101
|
Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis. Emerg Microbes Infect 2015; 4:e54. [PMID: 26954993 PMCID: PMC5176084 DOI: 10.1038/emi.2015.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022]
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease, does not produce lipopolysaccharide but expresses a large number of lipoproteins on its cell surface. These outer membrane lipoproteins are highly immunogenic and have been used for serodiagnosis of Lyme disease. Recent studies have shown that highly conserved cytosolic proteins such as enolase and elongation factor Tu (EF-Tu) unexpectedly localized on the surface of bacteria including B. burgdorferi, and surface-localized enolase has shown to contribute to the enzootic cycle of B. burgdorferi. In this study, we studied the immunogenicity, surface localization, and function of B. burgdorferi EF-Tu. We found that EF-Tu is highly immunogenic in mice, and EF-Tu antibodies were readily detected in Lyme disease patients. On the other hand, active immunization studies showed that EF-Tu antibodies did not protect mice from infection when challenged with B. burgdorferi via either needle inoculation or tick bites. Borrelial mouse-tick cycle studies showed that EF-Tu antibodies also did not block B. burgdorferi migration and survival in ticks. Consistent with these findings, we found that EF-Tu primarily localizes in the protoplasmic cylinder of spirochetes and is not on the surface of B. burgdorferi. Taken together, our studies suggest that B. burgdorferi EF-Tu is not surfaced exposed, but it is highly immunogenic and is a potential serodiagnostic marker for Lyme borreliosis.
Collapse
|
102
|
Backstedt BT, Buyuktanir O, Lindow J, Wunder EA, Reis MG, Usmani-Brown S, Ledizet M, Ko A, Pal U. Efficient Detection of Pathogenic Leptospires Using 16S Ribosomal RNA. PLoS One 2015; 10:e0128913. [PMID: 26091292 PMCID: PMC4474562 DOI: 10.1371/journal.pone.0128913] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/01/2015] [Indexed: 01/30/2023] Open
Abstract
Pathogenic Leptospira species cause a prevalent yet neglected zoonotic disease with mild to life-threatening complications in a variety of susceptible animals and humans. Diagnosis of leptospirosis, which primarily relies on antiquated serotyping methods, is particularly challenging due to presentation of non-specific symptoms shared by other febrile illnesses, often leading to misdiagnosis. Initiation of antimicrobial therapy during early infection to prevent more serious complications of disseminated infection is often not performed because of a lack of efficient diagnostic tests. Here we report that specific regions of leptospiral 16S ribosomal RNA molecules constitute a novel and efficient diagnostic target for PCR-based detection of pathogenic Leptospira serovars. Our diagnostic test using spiked human blood was at least 100-fold more sensitive than corresponding leptospiral DNA-based quantitative PCR assays, targeting the same 16S nucleotide sequence in the RNA and DNA molecules. The sensitivity and specificity of our RNA assay against laboratory-confirmed human leptospirosis clinical samples were 64% and 100%, respectively, which was superior then an established parallel DNA detection assay. Remarkably, we discovered that 16S transcripts remain appreciably stable ex vivo, including untreated and stored human blood samples, further highlighting their use for clinical detection of L. interrogans. Together, these studies underscore a novel utility of RNA targets, specifically 16S rRNA, for development of PCR-based modalities for diagnosis of human leptospirosis, and also may serve as paradigm for detection of additional bacterial pathogens for which early diagnosis is warranted.
Collapse
Affiliation(s)
- Brian T. Backstedt
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ozlem Buyuktanir
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Janet Lindow
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, United States of America
| | - Mitermayer G. Reis
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | - Michel Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Albert Ko
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Utpal Pal
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
103
|
A short-term Borrelia burgdorferi infection model identifies tissue tropisms and bloodstream survival conferred by adhesion proteins. Infect Immun 2015; 83:3184-94. [PMID: 26015482 DOI: 10.1128/iai.00349-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in the United States, is able to persist in the joint, heart, skin, and central nervous system for the lifetime of its mammalian host. Borrelia species achieve dissemination to distal sites in part by entry into and travel within the bloodstream. Much work has been performed in vitro describing the roles of many B. burgdorferi outer surface proteins in adhesion to host cell surface proteins and extracellular matrix components, although the biological relevance of these interactions is only beginning to be explored in vivo. A need exists in the field for an in vivo model to define the biological roles of B. burgdorferi adhesins in tissue-specific vascular interactions. We have developed an in vivo model of vascular interaction of B. burgdorferi in which the bacteria are injected intravenously and allowed to circulate for 1 h. This model has shown that the fibronectin binding protein BB0347 has a tropism for joint tissue. We also have shown an importance of the integrin binding protein, P66, in binding to vasculature of the ear and heart. This model also revealed unexpected roles for Borrelia adhesins BBK32 and OspC in bacterial burdens in the bloodstream. The intravenous inoculation model of short-term infection provides new insights into critical B. burgdorferi interactions with the host required for initial survival and tissue colonization.
Collapse
|
104
|
Rogovskyy AS, Casselli T, Tourand Y, Jones CR, Owen JP, Mason KL, Scoles GA, Bankhead T. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi. PLoS One 2015; 10:e0124268. [PMID: 25893989 PMCID: PMC4404307 DOI: 10.1371/journal.pone.0124268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Yvonne Tourand
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Cami R. Jones
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Jeb P. Owen
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Kathleen L. Mason
- Animal Disease Research Unit, USDA-ARS, Washington State University, Pullman, Washington, United States of America
| | - Glen A. Scoles
- Animal Disease Research Unit, USDA-ARS, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
105
|
Dunn JP, Kenedy MR, Iqbal H, Akins DR. Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 2015; 15:70. [PMID: 25887384 PMCID: PMC4377024 DOI: 10.1186/s12866-015-0411-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022] Open
Abstract
Background Like all diderm bacteria studied to date, Borrelia burgdorferi possesses a β-barrel assembly machine (BAM) complex. The bacterial BAM complexes characterized thus far consist of an essential integral outer membrane protein designated BamA and one or more accessory proteins. The accessory proteins are typically lipid-modified proteins anchored to the inner leaflet of the outer membrane through their lipid moieties. We previously identified and characterized the B. burgdorferi BamA protein in detail and more recently identified two lipoproteins encoded by open reading frames bb0324 and bb0028 that associate with the borrelial BamA protein. The role(s) of the BAM accessory lipoproteins in B. burgdorferi is currently unknown. Results Structural modeling of B. burgdorferi BB0028 revealed a distinct β-propeller fold similar to the known structure for the E. coli BAM accessory lipoprotein BamB. Additionally, the structural model for BB0324 was highly similar to the known structure of BamD, which is consistent with the prior finding that BB0324 contains tetratricopeptide repeat regions similar to other BamD orthologs. Consistent with BB0028 and BB0324 being BAM accessory lipoproteins, mutants lacking expression of each protein were found to exhibit altered membrane permeability and enhanced sensitivity to various antimicrobials. Additionally, BB0028 mutants also exhibited significantly impaired in vitro growth. Finally, immunoprecipitation experiments revealed that BB0028 and BB0324 each interact specifically and independently with BamA to form the BAM complex in B. burgdorferi. Conclusions Combined structural studies, functional assays, and co-immunoprecipitation experiments confirmed that BB0028 and BB0324 are the respective BamB and BamD orthologs in B. burgdorferi, and are important in membrane integrity and/or outer membrane protein localization. The borrelial BamB and BamD proteins both interact specifically and independently with BamA to form a tripartite BAM complex in B. burgdorferi. A working model has been developed to further analyze outer membrane biogenesis and outer membrane protein transport in this pathogenic spirochete.
Collapse
Affiliation(s)
- Joshua P Dunn
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
106
|
Molecular dissection of a Borrelia burgdorferi in vivo essential purine transport system. Infect Immun 2015; 83:2224-33. [PMID: 25776752 DOI: 10.1128/iai.02859-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi is dependent on purine salvage from the host environment for survival. The genes bbb22 and bbb23 encode purine permeases that are essential for B. burgdorferi mouse infectivity. We now demonstrate the unique contributions of each of these genes to purine transport and murine infection. The affinities of spirochetes carrying bbb22 alone for hypoxanthine and adenine were similar to those of spirochetes carrying both genes. Spirochetes carrying bbb22 alone were able to achieve wild-type levels of adenine saturation but not hypoxanthine saturation, suggesting that maximal hypoxanthine uptake requires the presence of bbb23. Moreover, the purine transport activity conferred by bbb22 was dependent on an additional distal transcriptional start site located within the bbb23 open reading frame. The initial rates of uptake of hypoxanthine and adenine by spirochetes carrying bbb23 alone were below the level of detection. However, these spirochetes demonstrated a measurable increase in hypoxanthine uptake over a 30-min time course. Our findings indicate that bbb22-dependent adenine transport is essential for B. burgdorferi survival in mice. The bbb23 gene was dispensable for B. burgdorferi mouse infectivity, yet its presence was required along with that of bbb22 for B. burgdorferi to achieve maximal spirochete loads in infected mouse tissues. These data demonstrate that both genes, bbb22 and bbb23, are critical for B. burgdorferi to achieve wild-type infection of mice and that the differences in the capabilities of the two transporters may reflect distinct purine salvage needs that the spirochete encounters throughout its natural infectious cycle.
Collapse
|
107
|
Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infect Immun 2015; 83:1765-77. [PMID: 25690096 DOI: 10.1128/iai.03097-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts.
Collapse
|
108
|
Ristow LC, Bonde M, Lin YP, Sato H, Curtis M, Wesley E, Hahn BL, Fang J, Wilcox DA, Leong JM, Bergström S, Coburn J. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol 2015; 17:1021-36. [PMID: 25604835 PMCID: PMC4478124 DOI: 10.1111/cmi.12418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
P66, a Borrelia burgdorferi surface protein with porin and integrin‐binding activities, is essential for murine infection. The role of P66 integrin‐binding activity in B. burgdorferi infection was investigated and found to affect transendothelial migration. The role of integrin binding, specifically, was tested by mutation of two amino acids (D205A,D207A) or deletion of seven amino acids (Del202–208). Neither change affected surface localization or channel‐forming activity of P66, but both significantly reduced binding to αvβ3. Integrin‐binding deficient B. burgdorferi strains caused disseminated infection in mice at 4 weeks post‐subcutaneous inoculation, but bacterial burdens were significantly reduced in some tissues. Following intravenous inoculation, the Del202–208 bacteria were below the limit of detection in all tissues assessed at 2 weeks post‐inoculation, but bacterial burdens recovered to wild‐type levels at 4 weeks post‐inoculation. The delay in tissue colonization correlated with reduced migration of the Del202–208 strains across microvascular endothelial cells, similar to Δp66 bacteria. These results indicate that integrin binding by P66 is important to efficient dissemination of B. burgdorferi, which is critical to its ability to cause disease manifestations in incidental hosts and to its maintenance in the enzootic cycle.
Collapse
Affiliation(s)
- Laura C Ristow
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Curtis
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erin Wesley
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth L Hahn
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Fang
- Department of Pediatrics, MACC Fund Research Center, Children's Research Institute, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - David A Wilcox
- Department of Pediatrics, MACC Fund Research Center, Children's Research Institute, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
109
|
Love AC, Schwartz I, Petzke MM. Induction of indoleamine 2,3-dioxygenase by Borrelia burgdorferi in human immune cells correlates with pathogenic potential. J Leukoc Biol 2015; 97:379-90. [PMID: 25420916 PMCID: PMC4304421 DOI: 10.1189/jlb.4a0714-339r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, the bacterial agent of Lyme disease, induces the production of type I IFNs by human DCs through TLR7 and TLR9 signaling. This type I IFN response occurs in a genotype-dependent manner, with significantly higher levels of IFN-α elicited by B. burgdorferi strains that have a greater capacity for causing disseminated infection. A B. burgdorferi strain that was previously shown to induce IFN-α was found to elicit significantly higher levels of IDO1 protein and its downstream metabolite, kynurenine, compared with a B. burgdorferi mutant that lacks a single linear plasmid (lp36); this mutant is unable to induce IFN-α and is severely attenuated for infectivity in mice. Production of IDO by mDC and pDC populations, present within human PBMCs, was concomitant with increased expression of the DC maturation markers, CD83 and CCR7. The defects in IDO production and expression of CD83 and CCR7 could be restored by complementation of the mutant with lp36. Maximal IDO production in response to the wild-type strain was dependent on contributions by both type I IFN and IFN-γ, the type II IFN. Induction of IDO was mediated by the same TLR7-dependent recognition of B. burgdorferi RNA that contributes to the production of type I IFNs by human DCs. The ability of IFN-α-inducing B. burgdorferi strains to stimulate production of IDO and kynurenines may be a mechanism that is used by the pathogen to promote localized immunosuppression and facilitate hematogenous dissemination.
Collapse
Affiliation(s)
- Andrea C Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Mary M Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
110
|
Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi. Appl Environ Microbiol 2014; 81:1038-46. [PMID: 25452278 DOI: 10.1128/aem.03657-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi.
Collapse
|
111
|
Elias AF. The Shodair Medical Genetics Department--recent past and future developments. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:381-6. [PMID: 25424535 DOI: 10.1002/ajmg.c.31417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Philip Pallister and John Opitz laid the ground work for a unique genetic service model in Montana that continues to flourish through ongoing support by the Montana Legislature, the Montana Department of Public Health and Human Services and the Shodair Foundation. At the heart of the model are clinical and laboratory genetic specialists based at Shodair Children's Hospital in Helena providing genetic care for patients through outreach clinics. Clinical services are supported by a state-of-the-art cytogenetics and molecular genetic laboratory as well a fetal genetic pathology program. Over the years, the reach of regular genetics clinics expanded to include large geographic areas including northwest (Kalispell), west central (Missoula), southwest (Bozeman, Butte), north central (Great Falls), and south central Montana (Billings). Building on the foundation of its world-renowned pioneers, the next generation of medical geneticists at Shodair carries the responsibility of integrating genomic medicine in the diagnosis and care of their patients, reducing inequality of services within Montana and partnering with colleagues across specialties to develop a more personalized practice of medicine.
Collapse
|
112
|
Kariu T, Sharma K, Singh P, Smith AA, Backstedt B, Buyuktanir O, Pal U. BB0323 and novel virulence determinant BB0238: Borrelia burgdorferi proteins that interact with and stabilize each other and are critical for infectivity. J Infect Dis 2014; 211:462-71. [PMID: 25139020 DOI: 10.1093/infdis/jiu460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have shown that Borrelia burgdorferi gene product BB0323 is essential for cell fission and pathogen persistence in vivo. Here we describe characterization of a conserved hypothetical protein annotated as BB0238, which specifically interacts with the N-terminal region of BB0323. We show that BB0238 is a subsurface protein, and similar to BB0323, exists in the periplasm and as a membrane-bound protein. Deletion of bb0238 in infectious B. burgdorferi did not affect microbial growth in vitro or survival in ticks, but the mutant was unable to persist in mice or transmit from ticks--defects that are restored on genetic complementation. Remarkably, BB0238 and BB0323 contribute to mutual posttranslational stability, because deletion of one causes dramatic reduction in the protein level of the other partner. Interference with the function of BB0238 or BB0323 and their interaction may provide novel strategies to combat B. burgdorferi infection.
Collapse
Affiliation(s)
- Toru Kariu
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Kavita Sharma
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Preeti Singh
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Alexis A Smith
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Brian Backstedt
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Ozlem Buyuktanir
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Utpal Pal
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| |
Collapse
|
113
|
Bacterial heterogeneity is a requirement for host superinfection by the Lyme disease spirochete. Infect Immun 2014; 82:4542-52. [PMID: 25114120 DOI: 10.1128/iai.01817-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In nature, mixed Borrelia burgdorferi infections are common and possibly can be acquired by either superinfection or coinfection. Superinfection by heterologous B. burgdorferi strains has been established experimentally, although the ability of homologous B. burgdorferi clones to superinfect a host has not been studied in detail. Information regarding any potential immune barriers to secondary infection also currently is unavailable. In the present study, the ability to superinfect various mouse models by homologous wild-type clones was examined and compared to superinfection by heterologous strains. To assess the ability of homologous B. burgdorferi clones to successfully superinfect a mouse host, primary- and secondary-infecting spirochetes were recovered via in vitro cultivation of collected blood or tissue samples. This was accomplished by generating two different antibiotic-resistant versions of the wild-type B31-A3 clone in order to distinguish superinfecting B. burgdorferi from primary-infecting spirochetes. The data demonstrate an inability of homologous B. burgdorferi to superinfect immunocompetent mice as opposed to heterologous strains. Attempts to superinfect different types of immunodeficient mice with homologous B. burgdorferi indicate that the murine innate immune system represents a major barrier to intrastrain superinfection. Consequently, the possibility of innate immunity as a driving force for B. burgdorferi heterogeneity during the enzootic cycle is discussed.
Collapse
|
114
|
Rego ROM, Bestor A, Štefka J, Rosa PA. Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi. PLoS One 2014; 9:e101009. [PMID: 24979342 PMCID: PMC4076273 DOI: 10.1371/journal.pone.0101009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naïve mice when these ticks next fed. Our results clearly demonstrate that the spirochete population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host. The experimental system that we have developed can be used to further explore the forces that shape the population of this vector-borne bacterial pathogen throughout its infectious cycle.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, ASCR, Biology Centre, České Budějovice, Czech Republic
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
115
|
Krupna-Gaylord MA, Liveris D, Love AC, Wormser GP, Schwartz I, Petzke MM. Induction of type I and type III interferons by Borrelia burgdorferi correlates with pathogenesis and requires linear plasmid 36. PLoS One 2014; 9:e100174. [PMID: 24945497 PMCID: PMC4063763 DOI: 10.1371/journal.pone.0100174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 05/23/2014] [Indexed: 12/28/2022] Open
Abstract
The capacity for Borrelia burgdorferi to cause disseminated infection in humans or mice is associated with the genotype of the infecting strain. The cytokine profiles elicited by B. burgdorferi clinical isolates of different genotype (ribosomal spacer type) groups were assessed in a human PBMC co-incubation model. RST1 isolates, which are more frequently associated with disseminated Lyme disease in humans and mice, induced significantly higher levels of IFN-α and IFN-λ1/IL29 relative to RST3 isolates, which are less frequently associated with disseminated infection. No differences in the protein concentrations of IFN-γ, IL-1β, IL-6, IL-8, IL-10 or TNF-α were observed between isolates of differing genotype. The ability of B. burgdorferi to induce type I and type III IFNs was completely dependent on the presence of linear plasmid (lp) 36. An lp36-deficient B. burgdorferi mutant adhered to, and was internalized by, PBMCs and specific dendritic cell (DC) subsets less efficiently than its isogenic B31 parent strain. The association defect with mDC1s and pDCs could be restored by complementation of the mutant with the complete lp36. The RST1 clinical isolates studied were found to contain a 2.5-kB region, located in the distal one-third of lp36, which was not present in any of the RST3 isolates tested. This divergent region of lp36 may encode one or more factors required for optimal spirochetal recognition and the production of type I and type III IFNs by human DCs, thus suggesting a potential role for DCs in the pathogenesis of B. burgdorferi infection.
Collapse
Affiliation(s)
- Michelle A. Krupna-Gaylord
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrea C. Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
116
|
Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi. PLoS One 2014; 9:e98338. [PMID: 24859001 PMCID: PMC4032328 DOI: 10.1371/journal.pone.0098338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/01/2014] [Indexed: 11/20/2022] Open
Abstract
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.
Collapse
|
117
|
Abstract
The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks. Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms involved in this process are not well understood. By determining how B. burgdorferi cycles between two very different environments, we can potentially establish novel ways to interfere with transmission and limit infection of this vector-borne pathogen. We are studying a regulatory protein called BBD18 that we recently described. We found that too much BBD18 interferes with the spirochete’s ability to establish infection in mice, whereas too little BBD18 appears to prevent colonization in ticks. Our study provides new insight into key elements of the infectious cycle of the Lyme disease spirochete.
Collapse
|
118
|
Dulebohn DP, Hayes BM, Rosa PA. Global repression of host-associated genes of the Lyme disease spirochete through post-transcriptional modulation of the alternative sigma factor RpoS. PLoS One 2014; 9:e93141. [PMID: 24671196 PMCID: PMC3966842 DOI: 10.1371/journal.pone.0093141] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is a vector-borne pathogen that transits between Ixodes ticks and vertebrate hosts. During the natural infectious cycle, spirochetes must globally adjust their transcriptome to survive in these dissimilar environments. One way B. burgdorferi accomplishes this is through the use of alternative sigma factors to direct transcription of specific genes. RpoS, one of only three sigma factors in B. burgdorferi, controls expression of genes required during tick-transmission and infection of the mammalian host. How spirochetes switch between different sigma factors during the infectious cycle has remained elusive. Here we establish a role for a novel protein, BBD18, in the regulation of the virulence-associated sigma factor RpoS. Constitutive expression of BBD18 repressed transcription of RpoS-dependent genes to levels equivalent to those observed in an rpoS mutant. Consistent with the global loss of RpoS-dependent transcripts, we were unable to detect RpoS protein. However, constitutive expression of BBD18 did not diminish the amount of rpoS transcript, indicating post-transcriptional regulation of RpoS by BBD18. Interestingly, BBD18-mediated repression of RpoS is independent of both the rpoS promoter and the 5’ untranslated region, suggesting a mechanism of protein destabilization rather than translational control. We propose that BBD18 is a novel regulator of RpoS and its activity likely represents a first step in the transition from an RpoS-ON to an RpoS-OFF state, when spirochetes transition from the host to the tick vector.
Collapse
Affiliation(s)
- Daniel P. Dulebohn
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| | - Beth M. Hayes
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
119
|
Yang X, Smith AA, Williams MS, Pal U. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. J Biol Chem 2014; 289:12813-22. [PMID: 24662290 DOI: 10.1074/jbc.m113.538272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ixodes scapularis ticks transmit a wide array of human and animal pathogens including Borrelia burgdorferi; however, how tick immune components influence the persistence of invading pathogens remains unknown. As originally demonstrated in Caenorhabditis elegans and later in Anopheles gambiae, we show here that an acellular gut barrier, resulting from the tyrosine cross-linking of the extracellular matrix, also exists in I. scapularis ticks. This dityrosine network (DTN) is dependent upon a dual oxidase (Duox), which is a member of the NADPH oxidase family. The Ixodes genome encodes for a single Duox and at least 16 potential peroxidase proteins, one of which, annotated as ISCW017368, together with Duox has been found to be indispensible for DTN formation. This barrier influences pathogen survival in the gut, as an impaired DTN in Doux knockdown or in specific peroxidase knockdown ticks, results in reduced levels of B. burgdorferi persistence within ticks. Absence of a complete DTN formation in knockdown ticks leads to the activation of specific tick innate immune pathway genes that potentially resulted in the reduction of spirochete levels. Together, these results highlighted the evolution of the DTN in a diverse set of arthropod vectors, including ticks, and its role in protecting invading pathogens like B. burgdorferi. Further understanding of the molecular basis of tick innate immune responses, vector-pathogen interaction, and their contributions in microbial persistence may help the development of new targets for disrupting the pathogen life cycle.
Collapse
Affiliation(s)
- Xiuli Yang
- From the Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland 20742 and
| | | | | | | |
Collapse
|
120
|
Evaluation of the Borrelia burgdorferi BBA64 protein as a protective immunogen in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:526-33. [PMID: 24501342 DOI: 10.1128/cvi.00824-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Borrelia burgdorferi bba64 gene product is a surface-localized lipoprotein synthesized within mammalian and tick hosts and is involved in vector transmission of disease. These properties suggest that BBA64 may be a vaccine candidate against Lyme borreliosis. In this study, protective immunity against B. burgdorferi challenge was assessed in mice immunized with the BBA64 protein. Mice developed a high-titer antibody response following immunization with soluble recombinant BBA64 but were not protected when challenged by needle inoculation of culture-grown spirochetes. Likewise, mice passively immunized with an anti-BBA64 monoclonal antibody were not protected against needle-inoculated organisms. BBA64-immunized mice were subjected to B. burgdorferi challenge by the natural route of a tick bite, but these trials did not demonstrate significant protective immunity in either outbred or inbred strains of mice. Lipidated recombinant BBA64 produced in Escherichia coli was assessed for possible improved elicitation of a protective immune response. Although inoculation with this antigen produced a high-titer antibody response, the lipidated BBA64 also was unsuccessful in protecting mice from B. burgdorferi challenge by tick bites. Anti-BBA64 antibodies raised in rats eradicated the organisms, as evidenced by in vitro borreliacidal assays, thus demonstrating the potential for BBA64 to be effective as a protective immunogen. However, passive immunization with the same monospecific rat anti-BBA64 polyclonal serum failed to provide protection against tick bite-administered challenge. These results reveal the challenges faced in not only identifying B. burgdorferi proteins with potential protective capability but also in producing recombinant antigens conducive to preventive therapies against Lyme borreliosis.
Collapse
|
121
|
Abstract
Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection.
Collapse
|
122
|
Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLoS Pathog 2013; 9:e1003567. [PMID: 24009501 PMCID: PMC3757035 DOI: 10.1371/journal.ppat.1003567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022] Open
Abstract
Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.
Collapse
Affiliation(s)
- Tisha Choudhury Ellis
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Sunny Jain
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Angelika K. Linowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Kelli Rike
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Micah Halpern
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Stephanie Kurhanewicz
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
123
|
Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 2013; 89:216-27. [PMID: 23692497 PMCID: PMC3713631 DOI: 10.1111/mmi.12271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2013] [Indexed: 12/21/2022]
Abstract
Borrelia burgdorferi alternates between ticks and mammals, requiring variable gene expression and protein production to adapt to these diverse niches. These adaptations include shifting among the major outer surface lipoproteins OspA, OspC, and VlsE at different stages of the infectious cycle. We hypothesize that these proteins carry out a basic but essential function, and that OspC and VlsE fulfil this requirement during early and persistent stages of mammalian infection respectively. Previous work by other investigators suggested that several B. burgdorferi lipoproteins, including OspA and VlsE, could substitute for OspC at the initial stage of mouse infection, when OspC is transiently but absolutely required. In this study, we assessed whether vlsE and ospA could restore infectivity to an ospC mutant, and found that neither gene product effectively compensated for the absence of OspC during early infection. In contrast, we determined that OspC production was required by B. burgdorferi throughout SCID mouse infection if the vlsE gene were absent. Together, these results indicate that OspC can substitute for VlsE when antigenic variation is unnecessary, but that these two abundant lipoproteins are optimized for their related but specific roles during early and persistent mammalian infection by B. burgdorferi.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
124
|
Borrelia burgdorferi linear plasmid 28-3 confers a selective advantage in an experimental mouse-tick infection model. Infect Immun 2013; 81:2986-96. [PMID: 23753630 DOI: 10.1128/iai.00219-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the bacterium that causes Lyme disease, has a unique segmented genome consisting of numerous linear and circular plasmids and a linear chromosome. Many of these genetic elements have been found to encode factors critical for B. burgdorferi to complete the infectious cycle. However, several plasmids remain poorly characterized, and their roles during infection with B. burgdorferi have not been elucidated. To more fully characterize the role of one of the four 28-kb linear plasmids, lp28-3, we generated strains specifically lacking lp28-3 and assayed the contribution of genes carried by lp28-3 to B. burgdorferi infection. We found that lp28-3 does not carry any genes that are strictly required for infection of a mouse or tick and that lp28-3-deficient spirochetes are competent at causing a disseminated infection. Interestingly, spirochetes containing lp28-3 were at a selective advantage compared to lp28-3-deficient spirochetes when coinjected into a mouse, and this advantage was reflected in the population of spirochetes acquired by feeding ticks. Our data demonstrate that genes carried by lp28-3, although not essential, contribute to the fitness of B. burgdorferi during infection.
Collapse
|
125
|
Contributions of environmental signals and conserved residues to the functions of carbon storage regulator A of Borrelia burgdorferi. Infect Immun 2013; 81:2972-85. [PMID: 23753623 DOI: 10.1128/iai.00494-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon storage regulator A of Borrelia burgdorferi (CsrABb) contributes to vertebrate host-specific adaptation by modulating activation of the Rrp2-RpoN-RpoS pathway and is critical for infectivity. We hypothesized that the functions of CsrABb are dependent on environmental signals and on select residues. We analyzed the phenotype of csrABb deletion and site-specific mutants to determine the conserved and pathogen-specific attributes of CsrABb. Levels of phosphate acetyltransferase (Pta) involved in conversion of acetyl phosphate to acetyl-coenzyme A (acetyl-CoA) and posttranscriptionally regulated by CsrABb in the csrABb mutant were reduced from or similar to those in the control strains under unfed- or fed-tick conditions, respectively. Increased levels of supplemental acetate restored vertebrate host-responsive determinants in the csrABb mutant to parental levels, indicating that both the levels of CsrABb and the acetyl phosphate and acetyl-CoA balance contribute to the activation of the Rrp2-RpoN-RpoS pathway. Site-specific replacement of 8 key residues of CsrABb (8S) with alanines resulted in increased levels of CsrABb and reduced levels of Pta and acetyl-CoA, while levels of RpoS, BosR, and other members of rpoS regulon were elevated. Truncation of 7 amino acids at the C terminus of CsrABb (7D) resulted in reduced csrABb transcripts and posttranscriptionally reduced levels of FliW located upstream of CsrABb. Electrophoretic mobility shift assays revealed increased binding of 8S mutant protein to the CsrA binding box upstream of pta compared to the parental and 7D truncated protein. Two CsrABb binding sites were also identified upstream of fliW within the flgK coding sequence. These observations reveal conserved and unique functions of CsrABb that regulate adaptive gene expression in B. burgdorferi.
Collapse
|
126
|
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, must adapt to two diverse niches, an arthropod vector and a mammalian host. RpoS, an alternative sigma factor, plays a central role in spirochetal adaptation to the mammalian host by governing expression of many genes important for mammalian infection. B. burgdorferi is known to be unique in metal utilization, and little is known of the role of biologically available metals in B. burgdorferi. Here, we identified two transition metal ions, manganese (Mn(2+)) and zinc (Zn(2+)), that influenced regulation of RpoS. The intracellular Mn(2+) level fluctuated approximately 20-fold under different conditions and inversely correlated with levels of RpoS and the major virulence factor OspC. Furthermore, an increase in intracellular Mn(2+) repressed temperature-dependent induction of RpoS and OspC; this repression was overcome by an excess of Zn(2+). Conversely, a decrease of intracellular Mn(2+) by deletion of the Mn(2+) transporter gene, bmtA, resulted in elevated levels of RpoS and OspC. Mn(2+) affected RpoS through BosR, a Fur family homolog that is required for rpoS expression: elevated intracellular Mn(2+) levels greatly reduced the level of BosR protein but not the level of bosR mRNA. Thus, Mn(2+) and Zn(2+) appeared to be important in modulation of the RpoS pathway that is essential to the life cycle of the Lyme disease spirochete. This finding supports the emerging notion that transition metals such as Mn(2+) and Zn(2+) play a critical role in regulation of virulence in bacteria.
Collapse
|
127
|
BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin α3β1. J Bacteriol 2013; 195:3320-30. [PMID: 23687274 DOI: 10.1128/jb.00187-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function.
Collapse
|
128
|
Borrelia burgdorferi bba66 gene inactivation results in attenuated mouse infection by tick transmission. Infect Immun 2013; 81:2488-98. [PMID: 23630963 DOI: 10.1128/iai.00140-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The impact of the Borrelia burgdorferi surface-localized immunogenic lipoprotein BBA66 on vector and host infection was evaluated by inactivating the encoding gene, bba66, and characterizing the mutant phenotype throughout the natural mouse-tick-mouse cycle. The BBA66-deficient mutant isolate, Bb(ΔA66), remained infectious in mice by needle inoculation of cultured organisms, but differences in spirochete burden and pathology in the tibiotarsal joint were observed relative to the parental wild-type (WT) strain. Ixodes scapularis larvae successfully acquired Bb(ΔA66) following feeding on infected mice, and the organisms persisted in these ticks through the molt to nymphs. A series of tick transmission experiments (n = 7) demonstrated that the ability of Bb(ΔA66)-infected nymphs to infect laboratory mice was significantly impaired compared to that of mice fed upon by WT-infected ticks. trans-complementation of Bb(ΔA66) with an intact copy of bba66 restored the WT infectious phenotype in mice via tick transmission. These results suggest a role for BBA66 in facilitating B. burgdorferi dissemination and transmission from the tick vector to the mammalian host as part of the disease process for Lyme borreliosis.
Collapse
|
129
|
Coleman JL, Crowley JT, Toledo AM, Benach JL. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 2013; 88:619-33. [PMID: 23565798 PMCID: PMC3641820 DOI: 10.1111/mmi.12213] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/25/2022]
Abstract
Borrelia burgdorferi, the spirochaetal agent of Lyme disease, codes for a single HtrA protein, HtrABb (BB0104) that is homologous to DegP of Escherichia coli (41% amino acid identity). HtrABb shows physical and biochemical similarities to DegP in that it has the trimer as its fundamental unit and can degrade casein via its catalytic serine. Recombinant HtrABb exhibits proteolytic activity in vitro, while a mutant (HtrABbS198A) does not. However, HtrABb and DegP have some important differences as well. Native HtrABb occurs in both membrane-bound and soluble forms. Despite its homology to DegP, HtrABb could not complement an E. coli DegP deletion mutant. Late stage Lyme disease patients, as well as infected mice and rabbits developed a robust antibody response to HtrABb, indicating that it is a B-cell antigen. In co-immunoprecipitation studies, a number of potential binding partners for HtrABb were identified, as well as two specific proteolytic substrates, basic membrane protein D (BmpD/BB0385) and chemotaxis signal transduction phosphatase CheX (BB0671). HtrABb may function in regulating outer membrane lipoproteins and in modulating the chemotactic response of B. burgdorferi.
Collapse
Affiliation(s)
- James L Coleman
- New York State Department of Health, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | | | |
Collapse
|
130
|
Rogovskyy AS, Bankhead T. Variable VlsE is critical for host reinfection by the Lyme disease spirochete. PLoS One 2013; 8:e61226. [PMID: 23593438 PMCID: PMC3620393 DOI: 10.1371/journal.pone.0061226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Many pathogens make use of antigenic variation as a way to evade the host immune response. A key mechanism for immune evasion and persistent infection by the Lyme disease spirochete, Borrelia burgdorferi, is antigenic variation of the VlsE surface protein. Recombination results in changes in the VlsE surface protein that prevent recognition by VlsE-specific antibodies in the infected host. Despite the presence of a substantial number of additional proteins residing on the bacterial surface, VlsE is the only known antigen that exhibits ongoing variation of its surface epitopes. This suggests that B. burgdorferi may utilize a VlsE-mediated system for immune avoidance of its surface antigens. To address this, the requirement of VlsE for host reinfection by the Lyme disease pathogen was investigated. Host-adapted wild type and VlsE mutant spirochetes were used to reinfect immunocompetent mice that had naturally cleared an infection with a VlsE-deficient clone. Our results demonstrate that variable VlsE is necessary for reinfection by B. burgdorferi, and this ability is directly related to evasion of the host antibody response. Moreover, the data presented here raise the possibility that VlsE prevents recognition of B. burgdorferi surface antigens from host antibodies. Overall, our findings represent a significant advance in our knowledge of immune evasion by B. burgdorferi, and provide insight to the possible mechanisms involved in VlsE-mediated immune avoidance.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
131
|
Kariu T, Yang X, Marks CB, Zhang X, Pal U. Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 2013; 88:510-22. [PMID: 23489252 DOI: 10.1111/mmi.12202] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 01/12/2023]
Abstract
Borrelia burgdorferi gene product BB0323 is required for cell fission and pathogen persistence in vivo. Here, we show that BB0323, which is conserved among globally prevalent infectious strains, supports normal spirochaete growth and morphology even at early phases of cell division. We demonstrate that native BB0323 undergoes proteolytic processing at the C-terminus, at a site after the first 202 N-terminal amino acids. We further identified a periplasmic BB0323 binding protein in B. burgdorferi, annotated as BB0104, having serine protease activity responsible for the primary cleavage of BB0323 to produce discrete N- and C-terminal polypeptides. These two BB0323 polypeptides interact with each other, and either individually or as a complex, are associated with multiple functions in spirochaete biology and infectivity. While N-terminal BB0323 is adequate to support cell fission, the C-terminal LysM domain is dispensable for this process, despite its ability to bind B. burgdorferi peptidoglycan. However, the LysM domain or the precisely processed BB0323 product is essential for mammalian infection. As BB0323 is a membrane protein crucial for B. burgdorferi survival in vivo, exploring its function may suggest novel ways to interrupt infection while enhancing our understanding of the intricate spirochaete fission process.
Collapse
Affiliation(s)
- Toru Kariu
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
132
|
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.
Collapse
|
133
|
Miller CL, Karna SLR, Seshu J. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi. Mol Microbiol 2013; 88:105-24. [PMID: 23387366 DOI: 10.1111/mmi.12171] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 11/27/2022]
Abstract
The RpoS transcription factor of Borrelia burgdorferi is a 'gatekeeper' because it activates genes required for spirochaetes to transition from tick to vertebrate hosts. However, it remains unknown how RpoS becomes repressed to allow the spirochaetes to transition back from the vertebrate host to the tick vector. Here we show that a putative carbohydrate-responsive regulatory protein, designated BadR (Borrelia host adaptation Regulator), is a transcriptional repressor of rpoS. BadR levels are elevated in B. burgdorferi cultures grown under in vitro conditions mimicking unfed-ticks and badR-deficient strains are defective for growth under these same conditions. Microarray and immunoblot analyses of badR-deficient strains showed upregulation of rpoS and other factors important for virulence in vertebrate hosts, as well as downregulation of putative tick-specific determinants (e.g. linear plasmid 28-4 genes). DNA-binding assays revealed BadR binds to upstream regions of rpoS. Site-directed mutations in BadR and the presence of phosphorylated sugars affected BadR's binding to the rpoS promoters. badR-deficient B. burgdorferi were unable to colonize mice. Several putative tick-specific targets have been identified. Our study identified a novel regulator, BadR, and provides a link between nutritional environmental cues utilized by spirochaetes to adaptation to disparate conditions found in the tick and vertebrate hosts.
Collapse
Affiliation(s)
- Christine L Miller
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
134
|
The early dissemination defect attributed to disruption of decorin-binding proteins is abolished in chronic murine Lyme borreliosis. Infect Immun 2013; 81:1663-73. [PMID: 23460518 DOI: 10.1128/iai.01359-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The laboratory mouse model of Lyme disease has revealed that Borrelia burgdorferi differentially expresses numerous outer surface proteins that influence different stages of infection (tick-borne transmission, tissue colonization, dissemination, persistence, and tick acquisition). Deletion of two such outer surface proteins, decorin-binding proteins A and B (DbpA/B), has been documented to decrease infectivity, impede early dissemination, and, possibly, prevent persistence. In this study, DbpA/B-deficient spirochetes were confirmed to exhibit an early dissemination defect in immunocompetent, but not immunodeficient, mice, and the defect was found to resolve with chronicity. Development of disease (arthritis and carditis) was attenuated only in the early stage of infection with DbpA/B-deficient spirochetes in both types of mice. Persistence of the DbpA/B-deficient spirochetes occurred in both immunocompetent and immunodeficient mice in a manner indistinguishable from that of wild-type spirochetes. Dissemination through the lymphatic system was evaluated as an underlying mechanism for the early dissemination defect. At 12 h, 3 days, 7 days, and 14 days postinoculation, DbpA/B-deficient spirochetes were significantly less prevalent and in lower numbers in lymph nodes than wild-type spirochetes. However, in immunodeficient mice, deficiency of DbpA/B did not significantly decrease the prevalence or spirochete numbers in lymph nodes. Complementation of DbpA/B restored a wild-type phenotype. Thus, the results indicated that deficiency of DbpA/B allows the acquired immune response to restrict early dissemination of spirochetes, which appears to be at least partially mediated through the lymphatic system.
Collapse
|
135
|
Enhanced detection of host response antibodies to Borrelia burgdorferi using immuno-PCR. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:350-7. [PMID: 23302740 DOI: 10.1128/cvi.00630-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lyme disease is the fastest-growing zoonotic disease in North America. Current methods for detection of Borrelia burgdorferi infection are challenged by analysis subjectivity and standardization of antigen source. In the present study, we developed an immuno-PCR (iPCR)-based approach employing recombinant in vivo-expressed B. burgdorferi antigens for objective detection of a host immune response to B. burgdorferi infection. iPCR is a liquid-phase protein detection method that combines the sensitivity of PCR with the specificity and versatility of immunoassay-based protocols. Use of magnetic beads coated with intact spirochetes provided effective antigen presentation and allowed detection of host-generated antibodies in experimentally infected mice at day 11 postinoculation, whereas host-generated antibodies were detected at day 14 by enzyme-linked immunosorbent assay (ELISA) and day 21 by immunoblotting. Furthermore, magnetic beads coated with recombinant B. burgdorferi in vivo-expressed antigen OspC or BmpA demonstrated positive detection of host-generated antibodies in mice at day 7 postinoculation with markedly increased iPCR signals above the background, with the quantification cycle (C(q)) value for each sample minus the mean background C(q) plus 3 standard deviations (ΔC(q)) being 4 to 10, whereas ΔC(q) was 2.5 for intact spirochete-coated beads. iPCR demonstrated a strong correlation (Spearman rank correlation = 0.895, P < 0.0001) with a commercial ELISA for detection of host antibodies in human Lyme disease patient sera using the B. burgdorferi VlsE C6 peptide. In addition, iPCR showed potential applicability for direct detection of spirochetes in blood. The results presented here indicate that our iPCR assay has the potential to provide an objective format that can be used for sensitive detection of multiple host response antibodies and isotypes to B. burgdorferi infection.
Collapse
|
136
|
Detection of Borrelia burgdorferi nucleic acids after antibiotic treatment does not confirm viability. J Clin Microbiol 2012; 51:857-62. [PMID: 23269733 DOI: 10.1128/jcm.02785-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The persistence of dormant, noncultivable Borrelia burgdorferi after ceftriaxone treatment was examined. B. burgdorferi isolates were cultivated in Barbour-Stoenner-Kelly medium in the presence or absence of ceftriaxone, and cultures were monitored for up to 56 days. Viability of B. burgdorferi was assessed by subculture, growth, morphology, and pH (as a surrogate for metabolic activity). In addition, the presence of B. burgdorferi DNA and mRNA was assayed by PCR and by real-time reverse transcription (RT)-PCR, respectively. Spirochetes could not be successfully subcultured by day 3 after exposure to ceftriaxone. In cultures treated with ceftriaxone, the pH of the culture medium did not change through day 56, whereas it declined by at least 1 pH unit by 14 days in untreated cultures. These results suggest that B. burgdorferi viability is rapidly eliminated after antibiotic treatment. Nevertheless, DNA was detected by B. burgdorferi-specific PCR for up to 56 days in aliquots from both ceftriaxone-treated and untreated cultures. In addition, although ceftriaxone treatment resulted in a reduction in the quantities of transcript for ospC, ospA, flaB, and pfk, certain mRNAs could be detected through day 14. Transcript for all 4 genes was essentially undetectable after 28 days of treatment. Taken together, the results suggest that B. burgdorferi DNA and mRNA can be detected in samples long after spirochetes are no longer viable as assessed by classic microbiological parameters. PCR positivity in the absence of culture positivity following antibiotic treatment in animal and human studies should be interpreted with caution.
Collapse
|
137
|
Hoon-Hanks LL, Morton EA, Lybecker MC, Battisti JM, Samuels DS, Drecktrah D. Borrelia burgdorferi malQ mutants utilize disaccharides and traverse the enzootic cycle. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 66:157-65. [PMID: 22672337 PMCID: PMC3465622 DOI: 10.1111/j.1574-695x.2012.00996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, cycles in nature between a vertebrate host and a tick vector. We demonstrate that B. burgdorferi can utilize several sugars that may be available during persistence in the tick, including trehalose, N-acetylglucosamine (GlcNAc), and chitobiose. The spirochete grows to a higher cell density in trehalose, which is found in tick hemolymph, than in maltose; these two disaccharides differ only in the glycosidic linkage between the glucose monomers. Additionally, B. burgdorferi grows to a higher density in GlcNAc than in the GlcNAc dimer chitobiose, both of which may be available during tick molting. We have also investigated the role of malQ (bb0166), which encodes an amylomaltase, in sugar utilization during the enzootic cycle. In other bacteria, MalQ is involved in utilizing maltodextrins and trehalose, but we show that, unexpectedly, it is not needed for B. burgdorferi to grow in vitro on any of the sugars assayed. In addition, infection of mice by needle inoculation or tick bite, as well as acquisition and maintenance of the spirochete in the tick vector, does not require MalQ.
Collapse
Affiliation(s)
- Laura L Hoon-Hanks
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812-4824, USA
| | | | | | | | | | | |
Collapse
|
138
|
Competitive advantage of Borrelia burgdorferi with outer surface protein BBA03 during tick-mediated infection of the mammalian host. Infect Immun 2012; 80:3501-11. [PMID: 22851744 DOI: 10.1128/iai.00521-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Linear plasmid lp54 is one of the most highly conserved and differentially expressed elements of the segmented genome of the Lyme disease spirochete Borrelia burgdorferi. We previously reported that deletion of a 4.1-kb region of lp54 (bba01 to bba07 [bba01-bba07]) led to a slight attenuation of tick-transmitted infection in mice following challenge with a large number of infected ticks. In the current study, we reduced the number of ticks in the challenge to more closely mimic the natural dose and found a profound defect in tick-transmitted infection of the bba01-bba07 mutant relative to wild-type B. burgdorferi. We next focused on deletion of bba03 as the most likely cause of this mutant phenotype, as previous studies have shown that expression of bba03 is increased by culture conditions that simulate tick feeding. Consistent with this hypothesis, we demonstrated increased expression of bba03 by spirochetes in fed relative to unfed ticks. We also observed that a bba03 deletion mutant, although fully competent by itself, did not efficiently infect mice when transmitted by ticks that were simultaneously coinfected with wild-type B. burgdorferi. These results suggest that BBA03 provides a competitive advantage to spirochetes carrying this protein during tick transmission to a mammalian host in the natural infectious cycle.
Collapse
|
139
|
Ristow LC, Miller HE, Padmore LJ, Chettri R, Salzman N, Caimano MJ, Rosa PA, Coburn J. The β₃-integrin ligand of Borrelia burgdorferi is critical for infection of mice but not ticks. Mol Microbiol 2012; 85:1105-18. [PMID: 22758390 DOI: 10.1111/j.1365-2958.2012.08160.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
P66 is a Borrelia burgdorferi surface protein with β₃ integrin binding and channel forming activities. In this study, the role of P66 in mammalian and tick infection was examined. B. burgdorferiΔp66 strains were not infectious in wild-type, TLR2⁻/⁻- or MyD88⁻/⁻-deficient mice. Strains with p66 restored to the chromosome restored near wild-type infectivity, while complementation with p66 on a shuttle vector did not restore infectivity. Δp66 mutants are cleared quickly from the site of inoculation, but analyses of cytokine expression and cellular infiltrates at the site of inoculation did not reveal a specific mechanism of clearance. The defect in these mutants cannot be attributed to nutrient limitation or an inability to adapt to the host environment in vivo as Δp66 bacteria were able to survive as well as wild type in dialysis membrane chambers in the rat peritoneum. Δp66 bacteria were able to survive in ticks through the larva to nymph moult, but were non-infectious in mice when delivered by tick bite. Independent lines of evidence do not support any increased susceptibility of the Δp66 strains to factors in mammalian blood. This study is the first to define a B. burgdorferi adhesin as essential for mammalian, but not tick infection.
Collapse
Affiliation(s)
- Laura C Ristow
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Patton TG, Brandt KS, Gilmore RD. Borrelia burgdorferi visualized in Ixodes scapularis tick excrement by immunofluorescence. Vector Borne Zoonotic Dis 2012; 12:1000-3. [PMID: 22651382 DOI: 10.1089/vbz.2011.0922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The enzootic cycle of Borrelia burgdorferi, the etiologic agent of Lyme disease, involves Ixodes spp. ticks and vertebrates. Resident tick Borrelia, harbored inside the midgut, are eventually expelled with the tick's saliva into the vertebrate host when a tick consumes a blood meal. During this 4- to 5-day feeding period I. scapularis will defecate onto the host's skin. Previously we detected borrelial DNA in tick feces throughout engorgement. In this study we report the microscopic examination for B. burgdorferi in nymphal excrement. Using immunofluorescence assays, we observed Borrelia in all mouse skin and capsule fecal swabs tested, although we could not culture the spirochetes. These results update our previous analysis by revealing that spirochetes can also be visualized in tick excrement. Furthermore, the results emphasize that borrelial contamination by defecation is a possibility, and that caution should be exercised by researchers investigating pathogen/host/vector interactions. The biological significance of the presence of non-culturable Borrelia in tick feces during engorgement is unclear.
Collapse
Affiliation(s)
- Toni G Patton
- Microbiology and Pathogenesis Activity, Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80521, USA.
| | | | | |
Collapse
|
141
|
Van Laar TA, Lin YH, Miller CL, Karna SLR, Chambers JP, Seshu J. Effect of levels of acetate on the mevalonate pathway of Borrelia burgdorferi. PLoS One 2012; 7:e38171. [PMID: 22675445 PMCID: PMC3364977 DOI: 10.1371/journal.pone.0038171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 01/09/2023] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a K(m) value of 132 µM with a V(max) of 1.94 µmol NADPH oxidized minute(-1) (mg protein)(-1) and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrA(Bb) and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease.
Collapse
Affiliation(s)
- Tricia A. Van Laar
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ying-Han Lin
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Christine L. Miller
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - S. L. Rajasekhar Karna
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - J. Seshu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
142
|
Lenhart TR, Kenedy MR, Yang X, Pal U, Akins DR. BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex. BMC Microbiol 2012; 12:60. [PMID: 22519960 PMCID: PMC3356241 DOI: 10.1186/1471-2180-12-60] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/20/2012] [Indexed: 11/24/2022] Open
Abstract
Background Similar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. Results In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. Conclusions The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general.
Collapse
Affiliation(s)
- Tiffany R Lenhart
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
143
|
Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect Immun 2012; 80:2485-92. [PMID: 22508862 DOI: 10.1128/iai.00145-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, can be recovered from different organs of infected animals and patients, indicating that the spirochete is very invasive. Motility and chemotaxis contribute to the invasiveness of B. burgdorferi and play important roles in the process of the disease. Recent reports have shown that motility is required for establishing infection in mammals. However, the role of chemotaxis in virulence remains elusive. Our previous studies showed that cheA₂, a gene encoding a histidine kinase, is essential for the chemotaxis of B. burgdorferi. In this report, the cheA₂ gene was inactivated in a low-passage-number virulent strain of B. burgdorferi. In vitro analyses (microscopic observations, computer-based bacterial tracking analysis, swarm plate assays, and capillary tube assays) showed that the cheA₂ mutant failed to reverse and constantly ran in one direction; the mutant was nonchemotactic to attractants. Mouse needle infection studies showed that the cheA₂ mutant failed to infect either immunocompetent or immunodeficient mice and was quickly eliminated from the initial inoculation sites. Tick-mouse infection studies revealed that although the mutant was able to survive in ticks, it failed to establish a new infection in mice via tick bites. The altered phenotypes were completely restored when the mutant was complemented. Collectively, these data demonstrate that B. burgdorferi needs chemotaxis to establish mammalian infection and to accomplish its natural enzootic cycle.
Collapse
|
144
|
Troxell B, Xu H, Yang XF. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J Biol Chem 2012; 287:19284-93. [PMID: 22500025 DOI: 10.1074/jbc.m112.344903] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, exists in nature through a complex life cycle involving ticks of the Ixodes genus and mammalian hosts. During its life cycle, B. burgdorferi experiences fluctuations in oxygen tension and may encounter reactive oxygen species (ROS). The key metalloenzyme to degrade ROS in B. burgdorferi is SodA. Although previous work suggests that B. burgdorferi SodA is an iron-dependent superoxide dismutase (SOD), later work demonstrates that B. burgdorferi is unable to transport iron and contains an extremely low intracellular concentration of iron. Consequently, the metal cofactor for SodA has been postulated to be manganese. However, experimental evidence to support this hypothesis remains lacking. In this study, we provide biochemical and genetic data showing that SodA is a manganese-dependent enzyme. First, B. burgdorferi contained SOD activity that is resistant to H(2)O(2) and NaCN, characteristics associated with Mn-SODs. Second, the addition of manganese to the Chelex-treated BSK-II enhanced SodA expression. Third, disruption of the manganese transporter gene bmtA, which significantly lowers the intracellular manganese, greatly reduced SOD activity and SodA expression, suggesting that manganese regulates the level of SodA. In addition, we show that B. burgdorferi is resistant to streptonigrin, a metal-dependent redox cycling compound that produces ROS, and that SodA plays a protective role against the streptonigrin. Taken together, our data demonstrate the Lyme disease spirochete encodes a manganese-dependent SOD that contributes to B. burgdorferi defense against intracellular superoxide.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
145
|
Önder Ö, Humphrey PT, McOmber B, Korobova F, Francella N, Greenbaum DC, Brisson D. OspC is potent plasminogen receptor on surface of Borrelia burgdorferi. J Biol Chem 2012; 287:16860-8. [PMID: 22433849 DOI: 10.1074/jbc.m111.290775] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host-derived proteases are crucial for the successful infection of vertebrates by several pathogens, including the Lyme disease spirochete bacterium, Borrelia burgdorferi. B. burgdorferi must traverse tissue barriers in the tick vector during transmission to the host and during dissemination within the host, and it must disrupt immune challenges to successfully complete its infectious cycle. It has been proposed that B. burgdorferi can accomplish these tasks without an endogenous extra-cytoplasmic protease by commandeering plasminogen, the highly abundant precursor of the vertebrate protease plasmin. However, the molecular mechanism by which B. burgdorferi immobilizes plasminogen to its surface remains obscure. The data presented here demonstrate that the outer surface protein C (OspC) of B. burgdorferi is a potent plasminogen receptor on the outer membrane of the bacterium. OspC-expressing spirochetes readily bind plasminogen, whereas only background levels of plasminogen are detectable on OspC-deficient strains. Furthermore, plasminogen binding by OspC-expressing spirochetes can be significantly reduced using anti-OspC antibodies. Co-immunofluorescence staining assays demonstrate that wild-type bacteria immobilize plasminogen only if they are actively expressing OspC regardless of the expression of other surface proteins. The co-localization of plasminogen and OspC on OspC-expressing spirochetes further implicates OspC as a biologically relevant plasminogen receptor on the surface of live B. burgdorferi.
Collapse
Affiliation(s)
- Özlem Önder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains. Infect Immun 2012; 80:1519-29. [PMID: 22290150 DOI: 10.1128/iai.06326-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe. The highly complex genome of B. burgdorferi is comprised of a linear chromosome and a large number of variably sized linear and circular plasmids. Many plasmids of this spirochete are unstable during its culture in vitro. Given that many of the B. burgdorferi virulence factors identified to date are plasmid encoded, spirochetal plasmid content determination is essential for genetic analysis of Lyme pathogenesis. Although PCR-based assays facilitate plasmid profiling of sequenced B. burgdorferi strains, a rapid genetic content determination strategy for nonsequenced strains has not yet been described. In this study, we combined pulsed-field gel electrophoresis (PFGE) and Southern hybridization for detection of genes encoding known virulence factors, ribosomal RNA gene spacer restriction fragment length polymorphism types (RSTs), ospC group determination, and sequencing of the variable dbpA and ospC genes. We show that two strains isolated from the same tick and both originally named N40 are in fact very distinct. Furthermore, we failed to detect bbk32, which encodes a fibronectin-binding adhesin, in one "N40" strain. Thus, two distinct strains that show different plasmid profiles, as determined by PFGE and PCR, were isolated from the same tick and vary in their ospC and dbpA sequences. However, both belong to group RST3B.
Collapse
|
148
|
A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. Infect Immun 2011; 80:82-90. [PMID: 22025510 DOI: 10.1128/iai.05671-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borrelia burgdorferi, a tick-borne bacterial pathogen, causes a disseminated infection involving multiple organs known as Lyme disease. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interaction with host factors. We show here that a fraction of the B. burgdorferi chromosomal gene product BB0337, annotated as enolase or phosphopyruvate dehydratase, is associated with spirochete outer membrane and is surface exposed. B. burgdorferi enolase, either in a recombinant form or as a membrane-bound native antigen, displays enzymatic activities intrinsic to the glycolytic pathway. However, the protein also interacts with host plasminogen, potentially leading to its activation and resulting in B. burgdorferi-induced fibrinolysis. As expected, enolase displayed consistent expression in vivo, however, with a variable temporal and spatial expression during spirochete infection in mice and ticks. Despite an extracellular exposure of the antigen and a potential role in host-pathogen interaction, active immunization of mice with recombinant enolase failed to evoke protective immunity against subsequent B. burgdorferi infection. In contrast, enolase immunization of murine hosts significantly reduced the acquisition of spirochetes by feeding ticks, suggesting that the protein could have a stage-specific role in B. burgdorferi survival in the feeding vector. Strategies to interfere with the function of surface enolase could contribute to the development of novel preventive measures to interrupt the spirochete infection cycle and reduce the incidences of Lyme disease.
Collapse
|
149
|
Sze CW, Morado DR, Liu J, Charon NW, Xu H, Li C. Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Mol Microbiol 2011; 82:851-64. [PMID: 21999436 DOI: 10.1111/j.1365-2958.2011.07853.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Lyme disease spirochete Borrelia burgdorferi lacks the transcriptional cascade control of flagellar protein synthesis common to other bacteria. Instead, it relies on a post-transcriptional mechanism to control its flagellar synthesis. The underlying mechanism of this control remains elusive. A recent study reported that the increased level of BB0184 (CsrA(Bb); a homologue of carbon storage regulator A) substantially inhibited the accumulation of FlaB, the major flagellin protein of B. burgdorferi. In this report, we deciphered the regulatory role of CsrA(Bb) on FlaB synthesis and the mechanism involved by analysing two mutants, csrA(Bb)(-) (a deletion mutant of csrA(Bb)) and csrA(Bb)(+) (a mutant conditionally overexpressing csrA(Bb)). We found that FlaB accumulation was significantly inhibited in csrA(Bb)(+) but was substantially increased in csrA(Bb)(-) . In contrast, the levels of other flagellar proteins remained unchanged. Cryo-electron tomography and immuno-fluorescence microscopic analyses revealed that the altered synthesis of CsrA(Bb) in these two mutants specifically affected flagellar filament length. The leader sequence of flaB transcript contains two conserved CsrA-binding sites, with one of these sites overlapping the Shine-Dalgarno sequence. We found that CsrA(Bb) bound to the flaB transcripts via these two binding sites, and this binding inhibited the synthesis of FlaB at the translational level. Taken together, our results indicate that CsrA(Bb) specifically regulates the periplasmic flagellar synthesis by inhibiting translation initiation of the flaB transcript.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | | | | | | | | | | |
Collapse
|
150
|
Kumar M, Kaur S, Kariu T, Yang X, Bossis I, Anderson JF, Pal U. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine 2011; 29:9012-9. [PMID: 21945261 DOI: 10.1016/j.vaccine.2011.09.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022]
Abstract
The surface-exposed antigens of Borrelia burgdorferi represent important targets for induction of protective host immune responses. BBA52 is preferentially expressed by B. burgdorferi in the feeding tick, and a targeted deletion of bba52 interferes with vector-host transitions in vivo. In this study, we demonstrate that BBA52 is an outer membrane surface-exposed protein and that disulfide bridges take part in the homo-oligomeric assembly of native protein. BBA52 antibodies lack detectable borreliacidal activities in vitro. However, active immunization studies demonstrated that BBA52 vaccinated mice were significantly less susceptible to subsequent tick-borne challenge infection. Similarly, passive transfer of BBA52 antibodies in ticks completely blocked B. burgdorferi transmission from feeding ticks to naïve mice. Taken together, these studies highlight the role of BBA52 in spirochete dissemination from ticks to mice and demonstrate the potential of BBA52 antibody-mediated strategy to complement the ongoing efforts to develop vaccines for blocking the transmission of B. burgdorferi.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, United States
| | | | | | | | | | | | | |
Collapse
|