101
|
Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol 2004; 24:4049-64. [PMID: 15082797 PMCID: PMC387768 DOI: 10.1128/mcb.24.9.4049-4064.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a central component of Okazaki fragment maturation in eukaryotes. Genetic analysis of Saccharomyces cerevisiae FEN1 (RAD27) also reveals its important role in preventing trinucleotide repeat (TNR) expansion. In humans such expansion is associated with neurodegenerative diseases. In vitro, FEN1 can inhibit TNR expansion by employing its endonuclease activity to compete with DNA ligase I. Here we employed two yeast FEN1 nuclease mutants, rad27-G67S and rad27-G240D, to further define the mechanism by which FEN1 prevents TNR expansion. Using a yeast artificial chromosome system that can detect both TNR instability and fragility, we demonstrate that the G240D but not the G67S mutation increases both the expansion and fragility of a CTG tract in vivo. In vitro, the G240D nuclease is proficient in cleaving a fixed nonrepeat double flap; however, it exhibits severely impaired cleavage of both nonrepeat and CTG-containing equilibrating flaps. In contrast, wild-type FEN1 and the G67S mutant exhibit more efficient cleavage on an equilibrating flap than on a fixed CTG flap. The degree of TNR expansion and the amount of chromosome fragility observed in the mutant strains correlate with the severity of defective flap cleavage in vitro. We present a model to explain how flap equilibration and the unique tracking mechanism of FEN1 can collaborate to remove TNR flaps and prevent repeat expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642,USA
| | | | | | | | | |
Collapse
|
102
|
Chai Q, Zheng L, Zhou M, Turchi JJ, Shen B. Interaction and stimulation of human FEN-1 nuclease activities by heterogeneous nuclear ribonucleoprotein A1 in alpha-segment processing during Okazaki fragment maturation. Biochemistry 2004; 42:15045-52. [PMID: 14690413 DOI: 10.1021/bi035364t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-fidelity DNA replication depends on both accurate incorporation of nucleotides in the newly synthesized strand and the maturation of Okazaki fragments. In eukaryotic cells, the latter is accomplished by a series of coordinated actions of a set of structure-specific nucleases, which, with the assistance of accessory proteins, recognize branched RNA/DNA configurations. In the current model of Okazaki fragment maturation, displacement of a 27-nucleotide or longer flap is envisioned to attract replication protein A (RPA), which inhibits flap endonuclease-1 (FEN-1) but stimulates Dna2 nuclease for cleavage. Dna2 cleavage generates a short flap of 5-7 nucleotides, which resists binding by RPA and further cleavage by Dna2. FEN-1 then removes the remaining flap to produce a suitable substrate for ligation. However, FEN-1 is not efficient in cleaving the short flap, and we therefore set out to identify cellular factors that might regulate FEN-1 activity. Through co-immunoprecipitation experiments, we have isolated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which forms a direct complex with FEN-1 and stimulates its enzymatic activities. The stimulation by hnRNP A1 is most dramatic using DNA substrates with short flaps. With longer flap substrates the hnRNP A1 effect is more modest and is suppressed by the addition of RPA. A model is provided to explain the possible in vivo role of this interaction and activity in Okazaki fragment maturation.
Collapse
Affiliation(s)
- Qing Chai
- Division of Molecular Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
103
|
Torres JZ, Schnakenberg SL, Zakian VA. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 2004; 24:3198-212. [PMID: 15060144 PMCID: PMC381616 DOI: 10.1128/mcb.24.8.3198-3212.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/29/2003] [Accepted: 01/22/2004] [Indexed: 11/20/2022] Open
Abstract
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
Collapse
Affiliation(s)
- Jorge Z Torres
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
104
|
Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol Cell Biol 2003; 23:7849-60. [PMID: 14560028 PMCID: PMC207578 DOI: 10.1128/mcb.23.21.7849-7860.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.
Collapse
Affiliation(s)
- Julie L Callahan
- Department of Biology, Program in Genetics, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
105
|
Sharma S, Otterlei M, Sommers JA, Driscoll HC, Dianov GL, Kao HI, Bambara RA, Brosh RM. WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol Biol Cell 2003; 15:734-50. [PMID: 14657243 PMCID: PMC329389 DOI: 10.1091/mbc.e03-08-0567] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Werner Syndrome is a premature aging disorder characterized by genomic instability, elevated recombination, and replication defects. It has been hypothesized that defective processing of certain replication fork structures by WRN may contribute to genomic instability. Fluorescence resonance energy transfer (FRET) analyses show that WRN and Flap Endonuclease-1 (FEN-1) form a complex in vivo that colocalizes in foci associated with arrested replication forks. WRN effectively stimulates FEN-1 cleavage of branch-migrating double-flap structures that are the physiological substrates of FEN-1 during replication. Biochemical analyses demonstrate that WRN helicase unwinds the chicken-foot HJ intermediate associated with a regressed replication fork and stimulates FEN-1 to cleave the unwound product in a structure-dependent manner. These results provide evidence for an interaction between WRN and FEN-1 in vivo and suggest that these proteins function together to process DNA structures associated with the replication fork.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Kimura S, Furukawa T, Kasai N, Mori Y, Kitamoto HK, Sugawara F, Hashimoto J, Sakaguchi K. Functional characterization of two flap endonuclease-1 homologues in rice. Gene 2003; 314:63-71. [PMID: 14527718 DOI: 10.1016/s0378-1119(03)00694-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Flap endonuclease-1 (FEN-1) is an important enzyme involved in DNA replication and repair. Previously, we isolated and characterized a complementary DNA (cDNA) from rice (Oryza sativa) encoding a protein which shows homology with the eukaryotic flap endonuclease-1 (FEN-1). In this report, we found that rice (O. sativa L. cv. Nipponbare) possessed two FEN-1 homologues designated as OsFEN-1a and OsFEN-1b. The OsFEN-1a and OsFEN-1b genes were mapped to chromosome 5 and 3, respectively. Both genes contained 17 exons and 16 introns. Alignment of OsFEN-1a protein with OsFEN-1b protein showed a high degree of sequence similarity, particularly around the N and I domains. Northern hybridization and in situ hybridization analysis demonstrated preferential expression of OsFEN-1a and OsFEN-1b in proliferating tissues such as the shoot apical meristem or young leaves. The levels of OsFEN-1a and OsFEN-1b expression were significantly reduced when cell proliferation was temporarily halted by the removal of sucrose from the growth medium. When the growth-halted cells began to regrow following the addition of sucrose to the medium, both OsFEN-1a and OsFEN-1b were again expressed at high level. These results suggested that OsFEN-1a and OsFEN-1b are required for cell proliferation. Functional complementation assay suggested that OsFEN-1a cDNA had the ability to complement Saccharomyces cerevisiae rad27 null mutant. On the other hand, OsFEN-1b cDNA could not complement the rad27 mutant. The roles of OsFEN-1a and OsFEN-1b in plant DNA replication and repair are discussed.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Chiba, 278-8510, Noda, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Kanellis P, Agyei R, Durocher D. Elg1 Forms an Alternative PCNA-Interacting RFC Complex Required to Maintain Genome Stability. Curr Biol 2003; 13:1583-95. [PMID: 13678589 DOI: 10.1016/s0960-9822(03)00578-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genome instability is a hallmark of cancer and plays a critical role in generating the myriad of phenotypes selected for during tumor progression. However, the mechanisms that prevent genome rearrangements remain poorly understood. RESULTS To elucidate the mechanisms that ensure genome stability, we screened a collection of candidate genes for suppressors of gross chromosomal rearrangements (GCRs) in budding yeast. One potent suppressor gene encodes Elg1, a conserved but uncharacterized homolog of the large RFC subunit Rfc1 and the alternative RFC subunits Ctf18/Chl12 and Rad24. Our results are consistent with the hypothesis that Elg1 forms a novel and distinct RFC-like complex in both yeast and human cells. We find that Elg1 is required for efficient S phase progression and telomere homeostasis in yeast. Elg1 interacts physically with the PCNA homolog Pol30 and the FEN-1 homolog Rad27. The physical and genetic interactions suggest a role for Elg1 in Okazaki fragment maturation. Furthermore, Elg1 acts in concert with the alternative Rfc1-like proteins Rad24 and Ctf18 to enable Rad53 checkpoint kinase activation in response to replication stress. CONCLUSIONS Collectively, these results reveal that Elg1 forms a novel and conserved alternative RFC complex. Furthermore, we propose that genome instability arises at high frequency in elg1 mutants due to a defect in Okazaki fragment maturation.
Collapse
Affiliation(s)
- Pamela Kanellis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
108
|
Sun X, Thrower D, Qiu J, Wu P, Zheng L, Zhou M, Bachant J, Wilson DM, Shen B. Complementary functions of the Saccharomyces cerevisiae Rad2 family nucleases in Okazaki fragment maturation, mutation avoidance, and chromosome stability. DNA Repair (Amst) 2003; 2:925-40. [PMID: 12893088 DOI: 10.1016/s1568-7864(03)00093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rad2 family nucleases, identified by sequence similarity within their catalytic domains, function in multiple pathways of DNA metabolism. Three members of the Saccharomyces cerevisiae Rad2 family, Rad2, Rad27, and exonuclease 1 (Exo1), exhibit both 5' exonuclease and flap endonuclease activities. Deletion of RAD27 results in defective Okazaki fragment maturation, DNA repair, and subsequent defects in mutation avoidance and chromosomal stability. However, strains lacking Rad27 are viable. The expression profile of EXO1 during the cell cycle is similar to that of RAD27 and other genes encoding proteins that function in DNA replication and repair, suggesting Exo1 may function as a back up nuclease for Rad27 in DNA replication. We show that overexpression of EXO1 suppresses multiple rad27 null mutation-associated phenotypes derived from DNA replication defects, including temperature sensitivity, Okazaki fragment accumulation, the rate of minichromosome loss, and an elevated mutation frequency. While generally similar findings were observed with RAD2, overexpression of RAD2, but not EXO1, suppressed the MMS sensitivity of the rad27 null mutant cells. This suggests that Rad2 can uniquely complement Rad27 in base excision repair (BER). Furthermore, Rad2 and Exo1 complemented the mutator phenotypes and cell cycle defects of rad27 mutant strains to differing extents, suggesting distinct in vivo nucleic acid substrates.
Collapse
Affiliation(s)
- Xuemin Sun
- Division of Molecular Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Sabourin M, Nitiss JL, Nitiss KC, Tatebayashi K, Ikeda H, Osheroff N. Yeast recombination pathways triggered by topoisomerase II-mediated DNA breaks. Nucleic Acids Res 2003; 31:4373-84. [PMID: 12888496 PMCID: PMC169887 DOI: 10.1093/nar/gkg497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.
Collapse
Affiliation(s)
- Michelle Sabourin
- Department of Biochemistry,Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
110
|
Larsen E, Gran C, Saether BE, Seeberg E, Klungland A. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol 2003; 23:5346-53. [PMID: 12861020 PMCID: PMC165721 DOI: 10.1128/mcb.23.15.5346-5353.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flap endonuclease 1 (FEN1) has been shown to remove 5' overhanging flap intermediates during base excision repair and to process the 5' ends of Okazaki fragments during lagging-strand DNA replication in vitro. To assess the in vivo role of the mammalian enzyme in repair and replication, we used a gene-targeting approach to generate mice lacking a functional Fen1 gene. Heterozygote animals appear normal, whereas complete depletion of FEN1 causes early embryonic lethality. Fen1(-/-) blastocysts fail to form inner cell mass during cellular outgrowth, and a complete inactivation of DNA synthesis in giant cells of blastocyst outgrowth was observed. Exposure of Fen1(-/-) blastocysts to gamma radiation caused extensive apoptosis, implying an essential role for FEN1 in the repair of radiation-induced DNA damage in vivo. Our data thus provide in vivo evidence for an essential function of FEN1 in DNA repair, as well as in DNA replication.
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, The National Hospital, University of Oslo, 0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
111
|
Henneke G, Koundrioukoff S, Hübscher U. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene 2003; 22:4301-13. [PMID: 12853968 DOI: 10.1038/sj.onc.1206606] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase (Cdk) Cdk1-Cyclin A can phosphorylate Flap endonuclease 1 (Fen1), a key-enzyme of the DNA replication machinery, in late S phase. Cdk1-cyclin A forms a complex in vitro and in vivo with Fen1. Furthermore, Fen1 phosphorylation is detected in vivo and depends upon Cdks activity. As a functional consequence of phosphorylation by Cdk1-Cyclin A in vitro, endo- and exonuclease activities of Fen1 are reduced whereas its DNA binding is not affected. Moreover, phosphorylation of Fen1 by Cdk1-Cyclin A abrogates its proliferating cell nuclear antigen (PCNA) binding thus preventing stimulation of Fen1 by PCNA. Concomitantly, human cells expressing the S187A mutant defective for Cdk1-Cyclin A phosphorylation accumulate in S phase consistent with a failure in cell cycle regulation through DNA replication. Our results suggest a novel regulatory role of Cdks onto the end of S phase by targeting directly a key enzyme involved in DNA replication.
Collapse
Affiliation(s)
- Ghislaine Henneke
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
112
|
Henneke G, Friedrich-Heineken E, Hübscher U. Flap endonuclease 1: a novel tumour suppresser protein. Trends Biochem Sci 2003; 28:384-90. [PMID: 12878006 DOI: 10.1016/s0968-0004(03)00138-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ghislaine Henneke
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
113
|
Parrish JZ, Yang C, Shen B, Xue D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 2003; 22:3451-60. [PMID: 12840007 PMCID: PMC165645 DOI: 10.1093/emboj/cdg320] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligonucleosomal fragmentation of chromosomes in dying cells is a hallmark of apoptosis. Little is known about how it is executed or what cellular components are involved. We show that crn-1, a Caenorhabditis elegans homologue of human flap endonuclease-1 (FEN-1) that is normally involved in DNA replication and repair, is also important for apoptosis. Reduction of crn-1 activity by RNA interference resulted in cell death phenotypes similar to those displayed by a mutant lacking the mitochondrial endonuclease CPS-6/endonuclease G. CRN-1 localizes to nuclei and can associate and cooperate with CPS-6 to promote stepwise DNA fragmentation, utilizing the endonuclease activity of CPS-6 and both the 5'-3' exonuclease activity and a previously uncharacterized gap-dependent endonuclease activity of CRN-1. Our results suggest that CRN-1/FEN-1 may play a critical role in switching the state of cells from DNA replication/repair to DNA degradation during apoptosis.
Collapse
Affiliation(s)
- Jay Z Parrish
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
114
|
Friedrich-Heineken E, Henneke G, Ferrari E, Hübscher U. The acetylatable lysines of human Fen1 are important for endo- and exonuclease activities. J Mol Biol 2003; 328:73-84. [PMID: 12683998 DOI: 10.1016/s0022-2836(03)00270-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human Fen1 can be acetylated in vivo and in vitro resulting in reduced endonuclease and exonuclease activities in vitro. Acetylation occurs at four lysines located at the C terminus of Fen1, which is important for DNA binding. In this paper we show that Fen1 mutant proteins lacking the lysines at the C terminus have both reduced PCNA independent exonucleolytic and endonucleolytic activities. However, lysines at the C terminus are not required for PCNA stimulation of human Fen1. A double flap substrate was optimal for human Fen1 endonuclease and did not require the C-terminal lysines. Similarly, a one nucleotide 3'-overhang nick substrate was optimal for human Fen1 exonuclease and also did not require the C-terminal lysines. Finally, we found by an electromobility shift assay that human Fen1 had a different mode of binding with a double flap substrate containing a one nucleotide 3'-tail when compared to various other flap substrates. Taken together, our results confirm the double flap substrate as the likely in vivo intermediate for human Fen1 and that the C-terminal lysines are important for the endonuclease and exonuclease activities likely through DNA binding.
Collapse
Affiliation(s)
- Erica Friedrich-Heineken
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
115
|
Liu Y, Bambara RA. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion. J Biol Chem 2003; 278:13728-39. [PMID: 12554738 DOI: 10.1074/jbc.m212061200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Flap endonuclease 1 (FEN1), involved in the joining of Okazaki fragments, has been proposed to restrain DNA repeat sequence expansion, a process associated with aging and disease. Here we analyze properties of human FEN1 having mutations at two conserved glycines (G66S and G242D) causing defects in nuclease activity. Introduction of these mutants into yeast led to sequence expansions. Reconstituting triplet repeat expansion in vitro, we previously found that DNA ligase I promotes expansion, but FEN1 prevents the ligation that forms expanded products. Here we show that among the intermediates that could generate sequence expansion, a bubble is necessary for ligation to produce the expansion product. Severe exonuclease defects in the mutant FEN1 suggested that the inability to degrade bubbles exonucleolytically leads to expansion. However, even wild type FEN1 exonuclease cannot compete with DNA ligase I to degrade a bubble structure before it can be ligated. Instead, we propose that FEN1 suppresses sequence expansion by degrading flaps that equilibrate with bubbles, thereby reducing bubble concentration. In this way FEN1 employs endonuclease rather than exonuclease to prevent expansions. A model is presented describing the roles of DNA structure, DNA ligase I, and FEN1 in sequence expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
116
|
Adachi N, Karanjawala ZE, Matsuzaki Y, Koyama H, Lieber MR. Two overlapping divergent transcription units in the human genome: the FEN1/C11orf10 locus. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2003; 6:273-9. [PMID: 12427278 DOI: 10.1089/15362310260256927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Flap endonuclease 1 (FEN-1) is a nuclear enzyme involved in DNA metabolism, such as replication, repair, and recombination. Here, we report the comparative genomic organization of the chicken, mouse, and human FEN1 genes as well as the comparative organization of a small gene (C11orf10) located immediately upstream of the FEN1 gene in reverse orientation. Immunostaining revealed that the C11orf10 protein, unlike FEN-1, is located in the cytoplasm, suggesting that these two proteins do not form a physical complex. Importantly, in the human genome, the two mRNAs are overlapping (14 bp) in their 5' ends. Thus, the FEN1/C11orf10 locus is a new example of two overlapping, divergent transcription units in the human genome.
Collapse
Affiliation(s)
- Noritaka Adachi
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
117
|
Sundararajan A, Lee BS, Garfinkel DJ. The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae. Genetics 2003; 163:55-67. [PMID: 12586696 PMCID: PMC1462422 DOI: 10.1093/genetics/163.1.55] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although most Ty1 elements in Saccharomyces cerevisiae are competent for retrotransposition, host defense genes can inhibit different steps of the Ty1 life cycle. Here, we demonstrate that Rad27, a structure-specific nuclease that plays an important role in DNA replication and genome stability, inhibits Ty1 at a post-translational level. We have examined the effects of various rad27 mutations on Ty1 element retrotransposition and cDNA recombination, termed Ty1 mobility. The point mutations rad27-G67S, rad27-G240D, and rad27-E158D that cause defects in certain enzymatic activities in vitro result in variable increases in Ty1 mobility, ranging from 4- to 22-fold. The C-terminal frameshift mutation rad27-324 confers the maximum increase in Ty1 mobility (198-fold), unincorporated cDNA, and insertion at preferred target sites. The null mutation differs from the other rad27 alleles by increasing the frequency of multimeric Ty1 insertions and cDNA recombination with a genomic element. The rad27 mutants do not markedly alter the levels of Ty1 RNA or the TyA1-gag protein. However, there is an increase in the stability of unincorporated Ty1 cDNA in rad27-324 and the null mutant. Our results suggest that Rad27 inhibits Ty1 mobility by destabilizing unincorporated Ty1 cDNA and preventing the formation of Ty1 multimers.
Collapse
Affiliation(s)
- Anuradha Sundararajan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
118
|
Furukawa T, Kimura S, Ishibashi T, Mori Y, Hashimoto J, Sakaguchi K. OsSEND-1: a new RAD2 nuclease family member in higher plants. PLANT MOLECULAR BIOLOGY 2003; 51:59-70. [PMID: 12602891 DOI: 10.1023/a:1020789314722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel endonuclease, a new member of the RAD2 nuclease family, has been identified from the higher plant, rice (Oryza sativa L. cv. Nipponbare), and designated as OsSEND-1. The open reading frame of the OsSEND-1 cDNA encoded a predicted product of 641 amino acid residues with a molecular weight of 69.9 kDa. The encoded protein showed a relatively high degree of sequence homology with the RAD2 nuclease family proteins, especially RAD2 nuclease, but it differed markedly from FEN-1, XPG or HEX1/EXO1. The N- and I-domains in the family were highly conserved in the OsSEND-1 sequence. The protein was much smaller than XPG, but larger than HEX1/EXO1 and FEN-1. The genome sequence was composed of 14 exons, and was localized at the almost terminal region of the short arm of chromosome 8. Northern blotting and in situ hybridization analyses demonstrated preferential expression of OsSEND-1 mRNA in proliferating tissues such as meristem. The mRNA level of OsSEND-1 was induced by UV and DNA-damaging agent such as MMS or H2O2, indicating that OsSEND-1 has some roles in the repair of many types of damaged DNA. The recombinant peptide showed endonuclease activity.
Collapse
Affiliation(s)
- Tomoyuki Furukawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
119
|
Parenteau J, Wellinger RJ. Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease. Genetics 2002; 162:1583-94. [PMID: 12524334 PMCID: PMC1462396 DOI: 10.1093/genetics/162.4.1583] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae strains lacking the Rad27p nuclease, a homolog of the mammalian FEN-1 protein, display an accumulation of extensive single-stranded G-tails at telomeres. Furthermore, the lengths of telomeric repeats become very heterogeneous. These phenotypes could be the result of aberrant Okazaki fragment processing of the C-rich strand, elongation of the G-rich strand by telomerase, or an abnormally high activity of the nucleolytic activities required to process leading-strand ends. To distinguish among these possibilities, we analyzed strains carrying a deletion of the RAD27 gene and also lacking genes required for in vivo telomerase activity. The results show that double-mutant strains died more rapidly than strains lacking only telomerase components. Furthermore, in such strains there is a significant reduction in the signals for G-tails as compared to those detected in rad27delta cells. The results from studies of the replication intermediates of a linear plasmid in rad27delta cells are consistent with the idea that only one end of the plasmid acquires extensive G-tails, presumably the end made by lagging-strand synthesis. These data further support the notion that chromosome ends have differential requirements for end processing, depending on whether the ends were replicated by leading- or lagging-strand synthesis.
Collapse
Affiliation(s)
- Julie Parenteau
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbooke, Sherbooke, Quebec J1H 5N4, Canada
| | | |
Collapse
|
120
|
Brosh RM, Driscoll HC, Dianov GL, Sommers JA. Biochemical characterization of the WRN-FEN-1 functional interaction. Biochemistry 2002; 41:12204-16. [PMID: 12356323 DOI: 10.1021/bi026031j] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Werner Syndrome is a premature aging disorder characterized by chromosomal instability. Recently we reported a novel interaction of the WRN gene product with human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in pathways of DNA metabolism that are important for genomic stability. To characterize the mechanism for WRN stimulation of FEN-1 cleavage, we have determined the effect of WRN on the kinetic parameters of the FEN-1 cleavage reaction. WRN enhanced the efficiency of FEN-1 cleavage rather than DNA substrate binding. WRN effectively stimulated FEN-1 cleavage on a flap DNA substrate with streptavidin bound to the terminal 3' nucleotide at the end of the upstream duplex, indicating that WRN does not require a free upstream end to stimulate FEN-1 cleavage of the 5' flap substrate. These results indicate that the mechanism whereby WRN stimulates FEN-1 cleavage is distinct from that proposed for the functional interaction between proliferating cell nuclear antigen and FEN-1. To understand the potential importance of the WRN-FEN-1(1) interaction in DNA replication, we have tested the effect of WRN on FEN-1 cleavage of several DNA substrate intermediates that may arise during Okazaki fragment processing. WRN stimulated FEN-1 cleavage of flap substrates with a terminal monoribonucleotide, a long 5' ssDNA tract, and a pseudo-Y structure. The ability of WRN to facilitate FEN-1 cleavage of DNA replication/repair intermediates may be important for the role of WRN in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
121
|
Andrew SE, Peters AC. DNA instability and human disease. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:21-8. [PMID: 12173310 DOI: 10.2165/00129785-200101010-00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is now well established that non-Mendelian examples of DNA instability are associated with human disease. Most malignancies are associated with various chromosomal instabilities, such as aneuploidy, gene amplification, and chromosomal deletion. Furthermore, widespread microsatellite instability (MSI) is associated with a variety of tumors, and instability at specific dynamic repeat expansions underlies a family of neurologic disorders. Inactivation of DNA mismatch repair genes results in genomic instabilities affecting microsatellite regions. Mutations in genes involved in DNA polymerization or Okazaki fragment processing are also associated with MSI. Such instabilities convey a 'mutator' phenotype which is pathogenic. The mechanisms controlling trinucleotide repeat expansions are less well understood. Why this type of genomic instability is particularly pathogenic to neurons is also not clear. An understanding of what normally maintains stability is the first step towards preventing such loss of control and maintaining health.
Collapse
Affiliation(s)
- S E Andrew
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
122
|
Zheng L, Li M, Shan J, Krishnamoorthi R, Shen B. Distinct roles of two Mg2+ binding sites in regulation of murine flap endonuclease-1 activities. Biochemistry 2002; 41:10323-31. [PMID: 12162748 DOI: 10.1021/bi025841s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Removal of flap DNA intermediates in DNA replication and repair by flap endonuclease-1 (FEN-1) is essential for mammalian genome integrity. Divalent metal ions, Mg(2+) or Mn(2+), are required for the active center of FEN-1 nucleases. However, it remains unclear as to how Mg(2+) stimulates enzymatic activity. In the present study, we systemically characterize the interaction between Mg(2+) and murine FEN-1 (mFEN-1). We demonstrate that Mg(2+) stimulates mFEN-1 activity at physiological levels but inhibits the activity at concentrations higher than 20 mM. Our data suggest that mFEN-1 exists as a metalloenzyme in physiological conditions and that each enzyme molecule binds two Mg(2+) ions. Binding of Mg(2+) to the M1 binding site coordinated by the D86 residue cluster enhances mFEN-1's capability of substrate binding, while binding of the metal to the M2 binding site coordinated by the D181 residue cluster induces conformational changes. Both of these steps are needed for catalysis. Weak, nonspecific Mg(2+) binding is likely responsible for the enzyme inhibition at high concentrations of the cation. Taken together, our results suggest distinct roles for two Mg(2+) binding sites in the regulation of mFEN-1 nuclease activities in a mode different from the "two-metal mechanism".
Collapse
Affiliation(s)
- Li Zheng
- Division of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
123
|
Manthey GM, Bailis AM. Multiple pathways promote short-sequence recombination in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:5347-56. [PMID: 12101230 PMCID: PMC133931 DOI: 10.1128/mcb.22.15.5347-5356.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, null alleles of several DNA repair and recombination genes confer defects in recombination that grow more severe with decreasing sequence length, indicating that they are required for short-sequence recombination (SSR). RAD1 and RAD10, which encode the subunits of the structure-specific endonuclease Rad1/10, are critical for SSR. MRE11, RAD50, and XRS2, which encode the subunits of M/R/X, another complex with nuclease activity, are also crucially important. Genetic evidence suggests that Rad1/10 and M/R/X act on the same class of substrates during SSR. MSH2 and MSH3, which encode subunits of Msh2/3, a complex active during mismatch repair and recombination, are also important for SSR but play a more restricted role. Additional evidence suggests that SSR is distinct from nonhomologous end joining and is superimposed upon basal homologous recombination.
Collapse
Affiliation(s)
- Glenn M Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010-0269, USA
| | | |
Collapse
|
124
|
Kucherlapati M, Yang K, Kuraguchi M, Zhao J, Lia M, Heyer J, Kane MF, Fan K, Russell R, Brown AMC, Kneitz B, Edelmann W, Kolodner RD, Lipkin M, Kucherlapati R. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci U S A 2002; 99:9924-9. [PMID: 12119409 PMCID: PMC126601 DOI: 10.1073/pnas.152321699] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Flap endonuclease (Fen1) is required for DNA replication and repair, and defects in the gene encoding Fen1 cause increased accumulation of mutations and genome rearrangements. Because mutations in some genes involved in these processes cause cancer predisposition, we investigated the possibility that Fen1 may function in tumorigenesis of the gastrointestinal tract. Using gene knockout approaches, we introduced a null mutation into murine Fen1. Mice homozygous for the Fen1 mutation were not obtained, suggesting absence of Fen1 expression leads to embryonic lethality. Most Fen1 heterozygous animals appear normal. However, when combined with a mutation in the adenomatous polyposis coli (Apc) gene, double heterozygous animals have increased numbers of adenocarcinomas and decreased survival. The tumors from these mice show microsatellite instability. Because one copy of the Fen1 gene remained intact in tumors, Fen1 haploinsufficiency appears to lead to rapid progression of cancer.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Medicine and Harvard Partners Center for Genetics and Genomics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Matsuzaki Y, Adachi N, Koyama H. Vertebrate cells lacking FEN-1 endonuclease are viable but hypersensitive to methylating agents and H2O2. Nucleic Acids Res 2002; 30:3273-7. [PMID: 12136109 PMCID: PMC135760 DOI: 10.1093/nar/gkf440] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The structure-specific FEN-1 endonuclease has been implicated in various cellular processes, including DNA replication, repair and recombination. In vertebrate cells, however, no in vivo evidence has been provided so far. Here, we knocked out the FEN-1 gene (FEN1) in the chicken DT40 cell line. Surprisingly, homozygous mutant (FEN1-/-) cells were viable, indicating that FEN-1 is not essential for cell proliferation and thus for Okazaki fragment processing during DNA replication. However, compared with wild-type cells, FEN1-/- cells exhibited a slow growth phenotype, probably due to a high rate of cell death. The mutant cells were hypersensitive to methylmethane sulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and H2O2, but not to UV light, X-rays and etoposide, suggesting that FEN-1 functions in base excision repair in vertebrate cells.
Collapse
Affiliation(s)
- Yasuo Matsuzaki
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | |
Collapse
|
126
|
Xiao J, Singleton SF. Elucidating a key intermediate in homologous DNA strand exchange: structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J Mol Biol 2002; 320:529-58. [PMID: 12096908 DOI: 10.1016/s0022-2836(02)00462-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA-tsDNA complex), has been reported. We present a systematic characterization of the helical geometries of the three DNA strands of the RecA-tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. FRET donor and acceptor dyes were used to label different DNA strands, and the interfluorophore distances were inferred from energy transfer efficiencies measured as a function of the base-pair separation between the two dyes. The energy transfer efficiencies were first measured on a control RecA-dsDNA complex, and the calculated helical parameters (h approximately 5 A, Omega(h) approximately 20 degrees ) were consistent with structural conclusions derived from electron microscopy (EM) and other classic biochemical methods. Measurements of the helical parameters for the RecA-tsDNA complex revealed that all three DNA strands adopt extended and unwound conformations similar to those of RecA-bound dsDNA. The structural data are consistent with the hypothesis that this complex is a late, post-strand-exchange intermediate with the outgoing strand shifted by about three base-pairs with respect to its registry with the incoming and complementary strands. Furthermore, the bases of the incoming and complementary strands are displaced away from the helix axis toward the minor groove of the heteroduplex, and the bases of the outgoing strand lie in the major groove of the heteroduplex. We present a model for the strand exchange intermediate in which homologous contacts preceding strand exchange arise in the minor groove of the substrate dsDNA.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Chemistry, Rice University, P.O. Box 1892, MS 65, Houston, TX 77005, USA
| | | |
Collapse
|
127
|
Qiu J, Bimston DN, Partikian A, Shen B. Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination. J Biol Chem 2002; 277:24659-66. [PMID: 11986308 DOI: 10.1074/jbc.m111941200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease-1 (FEN-1) is a critical enzyme for DNA replication and repair. Intensive studies have been carried out on its structure-specific nuclease activities and biological functions in yeast cells. However, its specific interactions with DNA substrates as an initial step of catalysis are not defined. An understanding of the ability of FEN-1 to recognize and bind a flap DNA substrate is critical for the elucidation of its molecular mechanism and for the explanation of possible pathological consequences resulting from its failure to bind DNA. Using human FEN-1 in this study, we identified two positively charged amino acid residues, Arg-47 and Arg-70 in human FEN-1, as candidates responsible for substrate binding. Mutation of the Arg-70 significantly reduced flap endonuclease activity and eliminated exonuclease activity. Mutation or protonation of Arg-47 shifted cleavage sites with flap substrate and significantly reduced the exonuclease activity. We revealed that these alterations are due to the defects in DNA-protein interactions. Although the effect of the single Arg-47 mutation on binding activities is not as severe as R70A, its double mutation with Asp-181 had a synergistic effect. Furthermore the possible interaction sites of these positively charged residues with DNA substrates were discussed based on FEN-1 cleavage patterns using different substrates. Finally data were provided to indicate that the observed negative effects of a high concentration of Mg(2+) on enzymatic activity are probably due to the competition between the arginine residues and metal ions with DNA substrate since mutants were found to be less tolerant.
Collapse
Affiliation(s)
- Junzhuan Qiu
- Division of Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
128
|
Singleton SF, Xiao J. The stretched DNA geometry of recombination and repair nucleoprotein filaments. Biopolymers 2002; 61:145-58. [PMID: 11987178 DOI: 10.1002/bip.10145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA x tsDNA complex), has been elucidated by classical methods. Here we review the systematic characterization of the helical geometries of the three DNA strands of the RecA x tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. Measurements of the helical parameters for the RecA x tsDNA complex are consistent with the hypothesis that this complex is a late, poststrand-exchange intermediate with the outgoing strand shifted by about three base pairs with respect to its registry with the incoming and complementary strands. All three strands in the RecA x tsDNA complex adopt extended and unwound conformations similar to those of RecA-bound ssDNA and dsDNA.
Collapse
Affiliation(s)
- S F Singleton
- Department of Chemistry, Rice University, P. O. Box 1892, MS 65, Houston, TX 77005, USA.
| | | |
Collapse
|
129
|
McInnis M, O'Neill G, Fossum K, Reagan MS. Epistatic analysis of the roles of the RAD27 and POL4 gene products in DNA base excision repair in S. cerevisiae. DNA Repair (Amst) 2002; 1:311-5. [PMID: 12509249 DOI: 10.1016/s1568-7864(02)00007-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular role of the DNA polymerase encoded by the Saccharomyces cerevisiae POL4 gene is unclear. We have used an epistasis analysis to investigate whether the proteins encoded by the POL4 and RAD27 genes participate in alternative, non-redundant subpathways of DNA base excision repair (BER). We constructed strains in which the genes were deleted singly or in combination and have examined their sensitivity to DNA damaging agents as well as spontaneous mutation frequency. The double deletion strain is no more sensitive to damaging agents and has no higher spontaneous mutation frequency than the most sensitive single mutant. These data indicate that the protein encoded by the POL4 gene does not participate in a non-redundant subpathway of base excision repair under these conditions. We discuss the implications of these results in light of the recent classification of the POL4 gene product as a member of the DNA polymerase lambda family.
Collapse
Affiliation(s)
- Megan McInnis
- Department of Biology, College of St. Benedict/St. John's University, Collegeville, MN 56321-3000, USA
| | | | | | | |
Collapse
|
130
|
Brosh RM, Bohr VA. Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp Gerontol 2002; 37:491-506. [PMID: 11830352 DOI: 10.1016/s0531-5565(01)00227-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Werners syndrome is a disease of premature aging where the patients appear much older than their chronological age. The gene codes for a protein that is a helicase and an exonuclease, and recently we have learned about some of its protein interactions. These interactions are being discussed as they shed light on the molecular pathways in which Werner protein participates. Insight into these pathways brings insight into the aging process.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
131
|
Lee Bi BI, Nguyen LH, Barsky D, Fernandes M, Wilson DM. Molecular interactions of human Exo1 with DNA. Nucleic Acids Res 2002; 30:942-9. [PMID: 11842105 PMCID: PMC100345 DOI: 10.1093/nar/30.4.942] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human Exo1 is a member of the RAD2 nuclease family with roles in replication, repair and recombination. Despite sharing significant amino acid sequence homology, the RAD2 proteins exhibit disparate nuclease properties and biological functions. In order to identify elements that dictate substrate selectivity within the RAD2 family, we sought to identify residues key to Exo1 nuclease activity and to characterize the molecular details of the human Exo1-DNA interaction. Site-specific mutagenesis studies demonstrate that amino acids D78, D173 and D225 are critical for Exo1 nuclease function. In addition, we show that the chemical nature of the 5'-terminus has a major impact on Exo1 nuclease efficiency, with a 5'-phosphate group stimulating degradation 10-fold and a 5'-biotin inhibiting degradation 10-fold (relative to a 5'-hydroxyl moiety). An abasic lesion located within a substrate DNA strand impedes Exo1 nucleolytic degradation, and a 5'-terminal abasic residue reduces nuclease efficiency 2-fold. Hydroxyl radical footprinting indicates that Exo1 binds predominantly along the minor groove of flap DNA, downstream of the junction. As will be discussed, our results favor the notion that the single-stranded DNA structure is pinched by the helical arch of the protein and not threaded through this key recognition loop. Furthermore, our studies indicate that significant, presumably biologically relevant, differences exist between the active site dynamics of Exo1 and Fen1.
Collapse
Affiliation(s)
- Byung-in Lee Bi
- Biology and Biotechnology Research Program, L-441, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551-9900, USA
| | | | | | | | | |
Collapse
|
132
|
Shibata Y, Nakamura T. Defective flap endonuclease 1 activity in mammalian cells is associated with impaired DNA repair and prolonged S phase delay. J Biol Chem 2002; 277:746-54. [PMID: 11687589 DOI: 10.1074/jbc.m109461200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN-1) is a 5'-3' flap exo-/endonuclease that plays an important role in Okazaki fragment maturation, nonhomologous end joining of double-stranded DNA breaks, and long patch base excision repair. Here, we demonstrate that the wild type FEN-1 binds tightly to chromatin in conjunction with proliferating cell nuclear antigen (PCNA) recruitment after MMS treatment, and the nuclease-defective FEN-1 increased the sensitivity of the cells to methylmethane sulfonate (MMS) and to UV light but not to ionizing radiation. In contrast, the cells expressing the nuclease-defective and PCNA binding-defective double mutant FEN-1 exhibited sensitivities similar to those in the cells expressing the wild type FEN-1. MMS treatment caused a prolonged delay of S phase progression and impairment in colony-forming activity of cells expressing nuclease-defective FEN-1. A comet assay demonstrated that DNA repair after MMS or UV treatment was impaired in the cells expressing nuclease-deficient FEN-1 but not in the cells with double-mutated FEN-1. Taken together, these findings suggest that FEN-1 plays an essential role in the DNA repair processes in mammalian cells and that this activity of FEN-1 is PCNA-dependent.
Collapse
Affiliation(s)
- Yoshiyuki Shibata
- Department of Radiology and Cancer Biology, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | |
Collapse
|
133
|
Brosh RM, von Kobbe C, Sommers JA, Karmakar P, Opresko PL, Piotrowski J, Dianova I, Dianov GL, Bohr VA. Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J 2001; 20:5791-801. [PMID: 11598021 PMCID: PMC125684 DOI: 10.1093/emboj/20.20.5791] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Werner syndrome (WS) is a human premature aging disorder characterized by chromosomal instability. The cellular defects of WS presumably reflect compromised or aberrant function of a DNA metabolic pathway that under normal circumstances confers stability to the genome. We report a novel interaction of the WRN gene product with the human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in DNA replication, recombination and repair. WS protein (WRN) dramatically stimulates the rate of FEN-1 cleavage of a 5' flap DNA substrate. The WRN-FEN-1 functional interaction is independent of WRN catalytic function and mediated by a 144 amino acid domain of WRN that shares homology with RecQ DNA helicases. A physical interaction between WRN and FEN-1 is demonstrated by their co-immunoprecipitation from HeLa cell lysate and affinity pull-down experiments using a recombinant C-terminal fragment of WRN. The underlying defect of WS is discussed in light of the evidence for the interaction between WRN and FEN-1.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Xie Y, Liu Y, Argueso JL, Henricksen LA, Kao HI, Bambara RA, Alani E. Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage. Mol Cell Biol 2001; 21:4889-99. [PMID: 11438646 PMCID: PMC87203 DOI: 10.1128/mcb.21.15.4889-4899.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the nuclease activity of Rad27p (Fen1p) is thought to play a critical role in lagging-strand DNA replication by removing ribonucleotides present at the 5' ends of Okazaki fragments. Genetic analysis of Saccharomyces cerevisiae also has identified a role for Rad27p in mutation avoidance. rad27Delta mutants display both a repeat tract instability phenotype and a high rate of forward mutations to canavanine resistance that result primarily from duplications of DNA sequences that are flanked by direct repeats. These observations suggested that Rad27p activities in DNA replication and repair could be altered by mutagenesis and specifically assayed. To test this idea, we analyzed two rad27 alleles, rad27-G67S and rad27-G240D, that were identified in a screen for mutants that displayed repeat tract instability and mutator phenotypes. In chromosome stability assays, rad27-G67S strains displayed a higher frequency of repeat tract instabilities relative to CAN1 duplication events; in contrast, the rad27-G240D strains displayed the opposite phenotype. In biochemical assays, rad27-G67Sp displayed a weak exonuclease activity but significant single- and double-flap endonuclease activities. In contrast, rad27-G240Dp displayed a significant double-flap endonuclease activity but was devoid of exonuclease activity and showed only a weak single-flap endonuclease activity. Based on these observations, we hypothesize that the rad27-G67S mutant phenotypes resulted largely from specific defects in nuclease function that are important for degrading bubble intermediates, which can lead to DNA slippage events. The rad27-G240D mutant phenotypes were more difficult to reconcile to a specific biochemical defect, suggesting a structural role for Rad27p in DNA replication and repair. Since the mutants provide the means to relate nuclease functions in vitro to genetic characteristics in vivo, they are valuable tools for further analyses of the diverse biological roles of Rad27p.
Collapse
Affiliation(s)
- Y Xie
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Kearney HM, Kirkpatrick DT, Gerton JL, Petes TD. Meiotic recombination involving heterozygous large insertions in Saccharomyces cerevisiae: formation and repair of large, unpaired DNA loops. Genetics 2001; 158:1457-76. [PMID: 11514439 PMCID: PMC1461752 DOI: 10.1093/genetics/158.4.1457] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic recombination in Saccharomyces cerevisiae involves the formation of heteroduplexes, duplexes containing DNA strands derived from two different homologues. If the two strands of DNA differ by an insertion or deletion, the heteroduplex will contain an unpaired DNA loop. We found that unpaired loops as large as 5.6 kb can be accommodated within a heteroduplex. Repair of these loops involved the nucleotide excision repair (NER) enzymes Rad1p and Rad10p and the mismatch repair (MMR) proteins Msh2p and Msh3p, but not several other NER (Rad2p and Rad14p) and MMR (Msh4p, Msh6p, Mlh1p, Pms1p, Mlh2p, Mlh3p) proteins. Heteroduplexes were also formed with DNA strands derived from alleles containing two different large insertions, creating a large "bubble"; repair of this substrate was dependent on Rad1p. Although meiotic recombination events in yeast are initiated by double-strand DNA breaks (DSBs), we showed that DSBs occurring within heterozygous insertions do not stimulate interhomologue recombination.
Collapse
Affiliation(s)
- H M Kearney
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | |
Collapse
|
136
|
Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 2001; 412:456-61. [PMID: 11473323 DOI: 10.1038/35086609] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast revealed that null mutants of RNase HI and/or Fen1 are not lethal, suggesting that an additional enzymatic activity may be required for the removal of RNA. One such enzyme is the Saccharomyces cerevisiae Dna2 helicase/endonuclease, which is essential for cell viability and is well suited to removing RNA primers of Okazaki fragments. In addition, Dna2 interacts genetically and physically with several proteins involved in the elongation or maturation of Okazaki fragments. Here we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA. The sequential action of these enzymes is governed by a single-stranded DNA-binding protein, replication protein-A (RPA). Our results demonstrate that the processing of Okazaki fragments in eukaryotes differs significantly from, and is more complicated than, that occurring in prokaryotes. We propose a novel biochemical mechanism for the maturation of eukaryotic Okazaki fragments.
Collapse
Affiliation(s)
- S H Bae
- National Creative Research Initiative Center for Cell Cycle Control, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchun-Dong, Changan-Ku, Suwon, Kyunggi-Do 440-746, Korea
| | | | | | | |
Collapse
|
137
|
Debrauwère H, Loeillet S, Lin W, Lopes J, Nicolas A. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc Natl Acad Sci U S A 2001; 98:8263-9. [PMID: 11459962 PMCID: PMC37430 DOI: 10.1073/pnas.121075598] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The RAD27 gene of Saccharomyces cerevisiae encodes a 5'-3' flap exo/endonuclease, which plays an important role during DNA replication for Okazaki fragment maturation. Genetic studies have shown that RAD27 is not essential for growth, although rad27 Delta mutants are temperature sensitive. Moreover, they exhibit increased sensitivity to alkylating agents, enhanced spontaneous recombination, and repetitive DNA instability. The conditional lethality conferred by the rad27 Delta mutation indicates that other nuclease(s) can compensate for the absence of Rad27. Indeed, biochemical and genetical analyses indicate that Okazaki fragment processing can be assured by other enzymatic activities or by alternative pathways such as homologous recombination. Here we present the results of a screen that makes use of a synthetic lethality assay to identify functions required for the survival of rad27 Delta strains. Altogether, we confirm that all genes of the Rad52 recombinational repair pathway are required for the survival of rad27 Delta strains at both permissive (23 degrees C) and semipermissive (30 degrees C) temperatures for growth. We also find that several point mutations that confer weaker phenotypes in mitotic than in meiotic cells (rad50S, mre11s) and additional gene deletions (com1/sae2, srs2) exhibit synthetic lethality with rad27 Delta and that rad59 Delta exhibits synergistic effects with rad27 Delta. This and previous studies indicate that homologous recombination is the primary, but not only, pathway that functions to bypass the replication defects that arise in the absence of the Rad27 protein.
Collapse
Affiliation(s)
- H Debrauwère
- Institut Curie, Section de Recherche, UMR144 Centre National de la Recherche Scientifique, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
138
|
Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger MO. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell 2001; 7:1221-31. [PMID: 11430825 DOI: 10.1016/s1097-2765(01)00272-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe a role for the transcriptional coactivator p300 in DNA metabolism. p300 formed a complex with flap endonuclease-1 (Fen1) and acetylated Fen1 in vitro. Furthermore, Fen1 acetylation was observed in vivo and was enhanced upon UV treatment of human cells. Remarkably, acetylation of the Fen1 C terminus by p300 significantly reduced Fen1's DNA binding and nuclease activity. Proliferating cell nuclear antigen (PCNA) was able to stimulate both acetylated and unacetylated Fen1 activity to the same extent. Our results identify acetylation as a novel regulatory modification of Fen1 and implicate that p300 is not only a component of the chromatin remodeling machinery but might also play a critical role in regulating DNA metabolic events.
Collapse
Affiliation(s)
- S Hasan
- Institute of Veterinary Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Bhagwat M, Nossal NG. Bacteriophage T4 RNase H removes both RNA primers and adjacent DNA from the 5' end of lagging strand fragments. J Biol Chem 2001; 276:28516-24. [PMID: 11376000 DOI: 10.1074/jbc.m103914200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
140
|
Rattray AJ, McGill CB, Shafer BK, Strathern JN. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 2001; 158:109-22. [PMID: 11333222 PMCID: PMC1461648 DOI: 10.1093/genetics/158.1.109] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Errors associated with the repair of DNA double-strand breaks (DSBs) include point mutations caused by misincorporation during repair DNA synthesis or novel junctions made by nonhomologous end joining (NHEJ). We previously demonstrated that DNA synthesis is approximately 100-fold more error prone when associated with DSB repair. Here we describe a genetic screen for mutants that affect the fidelity of DSB repair. The substrate consists of inverted repeats of the trp1 and CAN1 genes. Recombinational repair of a site-specific DSB within the repeat yields TRP1 recombinants. Errors in the repair process can be detected by the production of canavanine-resistant (can1) mutants among the TRP1 recombinants. In wild-type cells the recombinational repair process is efficient and fairly accurate. Errors resulting in can1 mutations occur in <1% of the TRP1 recombinants and most appear to be point mutations. We isolated several mutant strains with altered fidelity of recombination. Here we characterize one of these mutants that revealed an approximately 10-fold elevation in the frequency of can1 mutants among TRP1 recombinants. The gene was cloned by complementation of a coincident sporulation defect and proved to be an allele of SAE2/COM1. Physical analysis of the can1 mutants from sae2/com1 strains revealed that many were a novel class of chromosome rearrangement that could reflect break-induced replication (BIR) and NHEJ. Strains with either the mre11s-H125N or rad50s-K81I alleles had phenotypes in this assay that are similar to that of the sae2/com1Delta strain. Our data suggest that Sae2p/Com1p plays a role in ensuring that both ends of a DSB participate in a recombination event, thus avoiding BIR, possibly by regulating the nuclease activity of the Mre11p/Rad50p/Xrs2p complex.
Collapse
Affiliation(s)
- A J Rattray
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
141
|
Negritto MC, Qiu J, Ratay DO, Shen B, Bailis AM. Novel function of Rad27 (FEN-1) in restricting short-sequence recombination. Mol Cell Biol 2001; 21:2349-58. [PMID: 11259584 PMCID: PMC86868 DOI: 10.1128/mcb.21.7.2349-2358.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae mutants lacking the structure-specific nuclease Rad27 display an enhancement in recombination that increases as sequence length decreases, suggesting that Rad27 preferentially restricts recombination between short sequences. Since wild-type alleles of both RAD27 and its human homologue FEN1 complement the elevated short-sequence recombination (SSR) phenotype of a rad27-null mutant, this function may be conserved from yeast to humans. Furthermore, mutant Rad27 and FEN-1 enzymes with partial flap endonuclease activity but without nick-specific exonuclease activity partially complement the SSR phenotype of the rad27-null mutant. This suggests that the endonuclease activity of Rad27 (FEN-1) plays a role in limiting recombination between short sequences in eukaryotic cells.
Collapse
Affiliation(s)
- M C Negritto
- Department of Molecular Biology, Beckman Research Institute, Duarte, California 91010-0269, USA
| | | | | | | | | |
Collapse
|
142
|
Stucki M, Jónsson ZO, Hübscher U. In eukaryotic flap endonuclease 1, the C terminus is essential for substrate binding. J Biol Chem 2001; 276:7843-9. [PMID: 11083875 DOI: 10.1074/jbc.m008829200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (Fen1) is a structure-specific metallonuclease with important functions in DNA replication and DNA repair. It interacts like many other proteins involved in DNA metabolic events with proliferating cell nuclear antigen (PCNA), and its enzymatic activity is stimulated by PCNA in vitro. The PCNA interaction site is located close to the C terminus of Fen1 and is flanked by a conserved basic region of 35-38 amino acids in eukaryotic species but not in archaea. We have constructed two deletion mutants of human Fen1 that lack either the PCNA interaction motif or a part of its adjacent C-terminal region and analyzed them in a variety of assays. Remarkably, deletion of the basic C-terminal region did not affect PCNA interaction but resulted in a protein with significantly reduced enzymatic activity. Electrophoretic mobility shift analysis revealed that this mutant displayed a severe defect in substrate binding. Our results suggest that the C terminus of eukaryotic Fen1 consists of two functionally distinct regions that together might form an important regulatory domain.
Collapse
Affiliation(s)
- M Stucki
- Institut für Veterinärbiochemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
143
|
Qiu J, Li X, Frank G, Shen B. Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J Biol Chem 2001; 276:4901-8. [PMID: 11053418 DOI: 10.1074/jbc.m007825200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.
Collapse
Affiliation(s)
- J Qiu
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
144
|
Klein HL. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae. Genetics 2001; 157:557-65. [PMID: 11156978 PMCID: PMC1461529 DOI: 10.1093/genetics/157.2.557] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The SRS2 gene of Saccharomyces cerevisiae encodes a DNA helicase that is active in the postreplication repair pathway and homologous recombination. srs2 mutations are lethal in a rad54Delta background and cause poor growth or lethality in rdh54Delta, rad50Delta, mre11Delta, xrs2Delta, rad27Delta, sgs1Delta, and top3Delta backgrounds. Some of these genotypes are known to be defective in double-strand break repair. Many of these lethalities or poor growth can be suppressed by mutations in other genes in the DSB repair pathway, namely rad51, rad52, rad55, and rad57, suggesting that inhibition of recombination at a prior step prevents formation of a lethal intermediate. Lethality of the srs2Delta rad54Delta and srs2Delta rdh54Delta double mutants can also be rescued by mutations in the DNA damage checkpoint functions RAD9, RAD17, RAD24, and MEC3, indicating that the srs2 rad54 and srs2 rdh54 mutant combinations lead to an intermediate that is sensed by these checkpoint functions. When the checkpoints are intact the cells never reverse from the arrest, but loss of the checkpoints releases the arrest. However, cells do not achieve wild-type growth rates, suggesting that unrepaired damage is still present and may lead to chromosome loss.
Collapse
Affiliation(s)
- H L Klein
- Department of Biochemistry and Kaplan Cancer Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| |
Collapse
|
145
|
Bae SH, Seo YS. Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem 2000; 275:38022-31. [PMID: 10984490 DOI: 10.1074/jbc.m006513200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Dna2, which contains single-stranded DNA-specific endonuclease activity, interacts genetically and physically with Fen-1, a structure-specific endonuclease implicated in Okazaki fragment maturation during lagging strand synthesis. In this report, we investigated the properties of the Dna2 helicase/endonuclease activities in search of their in vivo physiological functions in eukaryotes. We found that the Dna2 helicase activity translocates in the 5' to 3' direction and uses DNA with free ends as the preferred substrate. Furthermore, the endonucleolytic cleavage activity of Dna2 was markedly stimulated by the presence of an RNA segment at the 5'-end of single-stranded DNA and occurred within the DNA, ensuring the complete removal of the initiator RNA segment on the Okazaki fragment. In addition, we demonstrated that the removal of pre-existing initiator 5'-terminal RNA segments depended on a displacement reaction carried out during the DNA polymerase delta-catalyzed elongation of the upstream Okazaki fragments. These properties indicate that Dna2 is well suited to remove the primer RNA on the Okazaki fragment. Based op this information, we propose a new model in which Dna2 plays a direct role in Okazaki fragment maturation in conjunction with Fen-1.
Collapse
Affiliation(s)
- S H Bae
- National Creative Research Initiative Center for Cell Cycle Control, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchun-Dong, Changan-Ku, Suwon-Si, Kyunggi-Do, 440-746, Korea
| | | |
Collapse
|
146
|
Hansen RJ, Friedberg EC, Reagan MS. Sensitivity of a S. cerevisiae RAD27 deletion mutant to DNA-damaging agents and in vivo complementation by the human FEN-1 gene. Mutat Res 2000; 461:243-8. [PMID: 11056295 DOI: 10.1016/s0921-8777(00)00056-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the sensitivity to DNA-damaging agents of a strain of Saccharomyces cerevisiae containing a deletion of the RAD27 gene. The mutant strain is sensitive to a number of alkylating agents that modify DNA at a variety of positions, including one that produces primarily phosphotriesters. In contrast, the mutant strain is not sensitive to the oxidizing agent hydrogen peroxide. The introduction of a plasmid containing the FEN-1 gene (the human ortholog of the RAD27 gene) can substantially complement the sensitivity to alkylating agents observed in the mutant strain.
Collapse
Affiliation(s)
- R J Hansen
- Department of Biology, College of St. Benedict/St. John's University, Collegeville, MN 56321-3000, USA
| | | | | |
Collapse
|
147
|
Datta A, Schmeits JL, Amin NS, Lau PJ, Myung K, Kolodner RD. Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. Mol Cell 2000; 6:593-603. [PMID: 11030339 DOI: 10.1016/s1097-2765(00)00058-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Saccharomyces cerevisiae DNA polymerase delta proofreading exonuclease-defective mutation pol3-01 is known to cause high rates of accumulating mutations. The pol3-01 mutant was found to have abnormal cell cycle progression due to activation of the S phase checkpoint. Inactivation of the S phase checkpoint suppressed both the pol3-01 cell cycle progression defect and mutator phenotype, indicating that the pol3-01 mutator phenotype was dependent on the S phase damage checkpoint pathway. Epistasis analysis suggested that a portion of the pol3-01 mutator phenotype involves members of the RAD6 epistasis group that function in both error-free and error-prone repair. These results indicate that activation of a checkpoint in response to certain types of replicative defects can result in the accumulation of mutations.
Collapse
Affiliation(s)
- A Datta
- Ludwig Institute for Cancer Research, University of California, San Diego, Medical School, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
148
|
Alleva JL, Doetsch PW. The nature of the 5'-terminus is a major determinant for DNA processing by Schizosaccharomyces pombe Rad2p, a FEN-1 family nuclease. Nucleic Acids Res 2000; 28:2893-901. [PMID: 10908351 PMCID: PMC102672 DOI: 10.1093/nar/28.15.2893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nuclease activity of FEN-1 is essential for both DNA replication and repair. Intermediate DNA products formed during these processes possess a variety of structures and termini. We have previously demonstrated that the 5'-->3' exonuclease activity of the Schizosaccharomyces pombe FEN-1 protein Rad2p requires a 5'-phosphoryl moiety to efficiently degrade a nick-containing substrate in a reconstituted alternative excision repair system. Here we report the effect of different 5'-terminal moieties of a variety of DNA substrates on Rad2p activity. We also show that Rad2p possesses a 5'-->3' single-stranded exonuclease activity, similar to Saccharomyces cerevisiae Rad27p and phage T5 5'-->3' exonuclease (also a FEN-1 homolog). FEN-1 nucleases have been associated with the base excision repair pathway, specifically processing cleaved abasic sites. Because several enzymes cleave abasic sites through different mechanisms resulting in different 5'-termini, we investigated the ability of Rad2p to process several different types of cleaved abasic sites. With varying efficiency, Rad2p degrades the products of an abasic site cleaved by Escherichia coli endonuclease III and endonuclease IV (prototype AP endonucleases) and S.POMBE: Uve1p. These results provide important insights into the roles of Rad2p in DNA repair processes in S.POMBE:
Collapse
Affiliation(s)
- J L Alleva
- Department of Biochemistry, Graduate Program in Genetics and Molecular Biology and Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
149
|
Ireland MJ, Reinke SS, Livingston DM. The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 2000; 155:1657-65. [PMID: 10924464 PMCID: PMC1461208 DOI: 10.1093/genetics/155.4.1657] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have examined the stability of long tracts of CAG repeats in yeast mutants defective in enzymes suspected to be involved in lagging strand replication. Alleles of DNA ligase (cdc9-1 and cdc9-2) destabilize CAG tracts in the stable tract orientation, i.e., when CAG serves as the lagging strand template. In this orientation nearly two-thirds of the events recorded in the cdc9-1 mutant were tract expansions. While neither DNA ligase allele significantly increases the frequency of tract-length changes in the unstable orientation, the cdc9-1 mutant produced a significant number of expansions in tracts of this orientation. A mutation in primase (pri2-1) destabilizes tracts in both the stable and the unstable orientations. Mutations in a DNA helicase/deoxyribonuclease (dna2-1) or in two RNase H activities (rnh1Delta and rnh35Delta) do not have a significant effect on CAG repeat tract stability. We interpret our results in terms of the steps of replication that are likely to lead to expansion and to contraction of CAG repeat tracts.
Collapse
Affiliation(s)
- M J Ireland
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
150
|
Abstract
The FEN1 nuclease functions during Okazaki fragment maturation in the eukaryotic cell. Like many other proliferating cell nuclear antigen (PCNA)-binding proteins, FEN1 interacts with the interdomain connector loop (IDCL) of PCNA, and PCNA greatly stimulates FEN1 activity. A yeast IDCL mutant pcna-79 (IL126,128AA) failed to interact with FEN-1, but, surprisingly, pcna-79 was still very active in stimulating FEN1 activity. In contrast, a C-terminal mutant pcna-90 (PK252,253AA) showed wild-type binding to FEN1 in solution, but poorly stimulated FEN1 activity. When PCNA was loaded onto a DNA substrate coupled to magnetic beads, it stabilized retention of FEN1 on the DNA. In this DNA-dependent binding assay, pcna-79 also stabilized retention of FEN1, but pcna-90 was inactive. Therefore, in the absence of DNA, FEN1 interacts with PCNA mainly through the IDCL. However, when PCNA encircles the DNA, the C-terminal domain of PCNA rather than its IDCL is important for binding FEN1. An FF-->GA mutation in the PCNA-interaction domain of FEN1 severely decreased both modes of interaction with PCNA and resulted in replication and repair defects in vivo.
Collapse
Affiliation(s)
- X V Gomes
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|