence and the mechanisms of such resistance. Furthermore, they focus on strategies that have been developed or are under current investigation to overcome infections caused by vancomycin-resistant strains. Among these are glycopeptide derivatives with higher potency than vancomycin, small molecules that resensitise bacteria to the antibiotic and novel non-glycopeptide antibiotics. These agents are targeted to interfere with protein and/or peptidoglycan (PG) synthesis and integrity or with membrane permeability. Whilst most of these agents are still in clinical or preclinical development, some have entered the clinic and currently represent the only option for treating vancomycin-resistant enterococci (VRE).
Collapse
Affiliation(s)
- Ivo G Boneca
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 25 - 28 Rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | |
Collapse
|
114
|
Griffin JH, Linsell MS, Nodwell MB, Chen Q, Pace JL, Quast KL, Krause KM, Farrington L, Wu TX, Higgins DL, Jenkins TE, Christensen BG, Judice JK. Multivalent drug design. Synthesis and in vitro analysis of an array of vancomycin dimers. J Am Chem Soc 2003; 125:6517-31. [PMID: 12785792 DOI: 10.1021/ja021273s] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design, synthesis, and in vitro microbiological analysis of an array of forty covalently linked vancomycin dimers are reported. This work was undertaken to systematically probe the impact of linkage orientation and linker length on biological activity against susceptible and drug-resistant Gram-positive pathogens. To prepare the array, monomeric vancomycin synthons were linked through four distinct positions of the glycopeptide (C-terminus (C), N-terminus (N), vancosamine residue (V), and resorcinol ring (R)) in 10 unique pairwise combinations. Amphiphilic, peptide-based linkers of four different lengths (11, 19, 27, and 43 total atoms) were employed. Both linkage orientation and linker length were found to affect in vitro antibacterial potency. The V-V series displayed the greatest potency against vancomycin-susceptible organisms and vancomycin-resistant Enterococcus faecalis (VRE) of VanB phenotype, while the C-C, C-V, and V-R series displayed the most promising broad-spectrum activity that included VRE of VanA phenotype. Dimers bearing the shortest linkers were in all cases preferred for activity against VRE. The effects of linkage orientation and linker length on in vitro potency were not uniform; for example, (1) no single compound displayed activity that was superior against all test organisms to that of vancomycin or the other dimers, (2) linker length effects varied with test organism, and (3) whereas one-half of the dimers were more potent than vancomycin against methicillin-susceptible Staphylococcus aureus (MSSA), only one dimer was more potent against methicillin-resistant S. aureus (MRSA) and glycopeptide-intermediate susceptible S. aureus (GISA). In interpreting the results, we have considered the potential roles of multivalency and of other phenomena.
Collapse
Affiliation(s)
- John H Griffin
- Contribution from Theravance, Inc., 901 Gateway Boulevard, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Bacteria have proved themselves able to develop resistance to every antibiotic used clinically. Traditional agents used for treatment of serious infections caused by Gram-positive species have recently been supplemented with the introduction of linezolid, quinupristin-dalfopristin, several new quinolones and telithromycin. However, resistance to many of these agents has already been reported and, although each currently retains activity against the vast majority of clinical isolates of its target species, their long-term efficacy is uncertain. We must look to develop other compounds to replace and hopefully improve upon existing anti-Gram-positive agents. Daptomycin (a lipopeptide), oritavancin and dalbavancin (both second-generation glycopeptides) and ramoplanin (a glycolipodepsipeptide) are among the agents in advanced stages of development and, at present, many seem likely to proceed to licensing. In addition, it is encouraging that many agents active against novel bacterial targets have been discovered and are in earlier stages of development. In the next two decades, we should be optimistic that a regular flow of new anti-Gram-positive agents will enable us to offset the constant spectre of bacterial resistance.
Collapse
Affiliation(s)
- Neil Woodford
- Antibiotic Resistance Monitoring and Reference Laboratory, 61 Colindale Avenue, London NW9 5HT, UK.
| |
Collapse
|
116
|
Dutta I, Reynolds PE. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob Agents Chemother 2002; 46:3125-32. [PMID: 12234834 PMCID: PMC128795 DOI: 10.1128/aac.46.10.3125-3132.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXY(C-2), vanT(C-2), vanR(C-2), and vanS(C-2)) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative D,D-dipeptidase-D,D-carboxypeptidase, VanXY(C-2), exhibited 81% amino acid identity to VanXY(C), and VanT(C-2) displayed 65% amino acid identity to the serine racemase, VanT. VanR(C-2) and VanS(C-2) displayed high degrees of identity to VanR(C) and VanS(C), respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-L-Ala-delta-D-Glu-L-Lys-D-Ala-D-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanT(C-2) gene, encoding a putative serine racemase, and the presence of supplementary D-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of D-serine plays an important role in the induction process.
Collapse
Affiliation(s)
- Ireena Dutta
- Department of Biochemistry, University of Cambridge, United Kingdom CB2 1QW
| | | |
Collapse
|
117
|
Mandell LA, Peterson LR, Wise R, Hooper D, Low DE, Schaad UB, Klugman KP, Courvalin P. The battle against emerging antibiotic resistance: should fluoroquinolones be used to treat children? Clin Infect Dis 2002; 35:721-7. [PMID: 12203170 DOI: 10.1086/341900] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Revised: 03/22/2002] [Indexed: 11/04/2022] Open
Abstract
Inappropriate use of antibiotic drugs in humans and animals has led to widespread resistance among microbial pathogens. Resistance is the phenotypic expression corresponding to genetic changes caused by either mutation or acquisition of new genetic information. In some cases, multidrug resistance occurs. Streptococcus pneumoniae is one of the most important respiratory pathogens, playing a major role in both upper and lower respiratory tract infections. Pneumococcal resistance to antimicrobials may be acquired by means of horizontal transfer followed by homologous recombination of genetic material from the normal flora of the human oral cavity or by means of mutation. Resistance to penicillins and macrolides has been increasing for some time, but, recently, fluoroquinolone resistance has become an issue as well. We are concerned that, if fluoroquinolones are approved for use in children, their widespread use will result in rapid emergence of pneumococcal resistance, because children are more often colonized in the nasopharynx with high-density populations of pneumococci than are adults.
Collapse
Affiliation(s)
- Lionel A Mandell
- Division of Infectious Diseases, McMaster University School of Medicine, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Pootoolal J, Thomas MG, Marshall CG, Neu JM, Hubbard BK, Walsh CT, Wright GD. Assembling the glycopeptide antibiotic scaffold: The biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci U S A 2002; 99:8962-7. [PMID: 12060705 PMCID: PMC124406 DOI: 10.1073/pnas.102285099] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2002] [Indexed: 11/18/2022] Open
Abstract
The glycopeptide antibiotics vancomycin and teicoplanin are vital components of modern anti-infective chemotherapy exhibiting outstanding activity against Gram-positive pathogens including members of the genera Streptococcus, Staphylococcus, and Enterococcus. These antibiotics also provide fascinating examples of the chemical and associated biosynthetic complexity exploitable in the synthesis of natural products by actinomycetes group of bacteria. We report the sequencing and annotation of the biosynthetic gene cluster for the glycopeptide antibiotic from Streptomyces toyocaensis NRRL15009, the first complete sequence for a teicoplanin class glycopeptide. The cluster includes 34 ORFs encompassing 68 kb and includes all of the genes predicted to be required to synthesize and regulate its biosynthesis. The gene cluster also contains ORFs encoding enzymes responsible for glycopeptide resistance. This role was confirmed by insertional inactivation of the d-Ala-d-lactate ligase, vanAst, which resulted in the predicted -sensitive phenotype and impaired antibiotic biosynthesis. These results provide increased understanding of the biosynthesis of these complex natural products.
Collapse
Affiliation(s)
- Jeff Pootoolal
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
119
|
Sundsfjord A, Simonsen GS, Courvalin P. Human infections caused by glycopeptide-resistant Enterococcus spp: are they a zoonosis? Clin Microbiol Infect 2002; 7 Suppl 4:16-33. [PMID: 11688531 DOI: 10.1046/j.1469-0691.2001.00055.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following the detection of glycopeptide-resistant enterococci (GRE) in 1986 and their subsequent global dissemination during the 1990s, many studies have attempted to identify the reservoirs and lines of resistance transmission as a basis for intervention. The eradication of reservoirs and the prevention of GRE spread is of major importance for two reasons: (i) the emergence of high-level glycopeptide resistance in invasive enterococcal clinical isolates that are already multiresistant, has left clinicians with therapeutic options that are only at the experimental stage; and (ii) the resistance genes may spread to more virulent bacterial species such as Staphylococcus aureus, Streptococcus pneumoniae and Clostridium difficile. VanA-type strains, resistant to high levels of both vancomycin and teicoplanin, are the most commonly encountered enterococci with acquired glycopeptide resistance in humans. A widespread VanA-type GRE reservoir was detected early in farm animals that were exposed to the glycopeptide growth-promoter avoparcin. Numerous studies have provided indirect evidence for the transfer of VanA-type GRE and their resistance determinants from animal reservoirs to humans. The data collected have expanded our understanding of the promiscuous nature of antibiotic resistance, and have provided the groundwork for logical decision-making with the objective of deterring the dissemination of resistant bacteria and of their resistance genes.
Collapse
Affiliation(s)
- A Sundsfjord
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
120
|
Abstract
Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria. The chemical complexity of the glycopeptides, the challenges of discovering and successfully exploiting new targets, and the growing number of distinct resistance types all increase the difficulty of the current problem we face as a result of the emergence of glycopeptide resistance.
Collapse
Affiliation(s)
- Jeff Pootoolal
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
121
|
Neu JM, MacMillan SV, Nodwell JR, Wright GD. StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Mol Microbiol 2002; 44:417-30. [PMID: 11972780 DOI: 10.1046/j.1365-2958.2002.02879.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The glycopeptide antibiotic-producing bacterium, Streptomyces toyocaensis NRRL 15009, has proteins phosphorylated on Ser, Thr, Tyr and His, implying the presence of a battery of associated kinases. We have identified the Ser/Thr protein kinase gene fragments stoPK-1, stoPK-2, stoPK-3 and stoPK-4 from S. toyocaensis NRRL 15009 by a polymerase chain reaction (PCR) strategy using oligonucleotide primers based on eukaryotic Ser/Thr and Tyr kinase sequences. One of these (stoPK-1) was subsequently cloned in its entirety from a 3.2 kb genomic BamHI fragment. stoPK-1 encodes a 642-amino-acid protein with a predicted N-terminal Ser/Thr kinase domain and a C-terminal coiled-coil region divided by a membrane-spanning region. Expression of StoPK-1 in Escherichia coli yielded a protein confined to the membrane fraction, which was found to be phosphorylated exclusively on Thr residues and could transfer phosphate to the model substrates myelin basic protein and histone H1. Both autophosphorylation and phosphoryl transfer could be inhibited by the flavanoid apigenin. Disruption of stoPK-1 with the apramycin resistance gene in the S. toyo-caensis chromosome resulted in changes in mycelial morphology and an increased sensitivity to the redox cycling agents paraquat and nitrofurantoin on glucose-containing media. Supplying stoPK-1 or the S. coelicolor homologue pkaF in trans could reverse this sensitivity, whereas a catalytically inactive mutant of stoPK-1 could not, indicating that kinase activity is essential for this phenotype. This suggests a link between this membrane-bound protein kinase in signalling pathways sensitive to oxidative stress and/or glucose metabolism. These results broaden the roles of Ser/Thr protein kinases in bacteria and underscore the diversity of signal transduction mechanisms available to respond to various stimuli.
Collapse
Affiliation(s)
- John M Neu
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, 1200 Main St. W., Hamilton, ON, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
122
|
Tan AL, Loke P, Sim TS. Molecular cloning and functional characterisation of VanX, a D-alanyl-D-alanine dipeptidase from Streptomyces coelicolor A3(2). Res Microbiol 2002; 153:27-32. [PMID: 11881895 DOI: 10.1016/s0923-2508(01)01282-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The vanX gene which encodes a D-alanyl-D-alanine dipeptidase is critical for vancomycin resistance in enterococci. A putative vanX gene from Streptomyces coelicolor A3(2), which is not known for vancomycin production, was identified by homology-based analysis and cloned by polymerase chain reaction. The S. coelicolor vanX gene was heterologously expressed in Escherichia coli BL21(DE3) and enzymatic assays of soluble protein fractions of VanX revealed a 93-fold increase in dipeptidase activity as compared to the nonrecombinant control, thus confirming its functionality. Interestingly, S. coelicolor was also found to be of intermediate resistance to vancomycin although it does not produce vancomycin, thus suggesting the role of VanX in defence or immunity. As such, the prevalence of vanX genes in the environment may be more common than previously thought.
Collapse
Affiliation(s)
- Ai Lin Tan
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
123
|
Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001; 14:836-71, table of contents. [PMID: 11585788 PMCID: PMC89006 DOI: 10.1128/cmr.14.4.836-871.2001] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art.
Collapse
Affiliation(s)
- A C Fluit
- Eijkman-Winkler Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
124
|
Affiliation(s)
- A Andremont
- Laboratoire de bactériologie, Groupe hospitalier Bichat Claude-Bernard, Paris, France
| |
Collapse
|
125
|
Gold HS. Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin Infect Dis 2001; 33:210-9. [PMID: 11418881 DOI: 10.1086/321815] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2000] [Revised: 12/18/2000] [Indexed: 11/03/2022] Open
Abstract
Enterococci are not generally regarded as highly virulent bacterial pathogens. However, resistance to many antimicrobial drugs complicates treatment of enterococcal infections. Acquired resistance to high concentrations of glycopeptide antibiotics, specifically vancomycin, has exacerbated this problem. This article seeks to concisely review the mechanisms of that resistance and its effects on clinical management of enterococcal infections, as well as clinical microbiology and infection control.
Collapse
Affiliation(s)
- H S Gold
- Department of Medicine, Division of Infectious Diseases, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
126
|
Arthur M, Quintiliani R. Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother 2001; 45:375-81. [PMID: 11158729 PMCID: PMC90301 DOI: 10.1128/aac.45.2.375-381.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Pierre et Marie Curie, Paris VI, Paris, France.
| | | |
Collapse
|
127
|
Affiliation(s)
- A Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotechnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
128
|
Gholizadeh Y, Courvalin P. Acquired and intrinsic glycopeptide resistance in enterococci. Int J Antimicrob Agents 2000; 16 Suppl 1:S11-7. [PMID: 11137403 DOI: 10.1016/s0924-8579(00)00300-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Enterococci are Gram-positive cocci responsible for severe human infections, such as endocarditis, meningitis, and septicemia and constitute an increasingly frequent cause of nosocomial infections. Enterococci are resistant to nearly all classes of drugs including, since 1986, glycopeptides. Vancomycin and teicoplanin act by blocking cell wall formation and resistance is due to synthesis of modified late peptidoglycan precursors. Glycopeptide resistance can be intrinsic or acquired and strains may be resistant to vancomycin and teicoplanin, or to vancomycin only. Five types of glycopeptide resistance and their biochemical mechanisms have been described in enterococci. Clinical isolates that are dependent on vancomycin for growth have been isolated. Data suggest a dual origin for resistance: glycopeptide-producing organisms or enterococcal species intrinsically resistant to these drugs.
Collapse
Affiliation(s)
- Y Gholizadeh
- Unité des Agents Antibactériens, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
129
|
Andremont A. Impact des antibiotiques sur l'écologie de la résistance bactérienne: rôle du tube digestif. Med Mal Infect 2000. [DOI: 10.1016/s0399-077x(00)89087-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
130
|
Tavares W. [Problems with gram-positive bacteria: resistance in staphylococci, enterococci, and pneumococci to antimicrobial drugs]. Rev Soc Bras Med Trop 2000; 33:281-301. [PMID: 10967598 DOI: 10.1590/s0037-86822000000300008] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The resistance in staphylococci, enterococci, and pneumococci is reviewed. The author also recalls the first cases, and presents an overview of the distribution of cases in the world, the genetic and molecular mechanisms of resistance, the importance in Brazil and therapeutic alternatives. The factors that contribute to the dissemination of these problem bacteria and the measures for their control are emphasized.
Collapse
Affiliation(s)
- W Tavares
- Faculdade de Medicina de Teresópolis, Escola de Ciências Médicas de Volta Redonda, RJ, Brasil
| |
Collapse
|
131
|
Andremont A. [Consequences of antibiotic therapy to the intestinal ecosystem]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2000; 19:395-402. [PMID: 10874440 DOI: 10.1016/s0750-7658(00)90209-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ecological impact of antibiotherapy results from the interaction between microorganisms in the ecosystems and antibiotics at which they are exposed. The amount of antibiotics use in the world is continuously increasing. The fraction devoted to human care is only about half the total amount. There are multiple other fields of usage, in agriculture, breeding and veterinary medicine. Bacterial ecosystems exposed at antibiotherapy in man are mainly the skin and the gastrointestinal and respiratory tracts. The gastrointestinal system is quantitatively predominant and the consequences of the bacterial imbalance induced by antibiotics are potentially severe. It is the reason why it is the most extensively studied, in the literature and in the present review. The origin of resistant bacteria will be briefly discussed.
Collapse
Affiliation(s)
- A Andremont
- Laboratoire de bactériologie, hôpital Bichat-Claude-Bernard, Paris, France
| |
Collapse
|
132
|
Healy VL, Lessard IA, Roper DI, Knox JR, Walsh CT. Vancomycin resistance in enterococci: reprogramming of the D-ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. CHEMISTRY & BIOLOGY 2000; 7:R109-19. [PMID: 10801476 DOI: 10.1016/s1074-5521(00)00116-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vancomycin binds to bacterial cell-wall intermediates to achieve its antibiotic effect. Infections of vancomycin-resistant enterococci are, however, becoming an increasing problem; the bacteria are resistant because they synthesize different cell-wall intermediates. The enzymes involved in cell-wall biosynthesis, therefore, are potential targets for combating this resistance. Recent biochemical and crystallographic results are providing mechanistic and structural details about some of these targets.
Collapse
Affiliation(s)
- V L Healy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
133
|
Abstract
Although the emergence of vancomycin-resistant enterococci can be attributed, in part, to the increasing use of vancomycin in clinical practice, and glycopeptide use in animal husbandry, the origins of the enterococcal vancomycin resistance genes are not clear. The vancomycin resistance-associated genes in Enterococcus gallinarum, Enterococcus casseliflavus/flavescens, Lactobacillus spp., Leuconostoc spp., Pediococcus spp., and Erysipelothrix rhusiopathiae, are not the source of the high-level vancomycin resistance-associated genes in enterococci. There are, however, environmental organisms which have been found to have gene clusters homologous to the enterococcal vanA, vanB and vanC gene clusters; these include the biopesticide Paenibacillus popilliae, and, to a lesser extent, the glycopeptide-producing organisms Amycolatopsis orientalis and Streptomyces toyocaensis. Still, the exact sources of the enterococcal vancomycin resistance genes remain a mystery.
Collapse
Affiliation(s)
- R Patel
- Division of Infectious Diseases and Infectious Diseases Research Laboratory, Mayo Clinic and Foundation, Rochester, MN, USA.
| |
Collapse
|
134
|
Butaye P, Van Damme K, Devriese LA, Van Damme L, Bael M, Lauwers S, Haesebrouck F. In vitro susceptibility of Enterococcus faecium isolated from food to growth-promoting and therapeutic antibiotics. Int J Food Microbiol 2000; 54:181-7. [PMID: 10777068 DOI: 10.1016/s0168-1605(99)00198-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A total of 76 E. faecium strains, isolated at retail level from raw poultry meat, cheese, raw pork, and preparations of cheese and raw pork, were tested for their susceptibility and resistance to growth-promoting antibacterials used in animals and antibiotics used therapeutically in humans. All strains were uniformly susceptible to the growth promoters bambermycin and avilamycin. Resistance against bacitracin, virginiamycin and narasin was high among strains from poultry meat. With tylosin, a macrolide antibiotic used therapeutically and for growth promotion, resistance was mainly detected in strains originating from poultry meat, though also in some strains from pork and from pork and cheese preparations. The therapeutic antibiotic dalfopristin/quinupristin did not show full cross-resistance with the growth-promoting antibiotic virginiamycin. With dalfopristin/quinupristin two different levels of resistance were found. Only one E. faecium strain isolated from poultry was resistant to the glycopeptides avoparcin and vancomycin. Only one poultry meat strain was highly resistant to ampicillin. However, nearly all poultry meat strains showed decreased sensitivity. Only 3 out of 24 poultry strains were susceptible to minocycline, while all strains from other origins were susceptible to this tetracycline antibiotic. High-level streptomycin resistance was seen in strains of all origins, though infrequently. High-level gentamicin resistance was not found.
Collapse
Affiliation(s)
- P Butaye
- University of Ghent, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology, and Poultry Diseases, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
135
|
Patel R, Piper K, Cockerill FR, Steckelberg JM, Yousten AA. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother 2000; 44:705-9. [PMID: 10681342 PMCID: PMC89750 DOI: 10.1128/aac.44.3.705-709.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified, in Paenibacillus popilliae, a 708-bp sequence which has homology to the sequence of the enterococcal vanA gene. We have performed further studies revealing five genes encoding homologues of VanY, VanZ, VanH, VanA, and VanX in P. popilliae. The predicted amino acid sequences are similar to those in VanA vancomycin-resistant enterococci: 61% identity for VanY, 21% for VanZ, 74% for VanH, 77% for VanA, and 79% for VanX. The genes in P. popilliae may have been a precursor to or have had ancestral genes in common with vancomycin resistance genes in enterococci. The use of P. popilliae biopesticidal preparations in agricultural practice may have an impact on bacterial resistance in human pathogens.
Collapse
Affiliation(s)
- R Patel
- Division of Infectious Diseases, Infectious Diseases Research Laboratory, Mayo Clinic and Foundation, Rochester, Minnesota, USA.
| | | | | | | | | |
Collapse
|
136
|
Abstract
The increasing frequency with which antimicrobial-resistant microorganisms have emerged in hospitals and communities has alarmed public health officials worldwide. The emergence of resistance results from the evolution of the sometimes elegant resistance mechanisms that create so-called superbugs, which disseminate by clonal spread or exchange resistance traits with other microorganisms. One major contributor to the emergence of resistance is selection intensity, which is determined by the volume of drug consumption by humans and the agriculture industry. De novo or acquired resistance is often initially associated with a cost to fitness of the microorganism. It therefore seems reasonable to assume that reducing the volume of drug use would slow the evolution and reduce the prevalence of resistance. This assumption has led to worldwide attempts to control the inappropriate use of antimicrobials in the hope of controlling the pandemic of antibiotic resistance. However, microorganisms have learned to adapt in order to survive in ever-changing environments. Superbugs have evolved numerous mechanisms that reduce or eliminate the cost of resistance, and such adaptations may minimize the potential benefits of programs aimed at reducing the volume of drug use. It therefore behooves us to look to other disciplines--such as population genetics, ecology, and mathematical biology--to help us tackle this perplexing and important problem.
Collapse
|
137
|
Abstract
Integrons are the primary mechanism for antibiotic-resistance gene capture and dissemination among Gram-negative bacteria. The recent finding of super-integron structures in the genomes of several bacterial species has expanded their role in genome evolution and suggests that they are the source of mobile multi-resistant integrons.
Collapse
Affiliation(s)
- D A Rowe-Magnus
- Unité de Programmation Moléculaire et Toxicologie Genétique (UPMTG) Centre National de Recherche Scientifique (CNRS) URA 1444 Département des Biotechnologies Institut Pasteur 25 rue du Dr Roux, 75724, Paris, France
| | | |
Collapse
|
138
|
Lessard IA, Walsh CT. VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc Natl Acad Sci U S A 1999; 96:11028-32. [PMID: 10500118 PMCID: PMC34236 DOI: 10.1073/pnas.96.20.11028] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The zinc-containing D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase VanX has been detected in both Gram-positive and Gram-negative bacteria, where it appears to have adapted to at least three distinct physiological roles. In pathogenic vancomycin-resistant enterococci, vanX is part of a five-gene cluster that is switched on to reprogram cell-wall biosynthesis to produce peptidoglycan chain precursors terminating in D-alanyl-D-lactate (D-Ala-D-lactate) rather than D-Ala-D-Ala. The modified peptidoglycan exhibits a 1, 000-fold decrease in affinity for vancomycin, accounting for the observed phenotypic resistance. In the glycopeptide antibiotic producers Streptomyces toyocaensis and Amylocatopsis orientalis, a vanHAX operon may have coevolved with antibiotic biosynthesis genes to provide immunity by reprogramming cell-wall termini to D-Ala-D-lactate as antibiotic biosynthesis is initiated. In the Gram-negative bacterium Escherichia coli, which is never challenged by the glycopeptide antibiotics because they cannot penetrate the outer membrane permeability barrier, the vanX homologue (ddpX) is cotranscribed with a putative dipeptide transport system (ddpABCDF) in stationary phase by the transcription factor RpoS (sigma(s)). The combined action of DdpX and the permease would permit hydrolysis of D-Ala-D-Ala transported back into the cytoplasm from the periplasm as cell-wall crosslinks are refashioned. The D-Ala product could then be oxidized as an energy source for cell survival under starvation conditions.
Collapse
Affiliation(s)
- I A Lessard
- Biological Chemistry and Molecular Pharmacology Department, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
139
|
|
140
|
Malathum K, Murray BE. Vancomycin-resistant enterococci: recent advances in genetics, epidemiology and therapeutic options. Drug Resist Updat 1999; 2:224-243. [PMID: 11504495 DOI: 10.1054/drup.1999.0098] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vancomycin-resistant enterococci (VRE) have gained much attention in the last decade. Currently, there are five known types of vancomycin resistance based on genes encoding ligase enzymes that the organisms use to produce their cell wall precursors, namely, VanA, VanB, VanC, VanD and VanE. An additional unclassified type was discovered in Australia. The basis of resistance among these phenotypes appears to be similar in that the resistant organisms produce peptidoglycan precursors that end in moieties other than D-alanyl-D-alanine, the usual target of vancomycin. The other dipeptide-like termini identified to date include D-alanyl-D-lactate and D-alanyl-D-serine, which have low affinity for glycopeptides. Recent evidence suggests that glycopeptide-producing organisms might be the remote origin of the vancomycin resistance genes. In European countries, avoparcin, a glycopeptide used in farm animals as a growth promoter, has been linked to the occurrence of VRE and occasional common strains have been identified in food products, farm animals, healthy subjects and hospitalized patients. There have been no such reports in the USA where heavy use of vancomycin and use of broad spectrum antibiotics such as cephalosporins have been identified as important risk factors for acquisition of VRE. Transmission within the same or between hospitals has been reported in many countries. Infection control measures and efforts to use antibiotics, particularly vancomycin, more appropriately have been implemented in a number of healthcare facilities with varying degrees of success. Many antibiotics, as a single agent or a combination of drugs, as well as various new antibiotics have been tested in vitro, in animal models, or used in anecdotal cases but clinical data from large comparative trials are not available to date. Because of the limited susceptibility of many VRE to other agents, efforts to control these organisms are particularly important. Copyright 1999 Harcourt Publishers LtdCopyright 1999 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Kumthorn Malathum
- Center for the Study of Emerging and Re-Emerging Pathogens, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | | |
Collapse
|
141
|
Puntorieri M, Cafiso V, Santagati M, Messina C, Azzarelli C, Catalano V, Bonfiglio G, Giuseppe N, Stefania S. In vitro selection of glycopeptide-resistant variants of Enterococci. Int J Antimicrob Agents 1999; 12:333-9. [PMID: 10493610 DOI: 10.1016/s0924-8579(99)00082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In order to study the possible phenotypic and genotypic changes related to glycopeptide pressure on enterococci, a study was undertaken using stepwise in vitro exposure to achieve the following objectives: (i) to evaluate the development of resistance and cross-resistance between vancomycin and teicoplanin; (ii) to determine the stability of the acquired level of resistance; (iii) to determine the phenotypic and genotypic changes related to glycopeptide pressure; and (iv) to assess the spectrum of antibiotic-susceptibility of all strains. Our results showed that no variants resistant to glycopeptides could be selected after in vitro glycopeptide exposure experiments. However some strains showed increased MIC values: 8 mg/l to vancomycin in eight strains selected by vancomycin itself, while teicoplanin produced intermediate values to vancomycin in only three strains. The phenotypes were stable in vitro after numerous passages in antibiotic-free medium and three out of nine strains with a changed MIC level, showed 40, 42 and 43 kDa proteins in cell membrane preparations. The profile of antibiotic resistance was comparable in all isogenic strains tested with the exception of three selected strains that became susceptible to penicillin G. The pressure produced by glycopeptides, particularly vancomycin has contributed to an increased level of MIC that can influence the acquisition and/or full expression of this resistance.
Collapse
Affiliation(s)
- M Puntorieri
- Department of Microbiological and Gynaecological Sciences, University of Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Hilbert F, García-del Portillo F, Groisman EA. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica. J Bacteriol 1999; 181:2158-65. [PMID: 10094694 PMCID: PMC93629 DOI: 10.1128/jb.181.7.2158-2165.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.
Collapse
Affiliation(s)
- F Hilbert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
143
|
Lessard IA, Walsh CT. Mutational analysis of active-site residues of the enterococcal D-ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-ala-D-Ala ligase and D-ala-D-Ala carboxypeptidase VanY. CHEMISTRY & BIOLOGY 1999; 6:177-87. [PMID: 10074467 DOI: 10.1016/s1074-5521(99)89009-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Vancomycin-resistant enterococci are pathogenic bacteria that attenuate antibiotic sensitivity by producing peptidoglycan precursors that terminate in D-Ala-D-lactate rather than D-Ala-D-Ala. A key enzyme in effecting antibiotic resistance is the metallodipeptidase VanX, which reduces the cellular pool of the D-Ala-D-Ala dipeptide. RESULTS We constructed eleven mutants, using the recently determined VanX structure as a basis, to investigate residue function. Mutating Asp142 or Ser114 showed a large effect principally on KM, consistent with roles in recognition of the D-Ala-D-Ala termini. The drastic reduction or absence of activity in the Arg71 mutants correlates with a role in the stabilization of an anionic tetrahedral transition state. Three residues of the Escherichia coli D-Ala-D-Ala ligase (Ddl), Glu15, Ser 281 and Arg255, are similarly conserved and have equivalent functions with respect to VanX, consistent with a convergent evolution of active sites to bind D-Ala-D-Ala and lower energy barriers for formation of the tetrahedral intermediate and transition states. In the N-acyl-D-Ala-D-Ala carboxypeptidase VanY, all active-site residues are conserved (except for the two responsible for recognition of the dipeptide amino terminus). CONCLUSIONS The mutagenesis results support structure-based functional predictions and explain why the VanX dipeptidase and Ddl ligase show narrow specificity for the D,D-dipeptide substrate. The results reveal that VanX and Ddl, two enzymes that use the same substrate but proceed in opposite directions driven by distinct cofactors (zinc versus ATP), evolved similar architectural solutions to substrate recognition and catalysis acceleration. VanY sequence analysis predicts an active site and mechanism of reaction similar to VanX.
Collapse
Affiliation(s)
- I A Lessard
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
144
|
Marshall CG, Wright GD. DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-lactate ligase activity. J Bacteriol 1998; 180:5792-5. [PMID: 9791137 PMCID: PMC107646 DOI: 10.1128/jb.180.21.5792-5795.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-resistant enterococci acquire high-level resistance to glycopeptide antibiotics through the synthesis of peptidoglycan terminating in D-alanyl-D-lactate. A key enzyme in this process is a D-alanyl-D-alanine ligase homologue, VanA or VanB, which preferentially catalyzes the synthesis of the depsipeptide D-alanyl-D-lactate. We report the overexpression, purification, and enzymatic characterization of DdlN, a VanA and VanB homologue encoded by a gene of the vancomycin-producing organism Amycolatopsis orientalis C329.2. Evaluation of kinetic parameters for the synthesis of peptides and depsipeptides revealed a close relationship between VanA and DdlN in that depsipeptide formation was kinetically preferred at physiologic pH; however, the DdlN enzyme demonstrated a narrower substrate specificity and commensurately increased affinity for D-lactate in the C-terminal position over VanA. The results of these functional experiments also reinforce the results of previous studies that demonstrated that glycopeptide resistance enzymes from glycopeptide-producing bacteria are potential sources of resistance enzymes in clinically relevant bacteria.
Collapse
Affiliation(s)
- C G Marshall
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
145
|
Lessard IA, Pratt SD, McCafferty DG, Bussiere DE, Hutchins C, Wanner BL, Katz L, Walsh CT. Homologs of the vancomycin resistance D-Ala-D-Ala dipeptidase VanX in Streptomyces toyocaensis, Escherichia coli and Synechocystis: attributes of catalytic efficiency, stereoselectivity and regulation with implications for function. CHEMISTRY & BIOLOGY 1998; 5:489-504. [PMID: 9751644 DOI: 10.1016/s1074-5521(98)90005-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Vancomycin-resistant enterococci are pathogenic bacteria that have altered cell-wall peptidoglycan termini (D-alanyl-D-lactate [D-Ala-D-lactate] instead of D-alanyl-D-alanine [D-Ala-D-Ala]), which results in a 1000-fold decreased affinity for binding vancomycin. The metallodipeptidase VanX (EntVanX) is key enzyme in antibiotic resistance as it reduces the cellular pool of the D-Ala-D-Ala dipeptide. RESULTS A bacterial genome search revealed vanX homologs in Streptomyces toyocaensis (StoVanX), Escherichia coli (EcoVanX), and Synechocystis sp. strain PCC6803 (SynVanX). Here, the D,D-dipeptidase catalytic activity of all three VanX homologs is validated, and the catalytic efficiencies and diastereoselectivity ratios for dipeptide cleavage are reported. The ecovanX gene is shown to have an RpoS (sigma(s))-dependent promoter typical of genes turned on in stationary phase. Expression of ecovanX and an associated cluster of dipeptide permease genes permitted growth of E. coli using D-Ala-D-Ala as the sole carbon source. CONCLUSIONS The key residues of the EntVanX active site are strongly conserved in the VanX homologs, suggesting their active-site topologies are similar. StoVanX is a highly efficient D-Ala-D-Ala dipeptidase; its gene is located in a vanHAX operon, consistent with a vancomycin-immunity function. StoVanX is a potential source for the VanX found in gram-positive enterococci. The catalytic efficiencies of D-Ala-D-Ala hydrolysis for EcoVanX and SynVanX are 25-fold lower than for EntVanX, suggesting they have a role in cell-wall turnover. Clustered with the ecovanX gene is a putative dipeptide permease system that imports D-Ala-D-Ala into the cell. The combined action of EcoVanX and the permease could permit the use of D-Ala-D-Ala as a bacterial energy source under starvation conditions.
Collapse
Affiliation(s)
- I A Lessard
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|