101
|
Abstract
Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host's overall health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms leading to these changes. There are still significant knowledge gaps which need to be filled before meaningful progress can be made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review aims to discuss our current knowledge as well as highlight areas requiring further investigation.
Collapse
|
102
|
Ferreira MR, Muls A, Dearnaley DP, Andreyev HJN. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol 2014; 15:e139-47. [PMID: 24599929 DOI: 10.1016/s1470-2045(13)70504-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New gastrointestinal symptoms are frequent after pelvic radiotherapy and can greatly affect the quality of life of cancer survivors. The effect of radiation on the intestinal microbiota, and the clinical implications of a modified microbial balance after radiotherapy are now beginning to emerge. In this Personal View, we show the importance of the microbiota for intestinal homoeostasis, and discuss the similarity between inflammatory bowel disease, which has been extensively researched, and radiation-induced gastrointestinal toxicity. By use of microbiota profiles for risk assessment and manipulation of the intestinal flora for prevention and treatment of radiation, enteropathy could become a reality and would be of substantial relevance to the increasing numbers of long-term cancer survivors.
Collapse
Affiliation(s)
- Miguel R Ferreira
- Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK; Instituto Gulbenkian Ciencia, Oeiras, Portugal.
| | - Ann Muls
- Royal Marsden NHS Foundation Trust, London, UK
| | - David P Dearnaley
- Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | | |
Collapse
|
103
|
Yamada T, Shimizu K, Ogura H, Asahara T, Nomoto K, Yamakawa K, Hamasaki T, Nakahori Y, Ohnishi M, Kuwagata Y, Shimazu T. Rapid and Sustained Long-Term Decrease of Fecal Short-Chain Fatty Acids in Critically Ill Patients With Systemic Inflammatory Response Syndrome. JPEN J Parenter Enteral Nutr 2014; 39:569-77. [PMID: 24711120 DOI: 10.1177/0148607114529596] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The gut is an important target organ for injury after severe insult. Short-chain fatty acids (SCFAs) are end-products of fermentation of dietary fibers by anaerobic microbiota. They are related to intestinal energy, motility, and transport and to protective effects against infection and inflammation. However, there are few clinical data on SCFAs in critically ill patients. We evaluated serial change in fecal SCFAs in patients with severe systemic inflammatory response syndrome (SIRS). PATIENTS AND METHODS This study included 140 intensive care unit (ICU) patients who fulfilled the criteria of SIRS and had a serum C-reactive protein level of >10 mg/dL. A fecal sample was used for quantitative measurement of fecal SCFA (butyrate, propionate, and acetate) concentrations by high-performance liquid chromatography. Fecal SCFAs were evaluated weekly for 6 weeks after admission. Data obtained from patients were compared with corresponding data from healthy volunteers. RESULTS SIRS resulted from infection in 78 patients, trauma in 30, burns in 12, and other causes in 20. Fecal concentrations of butyrate, propionate, and acetate in these patients decreased significantly compared with those in healthy volunteers and remained low throughout the 6 weeks of the patients' ICU stay. Fecal concentrations of SCFAs in the patients with gastrointestinal complications, including enteritis and dysmotility, were lower than those in the patients without gastrointestinal complications. CONCLUSIONS Concentrations of fecal SCFAs in patients with severe SIRS were significantly lower than those in healthy volunteers over a 6-week period. Maintenance of SCFAs may have therapeutic potential to prevent gastrointestinal complications in critically ill patients.
Collapse
Affiliation(s)
- Tomoki Yamada
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, Osaka, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, Osaka, Japan
| | - Takashi Asahara
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Koji Nomoto
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Kazuma Yamakawa
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, Osaka, Japan
| | - Toshimitsu Hamasaki
- Department of Biomedical Statistics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasutaka Nakahori
- Department of Emergency and Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, Osaka, Japan
| | - Yasuyuki Kuwagata
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Hirakata-City, Osaka, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, Osaka, Japan
| |
Collapse
|
104
|
Kotla NG, Gulati M, Singh SK, Shivapooja A. Facts, fallacies and future of dissolution testing of polysaccharide based colon-specific drug delivery. J Control Release 2014; 178:55-62. [DOI: 10.1016/j.jconrel.2014.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/30/2023]
|
105
|
Affiliation(s)
- Joël Doré
- INRA UMR1319 Micalis Jouy-en-Josas, 78350 France E-mail:
| | | |
Collapse
|
106
|
Brugère JF, Mihajlovski A, Missaoui M, Peyret P. Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Rev Mol Diagn 2014; 9:353-65. [DOI: 10.1586/erm.09.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
107
|
Komen N, Slieker J, Willemsen P, Mannaerts G, Pattyn P, Karsten T, de Wilt H, van der Harst E, van Leeuwen W, Decaestecker C, Jeekel H, Lange JF. Polymerase chain reaction for Enterococcus faecalis in drain fluid: the first screening test for symptomatic colorectal anastomotic leakage. The Appeal-study: analysis of parameters predictive for evident anastomotic leakage. Int J Colorectal Dis 2014; 29:15-21. [PMID: 24122105 DOI: 10.1007/s00384-013-1776-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE With current diagnostic methods, the majority of patients with symptomatic colorectal anastomotic leakage(CAL) is identified approximately 1 week after operation.The aim of this study is to determine whether real-time polymerase chain reaction (RT-PCR) for detection of Escherichia coli and Enterococcus faecalis on drain fluid can serve as a screening test for CAL in the early postoperative phase. METHODS All patients included in this multicenter prospective observational study underwent left-sided colorectal resection for both malignant and benign diseases with construction of an anastomosis. In all patients, an intra-abdominal drain was placed during operation. During the first five postoperative days, drain fluid was processed for RT-PCR. The quantitative results of the RT-PCR on days 2 to 5 were compared to the results of day 1 in order to detect concentration changes. RESULTS In total, 243 patients, with both benign and malignant diseases, were included of whom 19 (7.8 %) developed symptomatic CAL. An increase in E. coli concentration was found insignificantly more patients with CAL on day 4 and 5 [p =0.0004; diagnostic odds ratio (DOR) 7.9]. For E. faecalis, this result was found for days 2, 3, and 4 (p <0.003) with highest DOR on day 3 (31.6). Sensitivity and negative predictive values were 92.9 and 98.7 %, respectively, virtually ruling out CAL in case of negative test results on the third postoperative day. CONCLUSION Quantitative PCR for E. faecalis performed on drain fluid may be an objective, affordable and fast screening tool for symptomatic colorectal anastomotic leakage.
Collapse
|
108
|
Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol 2014; 60:197-209. [PMID: 23993913 DOI: 10.1016/j.jhep.2013.07.044] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/20/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Reiner Wiest
- Department Gastroenterology, Inselspital, University Hospital, Bern 3010, Switzerland.
| | - Melissa Lawson
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, Bern 3010, Switzerland
| | - Markus Geuking
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, Bern 3010, Switzerland
| |
Collapse
|
109
|
Yadav V, Gaisford S, Merchant HA, Basit AW. Colonic bacterial metabolism of corticosteroids. Int J Pharm 2013; 457:268-74. [DOI: 10.1016/j.ijpharm.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 12/31/2022]
|
110
|
Rinttilä T, Apajalahti J. Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2013-00742] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
111
|
Bao S, Zhu L, Zhuang Q, Wang L, Xu PX, Itoh K, Holzman IR, Lin J. Distribution dynamics of recombinant Lactobacillus in the gastrointestinal tract of neonatal rats. PLoS One 2013; 8:e60007. [PMID: 23544119 PMCID: PMC3609735 DOI: 10.1371/journal.pone.0060007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates.
Collapse
Affiliation(s)
- Sujin Bao
- Saint James School of Medicine, Bonaire, The Netherlands Antilles
- Yuying Children’s Hospital, Wenzhou Medical College, Wenzhou, China
| | - Libin Zhu
- Yuying Children’s Hospital, Wenzhou Medical College, Wenzhou, China
| | - Qiang Zhuang
- The First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Lucia Wang
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pin-Xian Xu
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Keiji Itoh
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ian R. Holzman
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jing Lin
- Yuying Children’s Hospital, Wenzhou Medical College, Wenzhou, China
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
112
|
Abstract
The human appendix has historically been considered a vestige of evolutionary development with an unknown function. While limited data are available on the microbial composition of the appendix, it has been postulated that this organ could serve as a microbial reservoir for repopulating the gastrointestinal tract in times of necessity. We aimed to explore the microbial composition of the human appendix, using high-throughput sequencing of the 16S rRNA gene V4 region. Seven patients, 5 to 25 years of age, presenting with symptoms of acute appendicitis were included in this study. Results showed considerable diversity and interindividual variability among the microbial composition of the appendix samples. In general, however, Firmicutes was the dominant phylum, with the majority of additional sequences being assigned at various levels to Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. Despite the large diversity in the microbiota found within the appendix, however, a few major families and genera were found to comprise the majority of the sequences present. Interestingly, also, certain taxa not generally associated with the human intestine, including the oral pathogens Gemella, Parvimonas, and Fusobacterium, were identified among the appendix samples. The prevalence of genera such as Fusobacterium could also be linked to the severity of inflammation of the organ. We conclude that the human appendix contains a robust and varied microbiota distinct from the microbiotas in other niches within the human microbiome. The microbial composition of the human appendix is subject to extreme variability and comprises a diversity of biota that may play an important, as-yet-unknown role in human health. There are currently limited data available on the microbial composition of the human appendix. It has been suggested, however, that it may serve as a “safe house” for commensal bacteria that can reinoculate the gut at need. The present study is the first comprehensive view of the microbial composition of the appendix as determined by high-throughput sequencing. We have determined that the human appendix contains a wealth of microbes, including members of 15 phyla. Important information regarding the associated bacterial diversity of the appendix which will help determine the role, if any, the appendix microbiota has in human health is presented.
Collapse
|
113
|
Perinatal pet exposure, faecal microbiota, and wheezy bronchitis: is there a connection? ISRN ALLERGY 2013; 2013:827934. [PMID: 23724248 PMCID: PMC3658390 DOI: 10.1155/2013/827934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
Background. The hygiene hypothesis suggests that high hygiene standards have led to an immune dysfunction and an increase in allergic diseases. Farming-related exposures are associated with a decreased risk of asthma. Since the gut microbiota may be a pivotal component in the hygiene hypothesis, we studied whether perinatal exposure to pets, doctor's diagnosed wheezy bronchitis (WB), and compositional changes in the gut microbiota are interrelated among urban infants. Methods. Data were collected prospectively from a mother-infant nutrition study. Data on perinatal pet ownership, WB, and the microbiota composition of faecal samples of the infants assessed by quantitative PCR at 1 month were compared. Results. None of the 30 infants exposed to pets had suffered from WB by 24 months, whereas 15 of the 99 (15%) nonexposed infants had had WB (P = 0.03). The counts of Bifidobacterium longum were higher in samples (n = 17) from nonwheezing infants with pet exposure compared to those (n = 10) in wheezing infants without pet exposure (8.59/10.44 versus 5.94/9.86, resp. (median/upper limit of range, bacteria(log)/g of stool); P = 0.02). B. breve was more abundant in the wheezing infants (P = 0.02).
Collapse
|
114
|
Bosch G, Wrigglesworth DJ, Cone JW, Pellikaan WF, Hendriks W. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end products1. J Anim Sci 2013; 91:259-67. [DOI: 10.2527/jas.2012-5262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G. Bosch
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - D. J. Wrigglesworth
- WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, United Kingdom
| | - J. W. Cone
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - W.H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University,3508 TD Utrecht, the Netherlands
| |
Collapse
|
115
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|
116
|
Enterohemorrhagic Escherichia coli O157:H7 survival in an in vitro model of the human large intestine and interactions with probiotic yeasts and resident microbiota. Appl Environ Microbiol 2012. [PMID: 23204410 DOI: 10.1128/aem.03303-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This is the first report on the fate of enterohemorrhagic Escherichia coli O157:H7 in simulated human colonic conditions. The pathogen was progressively eliminated from the bioreactor and did not modify the major populations of resident microbiota. The coadministration of the Saccharomyces cerevisiae CNCM I-3856 probiotic strain led to a significant increase in acetate production but did not reduce pathogen viability.
Collapse
|
117
|
Nelson TM, Rogers TL, Carlini AR, Brown MV. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ Microbiol 2012; 15:1132-45. [PMID: 23145888 DOI: 10.1111/1462-2920.12022] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/27/2012] [Accepted: 10/08/2012] [Indexed: 02/03/2023]
Abstract
The gut microbiota of mammals underpins the metabolic capacity and health of the host. Our understanding of what influences the composition of this community has been limited primarily to evidence from captive and terrestrial mammals. Therefore, the gut microbiota of southern elephant seals, Mirounga leonina, and leopard seals, Hydrurga leptonyx, inhabiting Antarctica were compared with captive leopard seals. Each seal exhibited a gut microbiota dominated by four phyla: Firmicutes (41.5 ± 4.0%), Fusobacteria (25.6 ± 3.9%), Proteobacteria (17.0 ± 3.2%) and Bacteroidetes (14.1 ± 1.7%). Species, age, sex and captivity were strong drivers of the composition of the gut microbiota, which can be attributed to differences in diet, gut length and physiology and social interactions. Differences in particular prey items consumed by seal species could contribute to the observed differences in the gut microbiota. The longer gut of the southern elephant seal provides a habitat reduced in available oxygen and more suitable to members of the phyla Bacteroidetes compared with other hosts. Among wild seals, 16 'core' bacterial community members were present in the gut of at least 50% of individuals. As identified between southern elephant seal mother-pup pairs, 'core' members are passed on via vertical transmission from a young age and persist through to adulthood. Our study suggests that these hosts have co-evolved with their gut microbiota and core members may provide some benefit to the host, such as developing the immune system. Further evidence of their strong evolutionary history is provided with the presence of 18 shared 'core' members in the gut microbiota of related seals living in the Arctic. The influence of diet and other factors, particularly in captivity, influences the composition of the community considerably. This study suggests that the gut microbiota has co-evolved with wild mammals as is evident in the shared presence of 'core' members.
Collapse
Affiliation(s)
- Tiffanie M Nelson
- Evolution and Ecology Research Centre, University of New South Wales, Kensington, New South Wales, Australia.
| | | | | | | |
Collapse
|
118
|
Dave M, Higgins PD, Middha S, Rioux KP. The human gut microbiome: current knowledge, challenges, and future directions. Transl Res 2012; 160:246-57. [PMID: 22683238 DOI: 10.1016/j.trsl.2012.05.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/14/2022]
Abstract
The Human Genome Project was completed a decade ago, leaving a legacy of process, tools, and infrastructure now being turned to the study of the microbes that reside in and on the human body as determinants of health and disease, and has been branded "The Human Microbiome Project." Of the various niches under investigation, the human gut houses the most complex and abundant microbial community and is an arena for important host-microbial interactions that have both local and systemic impact. Initial studies of the human microbiome have been largely descriptive, a testing ground for innovative molecular techniques and new hypotheses. Methods for studying the microbiome have quickly evolved from low-resolution surveys of microbial community structure to high-definition description of composition, function, and ecology. Next-generation sequencing technologies combined with advanced bioinformatics place us at the doorstep of revolutionary insight into the composition, capability, and activity of the human intestinal microbiome. Renewed efforts to cultivate previously "uncultivable" microbes will be important to the overall understanding of gut ecology. There remain numerous methodological challenges to the effective study and understanding of the gut microbiome, largely relating to study design, sample collection, and the number of predictor variables. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, and bioinformaticians is the ideal paradigm for success in this field. Meaningful interpretation of the gut microbiome requires that host genetic and environmental influences be controlled or accounted for. Understanding the gut microbiome in healthy humans is a foundation for discovering its influence in various important gastrointestinal and nutritional diseases (eg, inflammatory bowel disease, diabetes, and obesity), and for rational translation to human health gains.
Collapse
Affiliation(s)
- Maneesh Dave
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
119
|
Garcia-Mazcorro JF, Dowd SE, Poulsen J, Steiner JM, Suchodolski JS. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen 2012; 1:340-7. [PMID: 23170232 PMCID: PMC3496977 DOI: 10.1002/mbo3.36] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 01/01/2023] Open
Abstract
Temporal variations of intestinal microorganisms have been investigated in humans, but limited information is available for other animal species. The aim of the study was to evaluate the abundance and short-term temporal variability of fecal microbiota in dogs. Two fecal samples were collected (15 days apart) from six healthy dogs. The microbiota was evaluated using fluorescence in situ hybridization (FISH) and 454-pyrosequencing targeting the 16S rRNA and its gene. Pyrosequencing revealed 15 families comprising >80% of all microbiota, over time intraindividual coefficients of variation (%CV) ranged from 2% to 141% (median: 55%). In contrast, the interindividual %CV ranged from 62% to 230% (median: 145%). Relative proportions of Faecalibacterium (important for intestinal health) and Subdoligranulum were low (two dogs harbored 4-7% of Subdoligranulum, the remaining dogs had <1% of either genus). Conversely, FISH revealed that Faecalibacterium comprised a median of 5% of total counts (range: 0-8%, probe Fprau645). A novel FISH probe (Faecali 698) was tested that, compared with Fprau645, can detect in silico a similar percentage of Faecalibacterium but higher proportions of Subdoligranulum. This probe revealed a high percentage of Faecalibacterium-Subdoligranulum (median: 16% of total counts). Future studies should consider the observed variability and discrepancies in microbial abundance between FISH and 454-pyrosequencing.
Collapse
Affiliation(s)
- Jose F Garcia-Mazcorro
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University College Station, TX
| | | | | | | | | |
Collapse
|
120
|
Abstract
Colonic gases are among the most tangible features of digestion, yet physicians are typically unable to offer long-term relief from clinical complaints of excessive gas. Studies characterizing colonic gases have linked changes in volume or composition with bowel disorders and shown hydrogen gas (H(2)), methane, hydrogen sulphide, and carbon dioxide to be by-products of the interplay between H(2)-producing fermentative bacteria and H(2) consumers (reductive acetogens, methanogenic archaea and sulphate-reducing bacteria [SRB]). Clinically, H(2) and methane measured in breath can indicate lactose and glucose intolerance, small intestinal bacterial overgrowth and IBS. Methane levels are increased in patients with constipation or IBS. Hydrogen sulphide is a by-product of H(2) metabolism by SRB, which are ubiquitous in the colonic mucosa. Although higher hydrogen sulphide and SRB levels have been detected in patients with IBD, and to a lesser extent in colorectal cancer, this colonic gas might have beneficial effects. Moreover, H(2) has been shown to have antioxidant properties and, in the healthy colon, physiological H(2) concentrations might protect the mucosa from oxidative insults, whereas an impaired H(2) economy might facilitate inflammation or carcinogenesis. Therefore, standardized breath gas measurements combined with ever-improving molecular methodologies could provide novel strategies to prevent, diagnose or manage numerous colonic disorders.
Collapse
|
121
|
Thapa D, Losa R, Zweifel B, Wallace RJ. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. MICROBIOLOGY-SGM 2012; 158:2870-2877. [PMID: 22878397 DOI: 10.1099/mic.0.061127-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microbiota of the intestinal tract plays an important role in colonic health, mediating many effects of dietary components on colonic health and during enteric infections. In the context of the increasing incidence of antibiotic resistance in gut bacteria, complementary therapies are required for the prevention and treatment of enteric infections. Here we report the potential application of essential oils (EO) and pure EO compounds to improve human gut health. Nerolidol, thymol, eugenol and geraniol inhibited growth of the pathogens Escherichia coli O157 : H7(VT(-)), Clostridium difficile DSM1296, Clostridium perfringens DSM11780, Salmonella typhimurium 3530 and Salmonella enteritidis S1400 at a half-maximal inhibitory concentration (IC(50)) varying from 50 to 500 p.p.m. Most EO showed greater toxicity to pathogens than to commensals. However, the beneficial commensal Faecalibacterium prausnitzii was sensitive to EO at similar or even lower concentrations than the pathogens. The EO showed dose-dependent effects on cell integrity, as measured using propidium iodide, of Gram-positive bacteria. These effects were not strongly correlated with growth inhibition, however, suggesting that cell membrane damage occurred but was not the primary cause of growth inhibition. Growth inhibition of Gram-negative bacteria, in contrast, occurred mostly without cell integrity loss. Principal component analysis showed clustering of responses according to bacterial species rather than to the identity of the EO, with the exception that responses to thymol and nerolidol clustered away from the other EO. In conclusion, the selective effects of some EO might have beneficial effects on gut health if chosen carefully for effectiveness against different species.
Collapse
Affiliation(s)
- Dinesh Thapa
- Gut Health Theme, Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | - R John Wallace
- Gut Health Theme, Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
122
|
Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 2012; 54:727-32. [PMID: 22134550 DOI: 10.1097/mpg.0b013e318241cfa8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Less than one-tenth of the carriers of the risk genes HLA-DQ2 or HLA-DQ8 develop celiac disease, suggesting that other genetic and environmental factors are important in the pathogenesis. The role of gut microbiota has been addressed previously with inconsistent findings. Our aim was to evaluate microbiota, its receptors (Toll-like receptors [TLRs]), and regulators of the TLRs in the small intestinal mucosa in celiac disease. METHODS Microbiota was analyzed by quantitative polymerase chain reaction (total bacteria and 10 bacterial group- and species-specific primers) and gene expression of interleukin-8 (IL-8), TLR2, TLR3, TLR4, TLR5, TLR9, and regulators of TLRs, Toll-interacting protein (TOLLIP), and single immunoglobulin IL-1R-related molecule, by relative quantitative reverse transcription-polymerase chain reaction in 10 children with celiac disease (untreated celiacs), 9 children with normal small intestinal mucosa (controls), and 6 adults with celiac disease with normal small intestinal mucosa after following a gluten-free diet (treated celiacs). RESULTS Small intestinal microbiota was comparable among controls, untreated celiacs, and treated celiacs. Expression of IL-8 mRNA, a marker of intestinal inflammation, was significantly increased in untreated celiacs as compared with treated celiacs (P=0.002) and controls (P=0.001). Expression of TLR-2 mRNA was significantly decreased in untreated (P=0.001) and treated (P=0.03) celiacs, whereas expression of TLR-9 mRNA was increased in untreated celiacs (P=0.001) as compared with controls. Expression of TOLLIP mRNA was downregulated in untreated celiacs as compared with controls (P=0.02). CONCLUSIONS Altered gene expression of TLR2, TLR9, and TOLLIP in small intestinal biopsies in celiac disease suggests that microbiota-associated factors may be important in the development of the disease.
Collapse
|
123
|
Wos-Oxley ML, Bleich A, Oxley AP, Kahl S, Janus LM, Smoczek A, Nahrstedt H, Pils MC, Taudien S, Platzer M, Hedrich HJ, Medina E, Pieper DH. Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes 2012; 3:234-49. [PMID: 22572831 PMCID: PMC3427216 DOI: 10.4161/gmic.19934] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The structure of the human gut microbial community is determined by host genetics and environmental factors, where alterations in its structure have been associated with the onset of different diseases. Establishing a defined human gut microbial community within inbred rodent models provides a means to study microbial-related pathologies, however, an in-depth comparison of the established human gut microbiota in the different models is lacking. We compared the efficiency of establishing the bacterial component of a defined human microbial community within germ-free (GF) rats, GF mice, and antibiotic-treated specific pathogen-free mice. Remarkable differences were observed between the different rodent models. While the majority of abundant human-donor bacterial phylotypes were established in the GF rats, only a subset was present in the GF mice. Despite the fact that members of the phylum Bacteriodetes were well established in all rodent models, mice enriched for phylotypes related to species of Bacteroides. In contrary to the efficiency of Clostridiales to populate the GF rat in relative proportions to that of the human-donor, members of Clostridia cluster IV only poorly colonize the mouse gut. Thus, the genetic background of the different recipient rodent systems (that is, rats and mice) strongly influences the nature of the populating human gut microbiota, determining each model's biological suitability.
Collapse
Affiliation(s)
- Melissa L. Wos-Oxley
- Microbial Interactions and Processes Research Group; Department of Medical Microbiology; Helmholtz Centre for Infection Research; Braunschweig, Germany,Correspondence to: Melissa L. Wos-Oxley,
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility; Hannover Medical School; Hannover, Germany
| | - Andrew P.A. Oxley
- Infection Immunology Research Group; Department of Medical Microbiology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group; Department of Medical Microbiology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Lydia M. Janus
- Institute for Laboratory Animal Science and Central Animal Facility; Hannover Medical School; Hannover, Germany
| | - Anna Smoczek
- Institute for Laboratory Animal Science and Central Animal Facility; Hannover Medical School; Hannover, Germany
| | - Hannes Nahrstedt
- Microbial Interactions and Processes Research Group; Department of Medical Microbiology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Marina C. Pils
- Central Animal Facility; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Stefan Taudien
- Genome Analysis; Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena, Germany
| | - Matthias Platzer
- Genome Analysis; Leibniz Institute for Age Research; Fritz Lipmann Institute; Jena, Germany
| | - Hans-Jürgen Hedrich
- Institute for Laboratory Animal Science and Central Animal Facility; Hannover Medical School; Hannover, Germany
| | - Eva Medina
- Infection Immunology Research Group; Department of Medical Microbiology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group; Department of Medical Microbiology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
124
|
García-Hernández J, Moreno Y, Amorocho CM, Hernández M. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 2012; 54:247-254. [PMID: 22188589 DOI: 10.1111/j.1472-765x.2011.03201.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. METHODS AND RESULTS direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. CONCLUSIONS This technique was successfully applied to detect viable cells in inoculated faeces. SIGNIFICANCE AND IMPACT OF THE STUDY Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria.
Collapse
Affiliation(s)
- J García-Hernández
- Departamento de Biotecnología, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | |
Collapse
|
125
|
Abstract
The current obesity epidemic clearly has many causes, including the impact of our modern world on both our diet and our lifestyle/physical activity. Although many interventions have been recommended, the prevalence of obesity continues to rise and has forced a re-evaluation of the potential interventions that could have an impact. In recent years it has been definitively shown that microbiota in the gastrointestinal tract are altered in obese individuals. Recent data provide a potential mechanistic understanding of the interactions between microbiota and obesity and allow potential new interventions to the control of obesity to be proposed.
Collapse
Affiliation(s)
- Kyle J. Wolf
- Department of Microbiology at the University of Alabama at Birmingham
| | - Robin G. Lorenz
- Department of Microbiology at the University of Alabama at Birmingham
- Department of Pathology at the University of Alabama at Birmingham
- Corresponding author: Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 602, Birmingham, AL 35294-2182, USA.
| |
Collapse
|
126
|
WATANABE H, ISONO Y. Survival of Bifidobacterium animalis subsp. lactis OPB-1 in the Gastrointestinal Tract after its Administration in a Milk-free Soybean Product and the Effect on Fecal Microbiota in Healthy Adults. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
127
|
García-Hernández J, Moreno Y, Amorocho C, Hernández M. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 2012. [DOI: 10.1111/j.1472-765x.2012.03201.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
128
|
Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 2011; 8:171-86. [PMID: 22211115 PMCID: PMC3248702 DOI: 10.7150/ijbs.8.171] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/04/2011] [Indexed: 12/14/2022] Open
Abstract
The intestinal messenger RNA expression signature is affected by the presence and composition of the endogenous microbiota, with effects on host physiology. The intestine is also characterized by a distinctive micronome. However, it is not known if microbes also impact intestinal gene expression epigenetically. We investigated if the murine caecal microRNA expression signature depends on the presence of the microbiota, and the potential implications of this interaction on intestinal barrier function. Three hundred and thirty four microRNAs were detectable in the caecum of germ-free and conventional male mice and 16 were differentially expressed, with samples from the two groups clustering separately based on their expression patterns. Through a combination of computational and gene expression analyses, including the use of our curated list of 527 genes involved in intestinal barrier regulation, 2,755 putative targets of modulated microRNAs were identified, including 34 intestinal barrier-related genes encoding for junctional and mucus layer proteins and involved in immune regulation. This study shows that the endogenous microbiota influences the caecal microRNA expression signature, suggesting that microRNA modulation is another mechanism through which commensal bacteria impact the regulation of the barrier function and intestinal homeostasis. Through microRNAs, the gut microbiota may impinge a much larger number of genes than expected, particularly in diseases where its composition is altered. In this perspective, abnormally expressed microRNAs could be considered as novel therapeutic targets.
Collapse
Affiliation(s)
- Natasha Singh
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Elize A. Shirdel
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- 3. Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Levi Waldron
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Regan-Heng Zhang
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Igor Jurisica
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- 3. Department of Medical Biophysics, University of Toronto, Ontario, Canada
- 4. Department of Computer Science, University of Toronto, Ontario, Canada
| | - Elena M. Comelli
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
129
|
Andersen AD, Mølbak L, Thymann T, Michaelsen KF, Lauritzen L. Dietary long-chain n-3 PUFA, gut microbiota and fat mass in early postnatal piglet development--exploring a potential interplay. Prostaglandins Leukot Essent Fatty Acids 2011; 85:345-51. [PMID: 21880476 DOI: 10.1016/j.plefa.2011.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 12/17/2022]
Abstract
Dietary n-3PUFA and gut bacteria, particularly Bacteroidetes, have been suggested to be related to adiposity. We investigated if n-3PUFA affected fat storage and cecal bacteria in piglets. Twenty-four 4-day-old piglets were allocated to formula rich in n-3PUFA (∼3E%) from fish oil (FO) or n-6PUFA from sunflower oil (SO) for 14 days. We assessed body weight, fat accumulation by dual-energy X-ray absorptiometry and microbial molecular fingerprints. Dietary PUFA-composition was reflected in higher erythrocyte n-3PUFA in the FO- than the SO-group (P<0.001). Principal component analysis revealed group differences in the overall microbiotic composition, which involved a larger Bacteroides community in the SO-group (P=0.02). There was no significant difference in body fat percentage and no relationship between fat accumulation and gut Bacteroides. Hence, this study does not support an impact of n-3PUFA or microbiota on fat accumulation during the postnatal maturation period. The impact of dietary PUFA on the gut Bacteroides warrants further investigation.
Collapse
Affiliation(s)
- A D Andersen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
130
|
Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A, Jabado O, Hirschberg DL, Lipkin WI. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 2011; 6:e24585. [PMID: 21949732 PMCID: PMC3174969 DOI: 10.1371/journal.pone.0024585] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/14/2011] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism.
Collapse
Affiliation(s)
- Brent L Williams
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 2011; 149:88-105. [DOI: 10.1016/j.ijfoodmicro.2011.06.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 02/06/2023]
|
132
|
Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Kleerebezem M, Zoetendal EG, Smidt H, Verstraete W, Van de Wiele T, Possemiers S. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol 2011; 13:2667-80. [PMID: 21883787 DOI: 10.1111/j.1462-2920.2011.02533.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endogenous gut microbiota affects the host in many ways. Prebiotics should favour beneficial intestinal microbes and thus improve host health. In this study, we investigated how a novel class of potential prebiotic long-chain arabinoxylans (LC-AX) and the well-established prebiotic inulin (IN) modulate the gut microbiota of humanized rats. Six weeks after axenic rats were inoculated with a human faecal microbiota, their colonic microbiota was similar to this inoculum (∼ 70%), whereas their caecal microbiota was enriched with Verrucomicrobia and Firmicutes concomitant with lower abundance of Bacteroidetes. Moreover, different Bifidobacterium species colonized the lumen (B. adolescentis) and mucus (B. longum and B. bifidum). Both LC-AX and IN increased SCFA levels and induced a shift from acetate towards health-promoting propionate and butyrate respectively. By applying a high-resolution phylogenetic micro-array (HITChip) at the site of fermentation (caecum), IN and LC-AX were shown to stimulate bacterial groups with known butyrate-producers (Roseburia intestinalis, Eubacterium rectale, Anaerostipes caccae) and bifidobacteria (B. longum) respectively. Prebiotic administration also resulted in lower caecal abundances of the mucin-degrading Akkermansia muciniphila and potentially more mucin production by the host. Both factors might explain the increased caecal mucin levels for LC-AX (threefold) and IN (sixfold). These mucins were degraded along the colon, resulting in high faecal abundances of Akkermansia muciniphila for LC-AX and especially IN-treated rats. Finally, the microbial changes caused an adaptation period for the host with less weight gain, after which the host fine-tuned the interaction with this altered microbiota. Our results demonstrate that next to IN, LC-AX are promising prebiotic compounds by stimulating production of health-promoting metabolites by specific microbes in the proximal regions. Further, prebiotic supplementation shifted mucin degradation to distal regions, where mucin-degraders may produce beneficial metabolites (e.g. propionate by Akkermansia muciniphila), so that prebiotics may potentially improve gut health along the entire length of the intestine.
Collapse
Affiliation(s)
- Pieter Van den Abbeele
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Ability of Bifidobacterium breve to grow on different types of milk: exploring the metabolism of milk through genome analysis. Appl Environ Microbiol 2011; 77:7408-17. [PMID: 21856831 DOI: 10.1128/aem.05336-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have investigated the occurrence of bifidobacteria in human milk samples, and we provide evidence regarding the predominance of members of the Bifidobacterium breve species in this environment. Moreover, evaluation of the growth capabilities and transcriptomic analyses of one representative isolate of this species, i.e., B. breve 4L, on different milk types were performed.
Collapse
|
134
|
Dave M, Johnson LA, Walk S, Young VB, Stidham RW, Chaudhary MN, FunNell J, Higgins PD. A randomised trial of sheathed versus standard forceps for obtaining uncontaminated biopsy specimens of microbiota from the terminal ileum. Gut 2011; 60:1043-9. [PMID: 21317176 PMCID: PMC4244887 DOI: 10.1136/gut.2010.224337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The study of intestinal microbiota has been revolutionised by the use of molecular methods, including terminal restriction fragment length polymorphism (T-RFLP) analysis. Microbiota studies of Crohn's disease patients have examined samples from stool or from the neoterminal ileum with a standard biopsy forceps, which could be contaminated by colonic bacteria when the forceps passes through the colonoscope channel. OBJECTIVE To determine whether sheathed biopsy forceps are able to obtain terminal ileal microbiota samples with less colonic bacterial contamination compared with unsheathed (standard) biopsy forceps. DESIGN Prospective randomised single-centre study. PATIENTS AND METHODS Four (paired) biopsy specimens were obtained from adjacent locations in the terminal ileum using the sheathed and standard forceps of 27 consecutive subjects undergoing colonoscopy and the microbiota were characterised using T-RFLP. The Bray-Curtis similarity index between samples (sheathed vs unsheathed forceps) was calculated within patients and significant differences were tested for across all patients. RESULTS There was not a significant difference in the microbial diversity of samples obtained using sheathed versus unsheathed forceps. The difference in microbial diversity between patients was much greater than the variability within patients by proximal versus distal site or by forceps type. LIMITATIONS T-RFLP is based on PCR amplification, so it is not always sensitive to rare bacterial species. CONCLUSION Standard unsheathed forceps appear to be sufficient for microbiota sample collection from the terminal ileum.
Collapse
Affiliation(s)
- Maneesh Dave
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, USA
| | - Laura A. Johnson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Seth Walk
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Ryan W. Stidham
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Meghana N. Chaudhary
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jessica FunNell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Peter D.R. Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
135
|
Mikkelsen HB, Larsen JO, Froh P, Nguyen TH. Quantitative assessment of macrophages in the muscularis externa of mouse intestines. Anat Rec (Hoboken) 2011; 294:1557-65. [PMID: 21809459 DOI: 10.1002/ar.21444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
Quantification of intestinal cells is challenging for several reasons: The cell densities vary throughout the intestines and may be age dependent. Some cell types are ramified and/or can change shape and size. Additionally, immunolabeling is needed for the correct identification of cell type. Immunolabeling is dependent on both up- and down-regulation of the antigen being labeled as well as on the primary and secondary antibodies, the fixation, and the enhancement procedures. Here, we provide a detailed description of immunolabeling of CD169(+) cells and major histocompatibility class II antigen (MHCII(+) ) cells and the subsequent quantification of these cells using design-based stereology in the intestinal muscularis externa. We used young (5-weeks-old) and adult (10-weeks-old) mice. Cell densities were higher in jejunum-ileum, when compared with colon. In jejunum/ileum, the cell densities increased in oral-anal direction in adults, whereas the densities were highest in the midpart in young animals. In colon, the cell densities decreased in oral-anal direction in both groups of animals. Except for the density of MHCII(+) cells in colon, the cell densities were highest in young animals. Densities of CD169(+) and MHCII(+) cells did not differ, except in the colon of young animals where the CD169(+) density was almost twice as high as the MHCII(+) density. CD169 and MHCII antigens seem to be expressed simultaneously by the same cell in jejunum/ileum. We conclude that cell densities depend on both the age of the mouse and on the location in the intestines.
Collapse
Affiliation(s)
- H B Mikkelsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
136
|
Dasanayake D, Richaud M, Cyr N, Caballero-Franco C, Pitroff S, Finn RM, Ausió J, Luo W, Donnenberg MS, Jardim A. The N-terminal amphipathic region of the Escherichia coli type III secretion system protein EspD is required for membrane insertion and function. Mol Microbiol 2011; 81:734-50. [PMID: 21651628 PMCID: PMC3254054 DOI: 10.1111/j.1365-2958.2011.07727.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. These pathogenic E. coli express a syringe-like protein machine, known as the type III secretion system (T3SS), used for the injection of virulence factors into the cytosol of the host epithelial cell. Breaching the epithelial plasma membrane requires formation of a translocation pore that contains the secreted protein EspD. Here we demonstrate that the N-terminal segment of EspD, encompassing residues 1-171, contains two amphipathic domains spanning residues 24-41 and 66-83, with the latter of these helices being critical for EspD function. Fluorescence and circular dichroism analysis revealed that, in solution, His₆-EspD₁₋₁₇₁ adopts a native disordered structure; however, on binding anionic small unilamellar vesicles composed of phosphatidylserine, His₆-EspD₁₋₁₇₁ undergoes a pH depended conformational change that increases the α-helix content of this protein approximately sevenfold. This change coincides with insertion of the region circumscribing Trp₄₇ into the hydrophobic core of the lipid bilayer. On the HeLa cell plasma membrane, His₆-EspD₁₋₁₇₁ forms a homodimer that is postulated to promote EspD-EspD oligomerization and pore formation. Complementation of ΔespD null mutant bacteria with an espDΔ66-83 gene showed that this protein was secreted but non-functional.
Collapse
Affiliation(s)
- Dayal Dasanayake
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Manon Richaud
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Normand Cyr
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Celia Caballero-Franco
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Sabrina Pitroff
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Ron M. Finn
- Department of Biochemistry, University of Victoria, Petch Bldg., Room 258, Victoria, BC, V8W 3P6, Canada
| | - Juan Ausió
- Department of Biochemistry, University of Victoria, Petch Bldg., Room 258, Victoria, BC, V8W 3P6, Canada
| | - Wensheng Luo
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Michael S. Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
137
|
Van Wey AS, Cookson AL, Roy NC, McNabb WC, Soboleva TK, Shorten PR. Bacterial biofilms associated with food particles in the human large bowel. Mol Nutr Food Res 2011; 55:969-78. [PMID: 21638777 DOI: 10.1002/mnfr.201000589] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/17/2011] [Indexed: 12/26/2022]
Abstract
Bacteria within the gastro-intestinal tract affect host function via production of short-chain fatty acids and synthesis of vitamins. Additionally, the commensal enteric bacteria modulate the immune system and provide protection from potentially pathogenic bacteria. Only recently heterogeneous bacterial biofilms were found to be associated with food particles within the intestinal tract. There are a number of studies investigating the formation and function of pathogenic and single-species biofilms, though few studies have investigated the dynamics of multispecies biofilms, especially with regard to food/microbial/host interactions. The scope of this review is to discuss the current knowledge of bacterial biofilms associated with food particles in the human large bowel, examine the established mathematical models depicting bacterial attachment, and elucidate key areas for further research.
Collapse
Affiliation(s)
- Amy S Van Wey
- Riddet Institute, Massey University, Palmerston North, New Zealand; AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | | | | | | | | |
Collapse
|
138
|
Guarner F. [The intestinal microbiota and inflammatory bowel disease]. GASTROENTEROLOGIA Y HEPATOLOGIA 2011; 34:147-54. [PMID: 21377761 DOI: 10.1016/j.gastrohep.2010.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/30/2010] [Indexed: 01/01/2023]
Abstract
The intestine hosts a complex ecosystem of microbial communities. Experimental data suggests that the microbiota has metabolic functions that contribute to nutrient and energy recovery from non-digestible substrates. Moreover, microbial colonization is essential for the normal development of the immune system and therefore seems to influence homeostasis between environmental antigen load and immune response. In genetically-susceptible individuals, an imbalance may give rise to diseases of immune dysregulation, including chronic inflammatory bowel diseases, in which there is an exaggerated immune response to harmless microbial antigens. Despite the availability of new molecular technologies, the normal composition of the human intestinal microbiota remains unknown. In the next few years, the results of international projects designed to determine the precise impact of the microbiota in various physiological and pathological processes will hopefully lead to major advances.
Collapse
Affiliation(s)
- Francisco Guarner
- Unidad de Investigación de Aparato Digestivo, Hospital Universitari Vall d'Hebron, Barcelona, España.
| |
Collapse
|
139
|
Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly. Br J Nutr 2011; 105:1235-44. [PMID: 21303568 DOI: 10.1017/s0007114510004770] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study aimed at assessing the counts and species distribution of intestinal lactobacilli and exploring if the data are associated with BMI and blood glucose level in healthy adults and elderly persons. The BMI (P < 0·01), the level of fasting blood glucose (P < 0·001) and the total counts of lactobacilli (P < 0·01 by bacteriology; P < 0·001 by real-time PCR) were higher in the elderly. The number of species in adults was lower (P < 0·05), who were more often colonised with Lactobacillus acidophilus (P = 0·031) and L. helveticus (P < 0·001). In contrast, L. plantarum (P = 0·035), L. paracasei (P < 0·001) and L. reuteri (P = 0·031) were more prevalent in the elderly. L. rhamnosus was detected in adults (P < 0·001), but not in any elderly person. BMI was associated with counts of lactobacilli, adjusted for age and sex (P = 0·008). The higher BMI in both groups of persons was associated with the presence of obligate homofermentative lactobacilli and L. sakei, both adjusted for age and sex. Plasma glucose values were positively correlated with BMI and negatively correlated with colonisation with L. paracasei (P = 0·0238) in adults and on the borderline with L. fermentum (P = 0·052) in the elderly. Thus, the species-specific PCR analysis of Lactobacillus sp. combined with viable plating data indicates substantial age-related structural differences in the intestinal lactobacilli communities. The higher counts of intestinal Lactobacillus sp. are associated with higher BMI and blood glucose content, while their specific fermentative groups and species of lactobacilli appear at different glucose levels both in adults and in the elderly.
Collapse
|
140
|
|
141
|
|
142
|
Petersen A, Bergström A, Andersen J, Hansen M, Lahtinen S, Wilcks A, Licht T. Analysis of the intestinal microbiota of oligosaccharide fed mice exhibiting reduced resistance to Salmonella infection. Benef Microbes 2010; 1:271-81. [DOI: 10.3920/bm2010.0016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Certain indigestible carbohydrates, known as prebiotics, are claimed to be beneficial for gut health through a selective stimulation of certain gut microbes including bifidobacteria. However, stimulation of such microbes does not necessarily imply a preventive effect against pathogen infection. We recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals. This difference was not seen for caecal profiles. Further analysis of faecal samples by real-time PCR demonstrated a significant increase in the Bacteroidetes phylum, the Bacteroides fragilis group and in Bifidobacterium spp. in mice fed FOS or XOS. The observed bifidogenic effect was more pronounced for XOS than for FOS. The Firmicutes phylum and the Clostridium coccoides group were reduced by both FOS and XOS. Surprisingly, no significant differences were detected between faecal samples collected before and after pathogen challenge in any of the groups. Furthermore, no effect of diets on caecal concentrations of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased level of bifidobacteria is thus not in itself preventive against Salmonella infection, since the same XOS or FOS-fed mice were previously reported to be more severely affected by Salmonella than control animals.
Collapse
Affiliation(s)
- A. Petersen
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - A. Bergström
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - J. Andersen
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - M. Hansen
- National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - S. Lahtinen
- Danisco Health & Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - A. Wilcks
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - T. Licht
- National Food Institute, Division of Microbiology and Risk Assessment, Technical University of Denmark, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| |
Collapse
|
143
|
Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK. Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Lab Anim 2010; 44:283-9. [PMID: 20713427 DOI: 10.1258/la.2010.010058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gut microbiota (GM) may influence disease expression in several animal models for inflammatory diseases. It may therefore seem reasonable to pursue reduction in the number of animals used for individual studies by reducing the variation in the GM. Previous studies have shown that the composition of the GM is related to genetics to a certain extent. We hypothesized that the GM similarity in a group of mice born by mothers not being sisters would be lower than that in a group born by mothers being sisters. The lower similarity could lead to clustering of the GM of mice born by non-sisters according to their mothers, while such clustering would not be visible if the mothers were sisters. We used 16S rRNA gene (V3 region) polymerase chain reaction-derived amplicon profiling by denaturing gradient gel electrophoresis (DGGE) to study the GM composition in caecum samples of 33 eight-week-old C57BL/6Sca mice from a breeding set-up with dam breeders that were sisters, as well as caecum samples of 35 eight-week-old C57BL/6Sca mice from a breeding set-up with dam breeders that were not sisters. Principal component analysis revealed a significant difference between the litters from the breeding set-up with dam breeders that were not sisters, whereas no significant difference between the litters based on the breeding set-up with dam breeders that were sisters was observed. The results obtained indicate that the systematic variation in the GM of inbred mice can be reduced by increasing the family relatedness of the breeding pairs.
Collapse
Affiliation(s)
- M R Hufeldt
- Department of Veterinary Disease Biology, Faculty of Life Sciences, Centre for Applied Laboratory Animal Research, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
144
|
Coudeyras S, Forestier C. Microbiote et probiotiques : impact en santé humaine. Can J Microbiol 2010; 56:611-50. [DOI: 10.1139/w10-052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All accessible mucous membranes of the human body are colonized by an abundant and diversified microbial flora called microbiota. Recent studies have shown that these microorganisms, long regarded as purely commensal, have essential beneficial effects on human health. Thus, numerous human ailments are linked to dysbiosis; that is, imbalances in the microflora composition. The administration of probiotic microorganisms could, in some situations, provide substantial relief from such disorders. These live microorganisms, which, according to the definition, confer a health benefit to the host when administered in adequate amounts, are often derived from human flora and belong mostly to lactic acid bacteria, in particular to the genus Lactobacillus . The constant improvement of knowledge of the role of human microbiota and the growing popularity of probiotics are now opening the door to new prophylactic and therapeutic strategies in human health.
Collapse
Affiliation(s)
- Sophie Coudeyras
- Université Clermont 1, UFR Pharmacie, Laboratoire de Bactériologie, Clermont Ferrand, France
| | - Christiane Forestier
- Université Clermont 1, UFR Pharmacie, Laboratoire de Bactériologie, Clermont Ferrand, France
| |
Collapse
|
145
|
Talbot C, Lytle C. Segregation of Na/H exchanger-3 and Cl/HCO3 exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G358-67. [PMID: 20466943 DOI: 10.1152/ajpgi.00151.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The colon is believed to absorb NaCl via the coupled operation of apical Na/H exchanger-3 (NHE3) and Cl/HCO(3) exchanger SLC26A3 (DRA). Efficient coupling requires that NHE3 and DRA operate in close proximity within common luminal and cytosolic microenvironments. Thus we examined whether these proteins coexist along the apical margin of surface enterocytes by quantitative immunofluorescence microscopy in consecutive colon segments from nonfasted mice and rats. The cecocolonic profiles of NHE3 and DRA expression were roughly inverse; NHE3 was highest in proximal colon (PC) and negligible in distal colon, whereas DRA was absent in early PC and highest in the late midcolon, and DRA was prominent in the cecum whereas NHE3 was not. NHE3 and DRA coexisted only in the middle third of the colon. The consequences of unpaired NHE3/DRA expression on mucosal surface (subscript MS) pH and Na(+) concentration ([Na(+)]) were assessed in nonfasted rats in situ using miniature electrodes. In the cecum, where only DRA is expressed, pH(MS) was approximately 7.5, markedly higher than underlaying stool (6.3), consistent with net HCO(3)(-) secretion. In the early PC, where NHE3 is not expressed with DRA, pH(MS) was acidic (6.2), consistent with unopposed H(+) secretion. [Na(+)](MS) was approximately 60 mM in the cecum, decreased along the PC to approximately 20 mM, and declined further to approximately 10 mM distally. Cl(-) was secreted into the PC, then reabsorbed distally. Our results suggest a model in which 1) unpaired DRA activity in the cecum maintains an alkaline mucosal surface that could neutralize fermentative H(+); 2) unpaired NHE3 activity in the early PC preserves an acidic mucosal surface that could energize short-chain fatty acid absorption; and 3) coupled NHE3/DRA activities in the midcolon allow for vigorous NaCl absorption at a neutral pH(MS).
Collapse
|
146
|
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010. [PMID: 20498852 PMCID: PMC2884025 DOI: 10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elena Biagi
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010; 5:e10667. [PMID: 20498852 PMCID: PMC2871786 DOI: 10.1371/journal.pone.0010667] [Citation(s) in RCA: 939] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Age-related physiological changes in the gastrointestinal tract, as well as modifications in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota, resulting in a greater susceptibility to infections. METHODOLOGY/PRINCIPAL FINDINGS By using the Human Intestinal Tract Chip (HITChip) and quantitative PCR of 16S rRNA genes of Bacteria and Archaea, we explored the age-related differences in the gut microbiota composition among young adults, elderly, and centenarians, i.e subjects who reached the extreme limits of the human lifespan, living for over 100 years. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment in facultative anaerobes, notably pathobionts. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammatory status, also known as inflammageing, as determined by a range of peripheral blood inflammatory markers. This may be explained by a remodelling of the centenarians' microbiota, with a marked decrease in Faecalibacterium prauznitzii and relatives, symbiotic species with reported anti-inflammatory properties. As signature bacteria of the long life we identified specifically Eubacterium limosum and relatives that were more than ten-fold increased in the centenarians. CONCLUSIONS/SIGNIFICANCE We provide evidence for the fact that the ageing process deeply affects the structure of the human gut microbiota, as well as its homeostasis with the host's immune system. Because of its crucial role in the host physiology and health status, age-related differences in the gut microbiota composition may be related to the progression of diseases and frailty in the elderly population.
Collapse
Affiliation(s)
- Elena Biagi
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Zhang H, Chen L. Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 2010; 37:4013-22. [PMID: 20306230 DOI: 10.1007/s11033-010-0060-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/05/2010] [Indexed: 01/01/2023]
Abstract
The aim of this study was to describe the microbial communities in the distal gut of wild wolves (Canis lupus). Fecal samples were collected from three healthy unrelated adult wolves captured at the nearby of Dalai Lake Nature Reserve in Inner Mongolia of China. The diversity of fecal bacteria was investigated by constructing PCR-amplified 16S rRNA gene clone libraries using the universal bacterial primers 27 F and 1493 R. A total of 307 non-chimeric near-full-length 16S rRNA gene sequences were analyzed and 65 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified. Seventeen OTUs (26%) showed less than 98% sequence similarity to 16S rRNA gene sequences were reported previously. Five different bacterial phyla were identified, with the majority of OTUs being classified within the phylum Firmicutes (60%), followed by Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria (4.6%). The majority of clones fell within the order Clostridiales (53.8% of OTUs). It was predominantly affiliated with five families: Lachnospiraceae was the most diverse bacterial family in this order, followed by Ruminococcaceae, Clostridiaceae, Peptococcaceae and Peptostreptococcaceae.
Collapse
Affiliation(s)
- Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, 273165, China.
| | | |
Collapse
|
149
|
Schwab C, Cristescu B, Boyce MS, Stenhouse GB, Gänzle M. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears. Can J Microbiol 2010; 55:1335-46. [PMID: 20029525 DOI: 10.1139/w09-083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.
Collapse
Affiliation(s)
- Clarissa Schwab
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
150
|
Grønvold AMR, L'Abée-Lund TM, Sørum H, Skancke E, Yannarell AC, Mackie RI. Changes in fecal microbiota of healthy dogs administered amoxicillin. FEMS Microbiol Ecol 2010; 71:313-26. [DOI: 10.1111/j.1574-6941.2009.00808.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|