101
|
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705-38. [PMID: 11749302 DOI: 10.1021/cr990115p] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S Daunert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | | | | | | | | | | |
Collapse
|
102
|
Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S. Chlorocatechol detection based on a clc operon/reporter gene system. Anal Chem 2000; 72:2423-7. [PMID: 10857616 DOI: 10.1021/ac9913917] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sensitive and selective sensing system for chlorocatechols (3-chlorocatechol and 4-chlorocatechol) was developed based on Pseudomonas putida bacteria harboring the plasmid pSMM50R-B'. In this plasmid, the regulatory protein of the clc operon, ClcR, controls the expression of the reporter enzyme beta-galactosidase. When bacteria containing components of the clc operon are grown in the presence of chlorocatechols, ClcR activates the clcA promoter, which is located upstream from the beta-galactosidase gene. Thus, the concentration of chlorocatechols can be related to the production of beta-galactosidase in the bacteria. The concentration of beta-galactosidase expressed in the bacteria was determined by measuring the chemiluminescence signal emitted with the use of a 1,2-dioxetane substrate. ClcR has a high specificity for chlorocatechols and provides the sensing system with high selectivity. This was demonstrated by evaluating several structurally related organic compounds as potential interfering agents. Both 3-chlorocatechol and 4-chlorocatechol can be detected with this sensing system at concentrations as low as 8 x 10(-10) and 2 x 10(-9) M, respectively, using a 2-h induction period. In the case of 3-chlorocatechol, a highly selective sensing system was developed that can detect this species at concentrations as low as 6 x 10(-8) M after a 5-min induction period; the presence of 4-chlorocatechol at concentrations as high as 2 x 10(-4) M did not interfere with this system.
Collapse
Affiliation(s)
- X Guan
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Jaspers MC, Suske WA, Schmid A, Goslings DA, Kohler HP, van der Meer JR. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. J Bacteriol 2000; 182:405-17. [PMID: 10629187 PMCID: PMC94290 DOI: 10.1128/jb.182.2.405-417.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl degradation in Pseudomonas azelaica is mediated by the regulatory gene, hbpR. The hbpR gene encodes a 63-kDa protein belonging to the NtrC family of prokaryotic transcriptional activators and having the highest homology to members of the XylR/DmpR subclass. Disruption of the hbpR gene in P. azelaica and complementation in trans showed that the HbpR protein was the key regulator for 2-hydroxybiphenyl metabolism. Induction experiments with P. azelaica and Escherichia coli containing luxAB-based transcriptional fusions revealed that HbpR activates transcription from a promoter (P(hbpC)) in front of the first gene for 2-hydroxybiphenyl degradation, hbpC, and that 2-hydroxybiphenyl itself is the direct effector for HbpR-mediated activation. Of several compounds tested, only the pathway substrates 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl and structural analogs like 2-aminobiphenyl and 2-hydroxybiphenylmethane were effectors for HbpR activation. HbpR is therefore, to our knowledge, the first regulator of the XylR/DmpR class that recognizes biaromatic but not monoaromatic structures. Analysis of a spontaneously occurring mutant, P. azelaica HBP1 Prp, which can grow with the non-wild-type effector 2-propylphenol, revealed a single mutation in the hbpR gene (T613C) leading to a Trp-->Arg substitution at amino acid residue 205. P. azelaica HBP1 derivative strains without a functional hbpR gene constitutively expressed the genes for 2-hydroxybiphenyl degradation when complemented in trans with the hbpR-T613C gene. This suggests the importance of this residue, which is conserved among all members of the XylR/DmpR subclass, for interdomain repression.
Collapse
Affiliation(s)
- M C Jaspers
- Swiss Federal Institute for Environmental Science and Technology, CH-8600 Dübendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
104
|
Alkasrawi M, Nandakumar R, Margesin R, Schinner F, Mattiasson B. A microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes. Biosens Bioelectron 1999; 14:723-7. [PMID: 10641291 DOI: 10.1016/s0956-5663(99)00046-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microbial biosensor based on immobilised psychrotrophic yeast Yarrowia lipolytica integrated to FIA for the determination of middle chain alkanes was developed. The system responded very well to middle chain alkanes even at low operational temperatures down to +5 degrees C. The maximum sensitivity was obtained at 15 degrees C. A linear relationship was observed between the sensor response and dodecane concentration up to 100 microM.
Collapse
Affiliation(s)
- M Alkasrawi
- Department of Biotechnology, Lund University, Sweden
| | | | | | | | | |
Collapse
|
105
|
Shaw LJ, Beaton Y, Glover LA, Killham K, Meharg AA. Development and characterization of a lux-modified 2,4-dichlorophenol-degrading Burkholderia sp. RASC. Environ Microbiol 1999; 1:393-9. [PMID: 11207758 DOI: 10.1046/j.1462-2920.1999.00049.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
lux-marked biosensors for assessing the toxicity and bioremediation potential of polluted environments may complement traditional chemical techniques. luxCDABE genes were introduced into the chromosome of the 2,4-dichlorophenol (2,4-DCP)-mineralizing bacterium, Burkholderia sp. RASC c2, by biparental mating using the Tn4431 system. Experiments revealed that light output was constitutive and related to cell biomass concentration during exponential growth. The transposon insertion was stable and did not interrupt 2,4-DCP-degradative genes, and expression of luxCDABE did not constitute a metabolic burden to the cell. A bioluminescence response was detectable at sublethal 2,4-DCP concentrations: at < 10.26 microg ml(-1), bioluminescence was stimulated (e.g. 218% of control), but at concentrations >60 microg ml(-1) it declined to < 1%. Investigating the effect of [14C]-2,4-DCP concentration on the evolution of 14CO2 revealed that, for initial concentrations of 2.5-25 microg ml(-1), approximately equals 55% of the added 14C was mineralized after 24 h compared with <1% at 50 and 100 microg ml(-1). Inhibition of 2,4-DCP mineralization between 25 and 50 microg ml(-1) corresponded well to the EC50 value (33.83 microg ml(-1)) obtained from bioluminescence inhibition studies. lux-marked RASC c2 may therefore be used as a functionally (i.e. 2,4-DCP degrader) and environmentally relevant biosensor of toxicity and biodegradation inhibition.
Collapse
Affiliation(s)
- L J Shaw
- Institute of Terrestrial Ecology, Huntingdon, Cambridgeshire, UK.
| | | | | | | | | |
Collapse
|
106
|
Neilson JW, Pierce SA, Maier RM. Factors influencing expression of luxCDABE and nah genes in Pseudomonas putida RB1353(NAH7, pUTK9) in dynamic systems. Appl Environ Microbiol 1999; 65:3473-82. [PMID: 10427037 PMCID: PMC91522 DOI: 10.1128/aem.65.8.3473-3482.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescent reporter organisms have been successfully exploited as analytical tools for in situ determination of bioavailable levels of contaminants in static environmental samples. Continued characterization and development of such reporter systems is needed to extend the application of these bioreporters to in situ monitoring of degradation in dynamic environmental systems. In this study, the naphthalene-degrading, lux bioreporter bacterium Pseudomonas putida RB1353 was used to evaluate the relative influences of cell growth stage, cell density, substrate concentration, oxygen tension, and background carbon substrates on both the magnitude of the light response and the rate of salicylate disappearance. The effect of these variables on the lag time required to obtain maximum luminescence and degradation was also monitored. Strong correlations were observed between the first three factors and both the magnitude and induction time of luminescence and degradation rate. The maximum luminescence response to nonspecific background carbon substrates (soil extract broth or Luria broth) was 50% lower than that generated in response to 1 mg of sodium salicylate liter(-1). Oxygen tension was evaluated over the range of 0.5 to 40 mg liter(-1), with parallel inhibition to luminescence and degradation rate (20 mg of sodium salicylate liter(-1)) observed at 1.5 mg liter(-1) and below and no effect observed above 5 mg liter(-1). Oxygen tensions from 2 to 4 mg liter(-1) influenced the magnitude of luminescence but not the salicylate degradation rate. The results suggest that factors causing parallel shifts in the magnitude of both luminescence and degradation rate were influencing regulation of the nah operon promoters. For factors that cause nonparallel shifts, other regulatory mechanisms are explored. This study demonstrates that lux reporter bacteria can be used to monitor both substrate concentration and metabolic response in dynamic systems. However, each lux reporter system and application will require characterization and calibration.
Collapse
Affiliation(s)
- J W Neilson
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
107
|
Leveau JH, König F, Füchslin H, Werlen C, Van Der Meer JR. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2, 4-dichlorophenoxyacetate. Mol Microbiol 1999; 33:396-406. [PMID: 10411755 DOI: 10.1046/j.1365-2958.1999.01483.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ralstonia eutropha JMP134 carries a 22 kb DNA region on plasmid pJP4 necessary for the degradation of 2,4-D (2,4-dichlorophenoxyacetate). In this study, expression of the 2,4-D pathway genes (designated tfd ) upon exposure to different concentrations of 2,4-D was measured at a detailed timescale in chemostat-grown R. eutropha cultures. A sharp increase in mRNA levels for tfdA, tfdCDEF-B, tfdDIICIIEIIFII-BII and tfdK was detected between 2 and 13 min after exposure to 2,4-D. This response time was not dependent on the 2,4-D concentration. The genes tfdA, tfdCD and tfdDIICII were expressed immediately upon induction, whereas tfdB, tfdBII and tfdK mRNAs could be detected only around 10 min later. The number of tfd mRNA transcripts per cell was estimated to be around 200-500 during maximal expression, after which they decreased to between 1 and 30 depending on the 2,4-D concentration used for induction. Unlike the mRNAs, the specific activity of the 2,4-D pathway enzyme chlorocatechol 1,2-dioxygenase did not increase sharply but accumulated to a steady-state plateau, which was dependent on the 2, 4-D concentration in the medium. At 1 mM 2,4-D, several oscillations in mRNA levels were observed before steady-state expression was reached, which was caused by transient accumulation of the first pathway intermediate, 2,4-dichlorophenol, to toxic concentrations. Expression of tfdR and tfdS, the (identical) regulatory genes for the tfd pathway remained low and essentially unchanged during the entire adaptation phase.
Collapse
Affiliation(s)
- J H Leveau
- Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Swiss Federal Institute for Technology (ETH), Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
108
|
Panke, Meyer, Huber, Witholt, Wubbolts. An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 1999; 65:2324-32. [PMID: 10347009 PMCID: PMC91344 DOI: 10.1128/aem.65.6.2324-2332.1999] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1999] [Accepted: 03/23/1999] [Indexed: 11/20/2022] Open
Abstract
Membrane-located monooxygenase systems, such as the Pseudomonas putida mt-2-derived xylene oxygenase, are attractive for challenging transformations of apolar compounds, including enantiospecific epoxidations, but are difficult to synthesize at levels that are useful for application to biotechnological processes. In order to construct efficient biocatalysis strains, we utilized the alkane-responsive regulatory system of the OCT plasmid-located alk genes of Pseudomonas oleovorans GPo1, a very attractive system for recombinant biotransformation processes. Determination of the nucleotide sequence of alkS, whose activated gene product positively regulates the transcription of the structural genes alkBFGHJKL, on a 3.7-kb SalI-HpaI OCT plasmid fragment was completed, and the N-terminal amino acid sequence of an AlkS-LacZ fusion protein was found to be consistent with the predicted DNA sequence. The alkS gene and the alkBp promoter were assembled into a convenient alkane-responsive genetic expression cassette which allowed expression of the xylene oxygenase genes in a recombinant Escherichia coli strain at a specific activity of 91 U per g (dry weight) of cells when styrene was the substrate. This biocatalyst was used to produce (S)-styrene oxide in two-liquid-phase cultures. Volumetric productivities of more than 2 g of styrene oxide per h per liter of aqueous phase were obtained; these values represented a fivefold improvement compared with previous results.
Collapse
Affiliation(s)
- Panke
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
109
|
Rettberg P, Baumstark-Khan C, Bandel K, Ptitsyn LR, Horneck G. Microscale application of the SOS-LUX-TEST as biosensor for genotoxic agents. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(99)00049-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
110
|
Shetty RS, Ramanathan S, Badr IH, Wolford JL, Daunert S. Green fluorescent protein in the design of a living biosensing system for L-arabinose. Anal Chem 1999; 71:763-8. [PMID: 10051845 DOI: 10.1021/ac9811928] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analysis of monosaccharides is typically performed using analytical systems that involve a separation step followed by a detection step. The separation step is usually necessary because of the high degree of structural similarity between different monosaccharides. A novel sensing system for monosaccharides is described here in which living bacteria were designed to detect a model monosaccharide, L-arabinose, without the need for a separation step. In such sensing systems, analytes are detected by employing the selective recognition properties found in certain bacterial proteins. These systems are designed so that a reporter protein is expressed by the bacteria in response to the analyte. The concentration of the analyte can be related to the signal generated by the reporter protein. In the sensing system described here, the green fluorescent protein (GFP) was used as the reporter protein. L-Arabinose concentrations can be determined by monitoring the fluorescence emitted by the bacteria at 509 nm after excitation of GFP at 395 nm. The system can detect L-arabinose at concentrations as low as 5 x 10(-7) M and is selective over D-arabinose, the stereoisomer of the analyte, as well as over a variety of pentose and hexose sugars.
Collapse
Affiliation(s)
- R S Shetty
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
111
|
Ben-Israel O, Ben-Israel H, Ulitzur S. Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl Environ Microbiol 1998; 64:4346-52. [PMID: 9797288 PMCID: PMC106650 DOI: 10.1128/aem.64.11.4346-4352.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The luxCDABE bioluminescence genes of the Vibrio fischeri lux system have been used as a reporter system for different stress and regulatory promoters of Escherichia coli. Selected E. coli strains carrying lux genes fused to different promoters were exposed to various toxic chemicals, and the recorded luminescence was used for the characterization of the biologic signature of each compound. Analysis of these data with the aid of a proper algorithm allowed quantitative and qualitative assessment of toxic chemicals. Of the 25 tested chemicals, 23 were identified by this novel strategy in a 3-h procedure. This system can also be adapted for the identification of simple mixtures of toxic agents when the biologic signatures of the individual compounds are known. This biologic recognition strategy also provides a tool for evaluating the degree of similarity between the modes of action of different toxic agents.
Collapse
Affiliation(s)
- O Ben-Israel
- Department of Food Engineering and Biotechnology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
112
|
Abstract
Recent technical developments in the field of molecular biology and microsensors are beginning to enable microbiologists to study the abundance, localization and activity of microorganisms in situ. The various new methods on their own bear high potential but it is the combination of studies on structure and function of microbial communities that will yield the most detailed insights in the way microorganisms operate in nature.
Collapse
Affiliation(s)
- R Amann
- Junior Group for Molecular Ecology, Max-Planck-Institut für marine Mikrobiologie, Celsiusstrasse 1, D-28359 Bremen, Germany.
| | | |
Collapse
|