101
|
Crispim JS, Dias RS, Laguardia CN, Araújo LC, da Silva JD, Vidigal PMP, de Sousa MP, da Silva CC, Santana MF, de Paula SO. Desulfovibrio alaskensis prophages and their possible involvement in the horizontal transfer of genes by outer membrane vesicles. Gene 2019; 703:50-57. [DOI: 10.1016/j.gene.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
|
102
|
Big Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms. Trends Microbiol 2019; 27:739-752. [PMID: 31128928 DOI: 10.1016/j.tim.2019.04.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/17/2023]
Abstract
Bacteriophages (phages) have been shaping bacterial ecology and evolution for millions of years, for example, by selecting for defence strategies. Evidence supports that bacterial biofilm formation is one such strategy and that biofilm-mediated protection against phage infection depends on maturation and composition of the extracellular matrix. Interestingly, studies have revealed that phages can induce and strengthen biofilms. Here we review interactions between bacteria and phages in biofilms, discuss the underlying mechanisms, the potential of phage therapy for biofilm control, and emphasize the importance of considering biofilms in future phage research. This is especially relevant as biofilms are associated with increased tolerance towards antibiotics and are implicated in the majority of chronic infections.
Collapse
|
103
|
Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 2019; 43:273-303. [PMID: 30476045 PMCID: PMC6524685 DOI: 10.1093/femsre/fuy042] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cells from all three domains of life, Archaea, Bacteria and Eukarya, produce extracellular vesicles (EVs) which are sometimes associated with filamentous structures known as nanopods or nanotubes. The mechanisms of EV biogenesis in the three domains remain poorly understood, although studies in Bacteria and Eukarya indicate that the regulation of lipid composition plays a major role in initiating membrane curvature. EVs are increasingly recognized as important mediators of intercellular communication via transfer of a wide variety of molecular cargoes. They have been implicated in many aspects of cell physiology such as stress response, intercellular competition, lateral gene transfer (via RNA or DNA), pathogenicity and detoxification. Their role in various human pathologies and aging has aroused much interest in recent years. EVs can be used as decoys against viral attack but virus-infected cells also produce EVs that boost viral infection. Here, we review current knowledge on EVs in the three domains of life and their interactions with the viral world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
| | - Ryan Catchpole
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| |
Collapse
|
104
|
Abstract
Cholera infections caused by the gamma-proteobacterium Vibrio cholerae have ravaged human populations for centuries, and cholera pandemics have afflicted every corner of the globe. Fortunately, interventions such as oral rehydration therapy, antibiotics/antimicrobials, and vaccines have saved countless people afflicted with cholera, and new interventions such as probiotics and phage therapy are being developed as promising approaches to treat even more cholera infections. Although current therapies are mostly effective and can reduce disease transmission, cholera outbreaks remain deadly, as was seen during recent outbreaks in Haiti, Ethiopia, and Yemen. This is due to significant underlying political and socioeconomic complications, including shortages of vaccines and clean food and water and a lack of health surveillance. In this review, we highlight the strengths and weaknesses of current cholera therapies, discuss emerging technologies, and argue that a multi-pronged, flexible approach is needed to continue to reduce the worldwide burden of cholera.
Collapse
Affiliation(s)
- Brian Y Hsueh
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Waters
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
105
|
Abstract
Bacteria are under constant attack from bacteriophages (phages), bacterial parasites that are the most abundant biological entity on earth. To resist phage infection, bacteria have evolved an impressive arsenal of anti-phage systems. Recent advances have significantly broadened and deepened our understanding of how bacteria battle phages, spearheaded by new systems like CRISPR-Cas. This review aims to summarize bacterial anti-phage mechanisms, with an emphasis on the most recent developments in the field.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
106
|
Silva-Valenzuela CA, Camilli A. Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment. Proc Natl Acad Sci U S A 2019; 116:1627-1632. [PMID: 30635420 PMCID: PMC6358685 DOI: 10.1073/pnas.1810138116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, has reservoirs in fresh and brackish water where it interacts with virulent bacteriophages. Phages are the most abundant biological entity on earth and coevolve with bacteria. It was reported that concentrations of phage and V. cholerae inversely correlate in aquatic reservoirs and in the human small intestine, and therefore that phages may quench cholera outbreaks. Although there is strong evidence for phage predation in cholera patients, evidence is lacking for phage predation of V. cholerae in aquatic environments. Here, we used three virulent phages, ICP1, ICP2, and ICP3, commonly shed by cholera patients in Bangladesh, as models to understand the predation dynamics in microcosms simulating aquatic environments. None of the phages were capable of predation in fresh water, and only ICP1 was able to prey on V. cholerae in estuarine water due to a requirement for salt. We conclude that ICP2 and ICP3 are better adapted for predation in a nutrient rich environment. Our results point to the evolution of niche-specific predation by V. cholerae-specific virulent phages, which complicates their use in predicting or monitoring cholera outbreaks as well as their potential use in reducing aquatic reservoirs of V. cholerae in endemic areas.
Collapse
Affiliation(s)
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
107
|
Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 2019; 103:2121-2131. [PMID: 30680434 DOI: 10.1007/s00253-019-09629-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.
Collapse
|
108
|
Zhang Z, Chen G, Hu J, Hussain W, Fan F, Yang Y, Zhou Z, Fang X, Zhu J, Chen WH, Liu Z. Mr.Vc: a database of microarray and RNA-seq of Vibrio cholerae. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5522264. [PMID: 31231774 PMCID: PMC6597751 DOI: 10.1093/database/baz069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023]
Abstract
Gram-negative bacterium Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease. During its infectious cycle, V. cholerae routinely switches niches between aquatic environment and host gastrointestinal tract, in which V. cholerae modulates its transcriptome pattern accordingly for better survival and proliferation. A comprehensive resource for V. cholerae transcriptome will be helpful for cholera research, including prevention, diagnosis and intervention strategies. In this study, we constructed a microarray and RNA-seq database of V. cholerae (Mr.Vc), containing gene transcriptional expression data of 145 experimental conditions of V. cholerae from various sources, covering 25 937 entries of differentially expressed genes. In addition, we collected relevant information including gene annotation, operons they may belong to and possible interaction partners of their protein products. With Mr.Vc, users can easily find transcriptome data they are interested in, such as the experimental conditions in which a gene of interest was differentially expressed in, or all genes that were differentially expressed in an experimental condition. We believe that Mr.Vc database is a comprehensive data repository dedicated to V. cholerae and could be a useful resource for all researchers in related fields. Mr.Vc is available for free at http://bioinfo.life.hust.edu.cn/mrvc.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wajid Hussain
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fenxia Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaodong Fang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Bioinformatics Group, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hua Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,College of Life Science, Henan Normal University, Xinxiang 453007, China.,Huazhong University of Science and Technology Ezhou Industrial Technology Research Institute, Ezhou, Hubei 436044, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
109
|
Cai W, Kesavan DK, Wan J, Abdelaziz MH, Su Z, Xu H. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagn Pathol 2018; 13:95. [PMID: 30537996 PMCID: PMC6290530 DOI: 10.1186/s13000-018-0768-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Both Gram-Positive and Gram-Negative bacteria can secrete outer membrane vesicles (OMVs) in their growth and metabolism process. Originally, OMVs were considered as a by-product of bacterial merisis. However, many scientists have reported the important role of OMVs in many fields recently. In this review, we briefly introduce OMVs biological functions and then summarize the findings about the OMVs interactions with host cells. At last, we will make an expectation about the prospects of the application of OMVs as vaccines.
Collapse
Affiliation(s)
- Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,The Central Laboratory, the Fourth Affiliated of Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
110
|
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 2018; 17:13-24. [DOI: 10.1038/s41579-018-0112-2] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
111
|
Bait for phages. Nat Rev Microbiol 2018; 16:394. [DOI: 10.1038/s41579-018-0028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
112
|
Klose KE, Satchell KJF. Vibrio2017: the seventh international conference on the biology of Vibrios. J Bacteriol 2018; 200:e00304-18. [PMID: 29866809 PMCID: PMC6040186 DOI: 10.1128/jb.00304-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio2017: The ASM Conference on the Biology of Vibrios, was held in November 2017. The conference focused on all aspects of biology related to the bacterial genus Vibrio. The meeting highlighted that the Vibrios have a tremendous impact on humans, both directly by Vibrio-related diseases, as well as indirectly through their interactions with other animal species, e.g. fish and shellfish, and with our environment, including influencing the health of our coastal waters and coral reefs.
Collapse
Affiliation(s)
- Karl E Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio TX
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|