101
|
Kim SK, Lee JH. Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol 2016; 54:71-85. [PMID: 26832663 DOI: 10.1007/s12275-016-5528-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
102
|
Hodgkinson JT, Gross J, Baker YR, Spring DR, Welch M. A new Pseudomonas quinolone signal (PQS) binding partner: MexG. Chem Sci 2016; 7:2553-2562. [PMID: 28660026 PMCID: PMC5477026 DOI: 10.1039/c5sc04197j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/08/2016] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas Quinolone Signal (PQS) probes capture a new binding partner for this signal molecule.
The opportunistic pathogen Pseudomonas aeruginosa utilises the cell–cell signalling mechanism known as quorum sensing to regulate virulence. P. aeruginosa produces two quinolone-based quorum sensing signalling molecules; the Pseudomonas quinolone signal (PQS) and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ). To date, only one receptor (the PqsR protein) has been identified that is capable of binding PQS and HHQ. Here, we report on the synthesis of PQS and HHQ affinity probes for chemical proteomic studies. The PQS affinity probe very effectively captured PqsR in vitro. In addition, we also identified an interaction between PQS and the “orphan” RND efflux pump protein, MexG. The PQS–MexG interaction was further confirmed by purifying MexG and characterizing its ability to bind PQS and HHQ in vitro. Our findings suggest that PQS may have multiple binding partners in the cell and provide important new tools for studying quinolone signalling in P. aeruginosa and other organisms.
Collapse
Affiliation(s)
- James T Hodgkinson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Jeremy Gross
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| | - Ysobel R Baker
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - M Welch
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| |
Collapse
|
103
|
Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, Wilbur DJ, Hreha TN, Barquera B, Rahme LG. Auto Poisoning of the Respiratory Chain by a Quorum-Sensing-Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance. Curr Biol 2016; 26:195-206. [PMID: 26776731 DOI: 10.1016/j.cub.2015.11.056] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/24/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023]
Abstract
Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum-sensing-regulated low-molecular-weight excreted molecule, triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2. The subsequent mass production of reactive oxygen species (ROS) reduces membrane potential and disrupts membrane integrity, causing bacterial cell autolysis and DNA release. DNA subsequently promotes biofilm formation and increases antibiotic tolerance to beta-lactams, suggesting that HQNO-dependent cell autolysis is advantageous to the bacterial populations. These data identify both a new programmed cell death system and a novel role for HQNO as a critical inducer of biofilm formation and antibiotic tolerance. This newly identified pathway suggests intriguing mechanistic similarities with the initial mitochondrial-mediated steps of eukaryotic apoptosis.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Yok Ai Que
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Damien Maura
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Benjamin Strobel
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Laura Rose Hopper
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David J Wilbur
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Teri N Hreha
- Department of Biological Sciences, CBIS, Rensselaer Polytechnic Institute, 110 8(th) Street, Troy, NY 12180, USA
| | - Blanca Barquera
- Department of Biological Sciences, CBIS, Rensselaer Polytechnic Institute, 110 8(th) Street, Troy, NY 12180, USA
| | - Laurence G Rahme
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA.
| |
Collapse
|
104
|
Evans TJ. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015; 10:231-9. [PMID: 25689535 DOI: 10.2217/fmb.14.107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen that colonizes the lungs of patients with cystic fibrosis. Isolates from sputum are typically all derived from the same strain of bacterium but show extensive phenotypic heterogeneity. One of these variants is the so-called small colony variant, which also shows increased ability to form a biofilm and is frequently resistant to multiple antibiotics. The presence of small colony variants in the sputum of patients with cystic fibrosis is associated with a worse clinical condition. The underlying mechanism responsible for generation of the small colony phenotype remains unclear, but a final common pathway would appear to be elevation of intracellular levels of cyclic di-GMP. This phenotypic variant is thus not just a laboratory curiosity, but a significant bacterial adaptation that favors survival within the lung of patients with cystic fibrosis and contributes to the pulmonary damage caused by P. aeruginosa.
Collapse
|
105
|
Malone JG. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist 2015; 8:237-47. [PMID: 26251621 PMCID: PMC4524453 DOI: 10.2147/idr.s68214] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that predominates during the later stages of cystic fibrosis (CF) lung infections. Over many years of chronic lung colonization, P. aeruginosa undergoes extensive adaptation to the lung environment, evolving both toward a persistent, low virulence state and simultaneously diversifying to produce a number of phenotypically distinct morphs. These lung-adapted P. aeruginosa strains include the small colony variants (SCVs), small, autoaggregative isolates that show enhanced biofilm formation, strong attachment to surfaces, and increased production of exopolysaccharides. Their appearance in the sputum of CF patients correlates with increased resistance to antibiotics, poor lung function, and prolonged persistence of infection, increasing their relevance as a subject for clinical investigation. The evolution of SCVs in the CF lung is associated with overproduction of the ubiquitous bacterial signaling molecule cyclic-di-GMP, with increased cyclic-di-GMP levels shown to be responsible for the SCV phenotype in a number of different CF lung isolates. Here, we review the current state of research in clinical P. aeruginosa SCVs. We will discuss the phenotypic characteristics underpinning the SCV morphotype, the clinical implications of lung colonization with SCVs, and the molecular basis and clinical evolution of the SCV phenotype in the CF lung environment.
Collapse
Affiliation(s)
- Jacob G Malone
- John Innes Centre, Norwich, UK ; School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
106
|
Emerenini BO, Hense BA, Kuttler C, Eberl HJ. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment. PLoS One 2015; 10:e0132385. [PMID: 26197231 PMCID: PMC4511412 DOI: 10.1371/journal.pone.0132385] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. METHOD To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. RESULTS Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony.
Collapse
Affiliation(s)
| | - Burkhard A. Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christina Kuttler
- Zentrum Mathematik, Technische Universität München, Neuherberg, Germany
| | - Hermann J. Eberl
- Dept. Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
107
|
Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate. J Bacteriol 2015; 198:66-76. [PMID: 26100041 DOI: 10.1128/jb.00369-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in diverse bacteria, predictions of LapG substrates are sparse. Notably, the opportunistic pathogen Pseudomonas aeruginosa harbors LapDG orthologs, but neither the substrate of LapG nor any associated secretion machinery has been identified to date. Here, we identified P. aeruginosa CdrA, a protein known to mediate cell-cell aggregation and biofilm maturation, as a substrate of LapG. We also demonstrated LapDG to be a minimal system sufficient to control CdrA localization in response to changes in the intracellular concentration of c-di-GMP. Our work establishes this biofilm signaling node as a regulator of a type Vb secretion system substrate in a clinically important pathogen. IMPORTANCE Here, the biological relevance of a conserved yet orphan signaling system in the opportunistic pathogen Pseudomonas aeruginosa is revealed. In particular, we identified the adhesin CdrA, the cargo of a two-partner secretion system, as a substrate of a periplasmic protease whose activity is controlled by intracellular c-di-GMP levels and a corresponding transmembrane receptor via an inside-out signaling mechanism. The data indicate a posttranslational control mechanism of CdrA via c-di-GMP, in addition to its established transcriptional regulation via the same second messenger.
Collapse
|
108
|
Sams T, Baker Y, Hodgkinson J, Gross J, Spring D, Welch M. The Pseudomonas Quinolone Signal (PQS). Isr J Chem 2015. [DOI: 10.1002/ijch.201400128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
109
|
Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa. J Bacteriol 2015; 197:2265-75. [PMID: 25917911 DOI: 10.1128/jb.00072-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced production of antimicrobial metabolites by P. aeruginosa when these two species are cocultured. Using both established and newly developed coculture techniques, this report demonstrates that iron depletion increases P. aeruginosa's ability to suppress growth of S. aureus. These findings present a novel role for iron in modulating microbial interaction and provide the basis for understanding how essential nutrients drive polymicrobial infections.
Collapse
|
110
|
Beaume M, Köhler T, Fontana T, Tognon M, Renzoni A, van Delden C. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens. Front Microbiol 2015; 6:321. [PMID: 25954256 PMCID: PMC4407587 DOI: 10.3389/fmicb.2015.00321] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/31/2015] [Indexed: 01/07/2023] Open
Abstract
Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF) patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia sp., and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression. Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, Burkholderia cenocepacia, and K. pneumoniae. Results: Whereas wild-type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs), a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not Escherichia coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli. Conclusion: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens.
Collapse
Affiliation(s)
- Marie Beaume
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva Geneva, Switzerland ; Department of Microbiology and Molecular Medicine, University of Geneva Geneva, Switzerland
| | - Thilo Köhler
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva Geneva, Switzerland ; Department of Microbiology and Molecular Medicine, University of Geneva Geneva, Switzerland
| | - Thierry Fontana
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva Geneva, Switzerland ; Department of Microbiology and Molecular Medicine, University of Geneva Geneva, Switzerland
| | - Mikael Tognon
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva Geneva, Switzerland ; Department of Microbiology and Molecular Medicine, University of Geneva Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva Geneva, Switzerland
| | - Christian van Delden
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva Geneva, Switzerland ; Department of Microbiology and Molecular Medicine, University of Geneva Geneva, Switzerland
| |
Collapse
|
111
|
Ravichandran A, Ramachandran M, Suriyanarayanan T, Wong CC, Swarup S. Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1. PLoS One 2015; 10:e0123805. [PMID: 25894344 PMCID: PMC4404142 DOI: 10.1371/journal.pone.0123805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors--surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness.
Collapse
Affiliation(s)
- Ayshwarya Ravichandran
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411
| | - Malarmathy Ramachandran
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Tanujaa Suriyanarayanan
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University 60 Nanyang Drive, SBS-01N-27 Singapore 637551
| | - Chui Ching Wong
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411
| | - Sanjay Swarup
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University 60 Nanyang Drive, SBS-01N-27 Singapore 637551
- * E-mail:
| |
Collapse
|
112
|
The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP. J Bacteriol 2015; 197:2190-200. [PMID: 25897033 DOI: 10.1128/jb.00193-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The opportunistic human pathogen Pseudomonas aeruginosa expresses numerous acute virulence factors in the initial phase of infection, and during long-term colonization it undergoes adaptations that optimize survival in the human host. Adaptive changes that often occur during chronic infection give rise to rugose small colony variants (RSCVs), which are hyper-biofilm-forming mutants that commonly possess mutations that increase production of the biofilm-promoting secondary messenger cyclic di-GMP (c-di-GMP). We show that RSCVs display a decreased production of acute virulence factors as a direct result of elevated c-di-GMP content. Overproduction of c-di-GMP causes a decrease in the transcription of virulence factor genes that are regulated by the global virulence regulator Vfr. The low level of Vfr-dependent transcription is caused by a low level of its coactivator, cyclic AMP (cAMP), which is decreased in response to a high level of c-di-GMP. Mutations that cause reversion of the RSCV phenotype concomitantly reactivate Vfr-cAMP signaling. Attempts to uncover the mechanism underlying the observed c-di-GMP-mediated lowering of cAMP content provided evidence that it is not caused by inhibition of adenylate cyclase production or activity and that it is not caused by activation of cAMP phosphodiesterase activity. In addition to the studies of the RSCVs, we present evidence that the deeper layers of wild-type P. aeruginosa biofilms have high c-di-GMP levels and low cAMP levels. IMPORTANCE Our work suggests that cross talk between c-di-GMP and cAMP signaling pathways results in downregulation of acute virulence factors in P. aeruginosa biofilm infections. Knowledge about this cross-regulation adds to our understanding of virulence traits and immune evasion by P. aeruginosa in chronic infections and may provide new approaches to eradicate biofilm infections.
Collapse
|
113
|
Blanka A, Düvel J, Dötsch A, Klinkert B, Abraham WR, Kaever V, Ritter C, Narberhaus F, Häussler S. Constitutive production of c-di-GMP is associated with mutations in a variant of Pseudomonas aeruginosa with altered membrane composition. Sci Signal 2015; 8:ra36. [PMID: 25872871 DOI: 10.1126/scisignal.2005943] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Most bacteria can form multicellular communities called biofilms on biotic and abiotic surfaces. This multicellular response to surface contact correlates with an increased resistance to various adverse environmental conditions, including those encountered during infections of the human host and exposure to antimicrobial compounds. Biofilm formation occurs when freely swimming (planktonic) cells encounter a surface, which stimulates the chemosensory-like, surface-sensing system Wsp and leads to generation of the intracellular second messenger 3',5'-cyclic-di-guanosine monophosphate (c-di-GMP). We identified adaptive mutations in a clinical small colony variant (SCV) of Pseudomonas aeruginosa and correlated their presence with self-aggregating growth behavior and an enhanced capacity to form biofilms. We present evidence that a point mutation in the 5' untranslated region of the accBC gene cluster, which encodes components of an enzyme responsible for fatty acid biosynthesis, was responsible for a stabilized mRNA structure that resulted in reduced translational efficiency and an increase in the proportion of short-chain fatty acids in the plasma membrane. We propose a model in which these changes in P. aeruginosa serve as a signal for the Wsp system to constitutively produce increased amounts of c-di-GMP and thus play a role in the regulation of adhesion-stimulated bacterial responses.
Collapse
Affiliation(s)
- Andrea Blanka
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30625 Hannover, Germany
| | - Juliane Düvel
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30625 Hannover, Germany. Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Andreas Dötsch
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30625 Hannover, Germany. Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Birgit Klinkert
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wolf-Rainer Abraham
- Department of Chemical Microbiology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Christiane Ritter
- Department of Macromolecular Interactions, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30625 Hannover, Germany. Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
114
|
Sahonero-Canavesi DX, Sohlenkamp C, Sandoval-Calderón M, Lamsa A, Pogliano K, López-Lara IM, Geiger O. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 2015; 17:3391-406. [PMID: 25711932 DOI: 10.1111/1462-2920.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.
Collapse
Affiliation(s)
- Diana X Sahonero-Canavesi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Mario Sandoval-Calderón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, CA, 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, CA, 92093, USA
| | - Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| |
Collapse
|
115
|
Stepanyan K, Wenseleers T, Duéñez-Guzmán EA, Muratori F, Van den Bergh B, Verstraeten N, De Meester L, Verstrepen KJ, Fauvart M, Michiels J. Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Mol Ecol 2015; 24:1572-83. [PMID: 25721227 DOI: 10.1111/mec.13127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/03/2023]
Abstract
Microbial populations often contain a fraction of slow-growing persister cells that withstand antibiotics and other stress factors. Current theoretical models predict that persistence levels should reflect a stable state in which the survival advantage of persisters under adverse conditions is balanced with the direct growth cost impaired under favourable growth conditions, caused by the nonreplication of persister cells. Based on this direct growth cost alone, however, it remains challenging to explain the observed low levels of persistence (<<1%) seen in the populations of many species. Here, we present data from the opportunistic human pathogen Pseudomonas aeruginosa that can explain this discrepancy by revealing various previously unknown costs of persistence. In particular, we show that in the absence of antibiotic stress, increased persistence is traded off against a lengthened lag phase as well as a reduced survival ability during stationary phase. We argue that these pleiotropic costs contribute to the very low proportions of persister cells observed among natural P. aeruginosa isolates (3 × 10(-8) -3 × 10(-4)) and that they can explain why strains with higher proportions of persister cells lose out very quickly in competition assays under favourable growth conditions, despite a negligible difference in maximal growth rate. We discuss how incorporating these trade-offs could lead to models that can better explain the evolution of persistence in nature and facilitate the rational design of alternative therapeutic strategies for treating infectious diseases.
Collapse
Affiliation(s)
- Kristine Stepanyan
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20 bus 2460, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Tipton KA, Coleman JP, Pesci EC. Post-transcriptional regulation of gene PA5507 controls Pseudomonas quinolone signal concentration in P. aeruginosa. Mol Microbiol 2015; 96:670-83. [PMID: 25662317 DOI: 10.1111/mmi.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa can sense and respond to a myriad of environmental signals and utilizes a system of small molecules to communicate through intercellular signaling. The small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas Quinolone Signal [PQS]) is one of these signals and its synthesis is important for virulence. Previously, we identified an RpiR-type transcriptional regulator, QapR, that positively affects PQS production by repressing the qapR operon. An in-frame deletion of this regulator caused P. aeruginosa to produce a greatly reduced concentration of PQS. Here, we report that QapR translation is linked to the downstream gene PA5507. We found that introduction of a premature stop codon within qapR eliminates transcriptional autorepression of the qapR operon as expected but has no effect on PQS concentration. This was investigated with a series of lacZ reporter fusions which showed that translation of QapR must terminate at, or close to, the native qapR stop codon in order for translation of PA5507 to occur. Also, it was shown that truncation of the 5' end of the qapR transcript permitted PA5507 translation without translation of QapR. Our findings led us to conclude that PA5507 transcription and translation are both tightly controlled by QapR and this control is important for PQS homeostasis.
Collapse
Affiliation(s)
- Kyle A Tipton
- Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, North Carolina, 27834, USA
| | | | | |
Collapse
|
117
|
Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: from molecular biofilm biology to new treatment possibilities. APMIS 2015:1-51. [PMID: 25399808 DOI: 10.1111/apm.12335] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially, biofilm infections where P. aeruginosa plays an important role are described. Subsequently, current insights into the molecular mechanisms involved in P. aeruginosa biofilm formation and the associated antimicrobial tolerance are reviewed. And finally, based on our knowledge about molecular biofilm biology, a number of therapeutic strategies for combat of P. aeruginosa biofilm infections are presented.
Collapse
Affiliation(s)
- Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
118
|
Sepahi E, Tarighi S, Ahmadi FS, Bagheri A. Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family. J Microbiol 2015; 53:176-80. [DOI: 10.1007/s12275-015-4203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
|
119
|
Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, Ha DG, Willger SD, O'Toole GA, Harwood CS, Dietrich LEP, Hogan DA. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 2014; 10:e1004480. [PMID: 25340349 PMCID: PMC4207824 DOI: 10.1371/journal.ppat.1004480] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis. In many human infections, several species of microbes are often present. This is typically the case with the disease cystic fibrosis, characterized by thick mucus in the lungs that is colonized by bacteria and fungi. Here, we show evidence that interactions between the bacterium Pseudomonas aeruginosa and the fungus Candida albicans result in attributes of infection that are worse for the human host. We found that ethanol, such as that produced by C. albicans, causes increased levels of a signaling molecule in P. aeruginosa that promotes biofilm formation. Biofilm formation by P. aeruginosa is associated with infections that are more difficult to treat. Ethanol stimulated P. aeruginosa colonization of plastic surfaces and airway cells, and we identified components of this mechanism. Fungally-produced ethanol also changes the spectrum of phenazine toxins produced by P. aeruginosa, and phenazines are associated with worse lung function in people with cystic fibrosis. In light of the fact that phenazines interact with C. albicans to promote ethanol production, we propose a positive feedback loop between C. albicans and P. aeruginosa that contributes to worse disease. Our findings could have implications for the study and treatment of multi-species infections.
Collapse
Affiliation(s)
- Annie I. Chen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Colleen E. Harty
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Yuriy Golub
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sandy Thao
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Dae Gon Ha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sven D. Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caroline S. Harwood
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
120
|
The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2014; 6:26-41. [PMID: 25249263 PMCID: PMC4286720 DOI: 10.1007/s13238-014-0100-x] [Citation(s) in RCA: 770] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradicate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacterial population changes but also could react to environmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.
Collapse
|
121
|
Taylor PK, Yeung ATY, Hancock REW. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 2014; 191:121-30. [PMID: 25240440 DOI: 10.1016/j.jbiotec.2014.09.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/23/2022]
Abstract
The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies.
Collapse
Affiliation(s)
- Patrick K Taylor
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Amy T Y Yeung
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
122
|
The PqsR and RhlR transcriptional regulators determine the level of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa by producing two different pqsABCDE mRNA isoforms. J Bacteriol 2014; 196:4163-71. [PMID: 25225275 DOI: 10.1128/jb.02000-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of gene expression plays a key role in bacterial adaptability to changes in the environment. An integral part of this gene regulatory network is achieved via quorum sensing (QS) systems that coordinate bacterial responses under high cellular densities. In the nosocomial pathogen Pseudomonas aeruginosa, the 2-alkyl-4-quinolone (pqs) signaling pathway is crucial for bacterial survival under stressful conditions. Biosynthesis of the Pseudomonas quinolone signal (PQS) is dependent on the pqsABCDE operon, which is positively regulated by the LysR family regulator PqsR and repressed by the transcriptional regulator protein RhlR. However, the molecular mechanisms underlying this inhibition have remained elusive. Here, we demonstrate that not only PqsR but also RhlR activates transcription of pqsA. The latter uses an alternative transcriptional start site and induces expression of a longer transcript that forms a secondary structure in the 5' untranslated leader region. As a consequence, access of the ribosome to the Shine-Dalgarno sequence is restricted and translation efficiency reduced. We propose a model of a novel posttranscriptional regulation mechanism that fine-tunes PQS biosynthesis, thus highlighting the complexity of quorum sensing in P. aeruginosa.
Collapse
|
123
|
Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage. J Bacteriol 2014; 196:3903-11. [PMID: 25182495 DOI: 10.1128/jb.02006-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions among members of polymicrobial infections or between pathogens and the commensal flora may determine disease outcomes. Pseudomonas aeruginosa and Staphylococcus aureus are important opportunistic human pathogens and are both part of the polymicrobial infection communities in human hosts. In this study, we analyzed the in vitro interaction between S. aureus and a collection of P. aeruginosa isolates representing different evolutionary steps of a dominant lineage, DK2, that have evolved through decades of growth in chronically infected patients. While the early adapted P. aeruginosa DK2 strains outcompeted S. aureus during coculture on agar plates, we found that later P. aeruginosa DK2 strains showed a commensal-like interaction, where S. aureus was not inhibited by P. aeruginosa and the growth activity of P. aeruginosa was enhanced in the presence of S. aureus. This effect is mediated by one or more extracellular S. aureus proteins greater than 10 kDa, which also suppressed P. aeruginosa autolysis and prevented killing by clinically relevant antibiotics through promoting small-colony variant (SCV) formation. The commensal interaction was abolished with S. aureus strains mutated in the agr quorum sensing system or in the SarA transcriptional virulence regulator, as well as with strains lacking the proteolytic subunit, ClpP, of the Clp protease. Our results show that during evolution of a dominant cystic fibrosis lineage of P. aeruginosa, a commensal interaction potential with S. aureus has developed.
Collapse
|
124
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
125
|
Waters V. Editorial commentary: how can understanding the phenotype of Pseudomonas aeruginosa lead to more successful eradication strategies in cystic fibrosis? Clin Infect Dis 2014; 59:632-4. [PMID: 24863402 DOI: 10.1093/cid/ciu388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Valerie Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| |
Collapse
|
126
|
Mayer-Hamblett N, Ramsey BW, Kulasekara HD, Wolter DJ, Houston LS, Pope CE, Kulasekara BR, Armbruster CR, Burns JL, Retsch-Bogart G, Rosenfeld M, Gibson RL, Miller SI, Khan U, Hoffman LR. Pseudomonas aeruginosa phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis 2014; 59:624-31. [PMID: 24863401 DOI: 10.1093/cid/ciu385] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a key respiratory pathogen in people with cystic fibrosis (CF). Due to its association with lung disease progression, initial detection of P. aeruginosa in CF respiratory cultures usually results in antibiotic treatment with the goal of eradication. Pseudomonas aeruginosa exhibits many different phenotypes in vitro that could serve as useful prognostic markers, but the relative relationships between these phenotypes and failure to eradicate P. aeruginosa have not been well characterized. METHODS We measured 22 easily assayed in vitro phenotypes among the baseline P. aeruginosa isolates collected from 194 participants in the 18-month EPIC clinical trial, which assessed outcomes after antibiotic eradication therapy for newly identified P. aeruginosa. We then evaluated the associations between these baseline isolate phenotypes and subsequent outcomes during the trial, including failure to eradicate after antipseudomonal therapy, emergence of mucoidy, and occurrence of an exacerbation. RESULTS Baseline P. aeruginosa isolates frequently exhibited phenotypes thought to represent chronic adaptation, including mucoidy. Wrinkly colony surface and irregular colony edges were both associated with increased risk of eradication failure (hazard ratios [95% confidence intervals], 1.99 [1.03-3.83] and 2.14 [1.32-3.47], respectively). Phenotypes reflecting defective quorum sensing were significantly associated with subsequent mucoidy, but no phenotype was significantly associated with subsequent exacerbations during the trial. CONCLUSIONS Pseudomonas aeruginosa phenotypes commonly considered to reflect chronic adaptation were observed frequently among isolates at early detection. We found that 2 easily assayed colony phenotypes were associated with failure to eradicate after antipseudomonal therapy, both of which have been previously associated with altered biofilm formation and defective quorum sensing.
Collapse
Affiliation(s)
- Nicole Mayer-Hamblett
- Department of Pediatrics Department of Biostatistics Department of Seattle Children's Hospital, Washington
| | - Bonnie W Ramsey
- Department of Pediatrics Department of Seattle Children's Hospital, Washington
| | | | | | | | | | | | | | - Jane L Burns
- Department of Pediatrics Department of Seattle Children's Hospital, Washington
| | | | - Margaret Rosenfeld
- Department of Pediatrics Department of Seattle Children's Hospital, Washington
| | - Ronald L Gibson
- Department of Pediatrics Department of Seattle Children's Hospital, Washington
| | - Samuel I Miller
- Department of Microbiology Department of Genome Sciences Department of Medicine, University of Washington, Seattle
| | - Umer Khan
- Department of Seattle Children's Hospital, Washington
| | - Lucas R Hoffman
- Department of Pediatrics Department of Microbiology Department of Seattle Children's Hospital, Washington
| |
Collapse
|
127
|
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16:1961-81. [PMID: 24592823 DOI: 10.1111/1462-2920.12448] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
Abstract
In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
128
|
Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14. Appl Environ Microbiol 2014; 80:3384-93. [PMID: 24657857 DOI: 10.1128/aem.00299-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library.
Collapse
|
129
|
de Melo WCMA, Avci P, de Oliveira MN, Gupta A, Vecchio D, Sadasivam M, Chandran R, Huang YY, Yin R, Perussi LR, Tegos GP, Perussi JR, Dai T, Hamblin MR. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther 2014; 11:669-93. [PMID: 23879608 DOI: 10.1586/14787210.2013.811861] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents.
Collapse
Affiliation(s)
- Wanessa C M A de Melo
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J Bacteriol 2014; 196:1641-50. [PMID: 24509318 DOI: 10.1128/jb.01086-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated.
Collapse
|
131
|
Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, González de Heredia E, Baena I, Martín-Martín I, Rivilla R, Martín M. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One 2014; 9:e87608. [PMID: 24504373 PMCID: PMC3913639 DOI: 10.1371/journal.pone.0087608] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC) and one phosphodiesterase (BifA) implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ.
Collapse
Affiliation(s)
| | - Ana Navazo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma Barahona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
132
|
Abstract
Transposon-based mutagenesis of bacterial genomes is a powerful method to identify genetic elements that control specific phenotypes. The most frequently used transposon tools in Pseudomonas aeruginosa are based either on Himar1 mariner or Tn5 transposases, both of which have been used to generate nonredundant mutant libraries in P. aeruginosa. Here we present a detailed protocol for using Himar1 mariner-based transposon mutagenesis to create mutant libraries in P. aeruginosa.
Collapse
Affiliation(s)
- Hemantha D Kulasekara
- Department of Microbiology, University of Washington, 1959 NE Pacific St HSB K161, Seattle, WA, 98195, USA,
| |
Collapse
|
133
|
Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 58:1092-9. [PMID: 24295976 DOI: 10.1128/aac.01781-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, most antibiotics have primarily been developed to target bacteria in the planktonic state. However, biofilm formation allows bacteria to develop tolerance to antibiotics and provides a mechanism to evade innate immune systems. Therefore, there is a significant need to identify small molecules to prevent biofilm formation and, more importantly, to disperse or eradicate preattached biofilms, which are a major source of bacterial persistence in nosocomial infections. We now present a modular high-throughput 384-well image-based screening platform to identify Pseudomonas aeruginosa biofilm inhibitors and dispersal agents. Biofilm coverage measurements were accomplished using non-z-stack epifluorescence microscopy to image a constitutively expressing green fluorescent protein (GFP)-tagged strain of P. aeruginosa and quantified using an automated image analysis script. Using the redox-sensitive dye XTT, bacterial cellular metabolic activity was measured in conjunction with biofilm coverage to differentiate between classical antibiotics and nonantibiotic biofilm inhibitors/dispersers. By measuring biofilm coverage and cellular activity, this screen identifies compounds that eradicate biofilms through mechanisms that are disparate from traditional antibiotic-mediated biofilm clearance. Screening of 312 natural-product prefractions identified the cyclic depsipeptide natural products skyllamycins B and C as nonantibiotic biofilm inhibitors with 50% effective concentrations (EC50s) of 30 and 60 μM, respectively. Codosing experiments of skyllamycin B and azithromycin, an antibiotic unable to clear preattached biofilms, demonstrated that, in combination, these compounds were able to eliminate surface-associated biofilms and depress cellular metabolic activity. The skyllamycins represent the first known class of cyclic depsipeptide biofilm inhibitors/dispersers.
Collapse
|
134
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1226] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
135
|
Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 2013; 14:20983-1005. [PMID: 24145749 PMCID: PMC3821654 DOI: 10.3390/ijms141020983] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/29/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms.
Collapse
Affiliation(s)
- Qing Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China.
| | | |
Collapse
|
136
|
Kim HS, Park HD. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One 2013; 8:e76106. [PMID: 24086697 PMCID: PMC3785436 DOI: 10.1371/journal.pone.0076106] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 01/11/2023] Open
Abstract
Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.
Collapse
Affiliation(s)
- Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, South Korea
| |
Collapse
|
137
|
CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 2013; 79:7188-202. [PMID: 24038703 DOI: 10.1128/aem.02148-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cellulose fibrils play a role in attachment of Agrobacterium tumefaciens to its plant host. While the genes for cellulose biosynthesis in the bacterium have been identified, little is known concerning the regulation of the process. The signal molecule cyclic di-GMP (c-di-GMP) has been linked to the regulation of exopolysaccharide biosynthesis in many bacterial species, including A. tumefaciens. In this study, we identified two putative diguanylate cyclase genes, celR (atu1297) and atu1060, that influence production of cellulose in A. tumefaciens. Overexpression of either gene resulted in increased cellulose production, while deletion of celR, but not atu1060, resulted in decreased cellulose biosynthesis. celR overexpression also affected other phenotypes, including biofilm formation, formation of a polar adhesion structure, plant surface attachment, and virulence, suggesting that the gene plays a role in regulating these processes. Analysis of celR and Δcel mutants allowed differentiation between phenotypes associated with cellulose production, such as biofilm formation, and phenotypes probably resulting from c-di-GMP signaling, which include polar adhesion, attachment to plant tissue, and virulence. Phylogenetic comparisons suggest that species containing both celR and celA, which encodes the catalytic subunit of cellulose synthase, adapted the CelR protein to regulate cellulose production while those that lack celA use CelR, called PleD, to regulate specific processes associated with polar localization and cell division.
Collapse
|
138
|
Zanetti CCS, Mingrone RCC, Kisielius JJ, Ueda-Ito M, Pignatari ACC. Characterization of bacteriophages infecting clinical isolates of Pseudomonas aeruginosa stored in a culture collection. Braz J Med Biol Res 2013; 46:689-95. [PMID: 23969975 PMCID: PMC3854419 DOI: 10.1590/1414-431x20132796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/15/2013] [Indexed: 01/21/2023] Open
Abstract
Some clinical isolates of Pseudomonas aeruginosa stored in our culture collection did not grow or grew poorly and showed lysis on the culture plates when removed from the collection and inoculated on MacConkey agar. One hypothesis was that bacteriophages had infected and killed those clinical isolates. To check the best storage conditions to maintain viable P. aeruginosa for a longer time, clinical isolates were stored at various temperatures and were grown monthly. We investigated the presence of phage in 10 clinical isolates of P. aeruginosa stored in our culture collection. Four strains of P. aeruginosa were infected by phages that were characterized by electron microscopy and isolated to assess their ability to infect. The best condition to maintain the viability of the strains during storage was in water at room temperature. Three Siphoviridae and two Myoviridae phages were visualized and characterized by morphology. We confirmed the presence of bacteriophages infecting clinical isolates, and their ability to infect and lyse alternative hosts. Strain PAO1, however, did not show lysis to any phage. Mucoid and multidrug resistant strains of P. aeruginosa showed lysis to 50% of the phages tested.
Collapse
Affiliation(s)
- C C S Zanetti
- Universidade Federal de São Paulo, Laboratório Especial de Microbiologia Clínica, Divisão de Doenças Infecciosas, São PauloSP, Brasil
| | | | | | | | | |
Collapse
|
139
|
Maurer CK, Steinbach A, Hartmann RW. Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas Quinolone Signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors. J Pharm Biomed Anal 2013; 86:127-34. [PMID: 24001903 DOI: 10.1016/j.jpba.2013.07.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
The appearance of antibiotic resistance requires novel therapeutic strategies. One approach is to selectively attenuate bacterial pathogenicity by interfering with bacterial cell-to-cell communication known as quorum sensing. The PQS quorum sensing system of Pseudomonas aeruginosa employs as signal molecule the Pseudomonas Quinolone Signal (PQS; 2-heptyl-3-hydroxy-4-(1H)-quinolone), a key contributor to virulence and biofilm formation. Thus, interference with PQS production is considered as promising approach for the development of novel anti-infectives. Therefore, in this study, we developed and validated an ultra-high performance liquid chromatographic-tandem mass spectrometric approach for reliable quantification of PQS in P. aeruginosa cultures for activity determination of new quorum sensing inhibitors. The poor chromatographic properties of PQS reported by others could be overcome by fast microwave-assisted acetylation. The validation procedure including matrix effects, recovery, process efficiency, selectivity, carry-over, accuracy and precision, stability of the processed sample, and limit of quantification demonstrated that the method fulfilled all requirements of common validation guidelines. Its applicability was successfully proven in routine testing. In addition, two-point calibration was shown to be applicable for fast and reliable PQS quantification saving time and resources. In summary, the described method provides a powerful tool for the discovery of new quorum sensing inhibitors as potential anti-infectives and illustrated the usefulness of chemical derivatization, acetylation, in liquid chromatography-mass spectrometry analysis.
Collapse
Affiliation(s)
- Christine K Maurer
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany.
| | | | | |
Collapse
|
140
|
Zhang L, Gao Q, Chen W, Qin H, Hengzhuang W, Chen Y, Yang L, Zhang G. Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2013; 159:1931-1936. [PMID: 23831999 DOI: 10.1099/mic.0.066266-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteria have evolved a set of regulatory pathways to adapt to the dynamic nutritional environment during the course of infection. However, the underlying mechanism of the regulatory effects by nutritional cues on bacterial pathogenesis is unclear. In the present study, we showed that the Pseudomonas aeruginosa catabolite repression control protein regulates the Pseudomonas quinolone signal quorum sensing, which further controls synthesis of virulence factor pyocyanin, biofilm formation and survival during infection models. Our study suggests that deregulation of the catabolite repression by P. aeruginosa might enhance its fitness during cystic fibrosis infections.
Collapse
Affiliation(s)
- Lianbo Zhang
- China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Qingguo Gao
- China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Wanying Chen
- China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Haiyan Qin
- China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Wang Hengzhuang
- Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen 2100, Denmark
| | - Yicai Chen
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University 637551, Republic of Singapore
| | - Liang Yang
- School of Biological Sciences (SBS), Nanyang Technological University 637551, Republic of Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University 637551, Republic of Singapore
| | - Guang Zhang
- China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
141
|
QapR (PA5506) represses an operon that negatively affects the Pseudomonas quinolone signal in Pseudomonas aeruginosa. J Bacteriol 2013; 195:3433-41. [PMID: 23708133 DOI: 10.1128/jb.00448-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa.
Collapse
|
142
|
Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic Di-GMP level in the bacteria. Infect Immun 2013; 81:2705-13. [PMID: 23690403 DOI: 10.1128/iai.00332-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Opportunistic pathogenic bacteria can engage in biofilm-based infections that evade immune responses and develop into chronic conditions. Because conventional antimicrobials cannot efficiently eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. It has recently been established that the secondary messenger cyclic diguanosine monophosphate (c-di-GMP) functions as a positive regulator of biofilm formation in several different bacteria. In the present study we investigated whether manipulation of the c-di-GMP level in bacteria potentially can be used for biofilm control in vivo. We constructed a Pseudomonas aeruginosa strain in which a reduction in the c-di-GMP level can be achieved via induction of the Escherichia coli YhjH c-di-GMP phosphodiesterase. Initial experiments showed that induction of yhjH expression led to dispersal of the majority of the bacteria in in vitro-grown P. aeruginosa biofilms. Subsequently, we demonstrated that P. aeruginosa biofilms growing on silicone implants, located in the peritoneal cavity of mice, dispersed after induction of the YhjH protein. Bacteria accumulated temporarily in the spleen after induction of biofilm dispersal, but the mice tolerated the dispersed bacteria well. The present work provides proof of the concept that modulation of the c-di-GMP level in bacteria is a viable strategy for biofilm control.
Collapse
|
143
|
Exoprotein production correlates with morphotype changes of nonmotile Shewanella oneidensis mutants. J Bacteriol 2013; 195:1463-74. [PMID: 23335418 DOI: 10.1128/jb.02187-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report a previously undescribed mechanism for the rugose morphotype in Shewanella oneidensis, a research model for investigating redox transformations of environmental contaminants. Bacteria may form smooth or rugose colonies on agar plates. In general, conversion from the smooth to rugose colony morphotype is attributed to increased production of exopolysaccharide (EPS). In this work, we discovered that aflagellate S. oneidensis mutants grew into rugose colonies, whereas those with nonfunctional flagellar filaments remained smooth. EPS production was not altered in either case, but mutants with the rugose morphotype showed significantly reduced exoprotein secretion. The idea that exoproteins at a reduced level correlate with rugosity gained support from smooth suppressor strains of an aflagellate rugose fliD (encoding the capping protein) mutant, which restored the exoprotein level to the levels of the wild-type and mutant strains with a smooth morphotype. Further analyses revealed that SO1072 (a putative GlcNAc-binding protein) was one of the highly upregulated exoproteins in these suppressor strains. Most intriguingly, this study identified a compensatory mechanism of SO1072 to flagellins possibly mediated by bis-(3'-5')-cyclic dimeric GMP.
Collapse
|
144
|
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1-20. [PMID: 23143271 PMCID: PMC3592444 DOI: 10.1093/nar/gks1039] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
145
|
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 2012; 109:19420-5. [PMID: 23129634 DOI: 10.1073/pnas.1213901109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments.
Collapse
|
146
|
Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation. J Bacteriol 2012; 195:213-9. [PMID: 23123904 DOI: 10.1128/jb.01253-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that package and deliver proteins, small molecules, and DNA to prokaryotic and eukaryotic cells. The molecular details of OMV biogenesis have not been fully elucidated, but peptidoglycan-associated outer membrane proteins that tether the outer membrane to the underlying peptidoglycan have been shown to be critical for OMV formation in multiple Enterobacteriaceae. In this study, we demonstrate that the peptidoglycan-associated outer membrane proteins OprF and OprI, but not OprL, impact production of OMVs by the opportunistic pathogen Pseudomonas aeruginosa. Interestingly, OprF does not appear to be important for tethering the outer membrane to peptidoglycan but instead impacts OMV formation through modulation of the levels of the Pseudomonas quinolone signal (PQS), a quorum signal previously shown by our laboratory to be critical for OMV formation. Thus, the mechanism by which OprF impacts OMV formation is distinct from that for other peptidoglycan-associated outer membrane proteins, including OprI.
Collapse
|
147
|
Pseudomonas aeruginosa Alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1α degradation. Infect Immun 2012; 80:3985-92. [PMID: 22949552 DOI: 10.1128/iai.00554-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcription factor hypoxia-inducible factor 1 (HIF-1) has recently emerged to be a crucial regulator of the immune response following pathogen perception, including the response to the important human pathogen Pseudomonas aeruginosa. However, as mechanisms involved in HIF-1 activation by bacterial pathogens are not fully characterized, understanding how bacteria and bacterial compounds impact on HIF-1α stabilization remains a major challenge. In this context, we have focused on the effect of secreted factors of P. aeruginosa on HIF-1 regulation. Surprisingly, we found that P. aeruginosa cell-free supernatant significantly repressed HIF-1α protein levels. Further characterization revealed that HIF-1α downregulation was dependent on a subset of key secreted factors involved in P. aeruginosa pathogenesis, the 2-alkyl-4-quinolone (AQ) quorum sensing (QS) signaling molecules, and in particular the pseudomonas quinolone signal (PQS). Under hypoxic conditions, the AQ-dependent downregulation of HIF-1α was linked to the suppressed induction of the important HIF-1 target gene hexokinase II. Furthermore, we demonstrated that AQ molecules directly target HIF-1α protein degradation through the 26S-proteasome proteolytic pathway but independently of the prolyl hydroxylase domain (PHD). In conclusion, this is the first report showing that bacterial molecules can repress HIF-1α protein levels. Manipulation of HIF-1 signaling by P. aeruginosa AQs could have major consequences for the host response to infection and may facilitate the infective properties of this pathogen.
Collapse
|
148
|
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012; 8:e1002760. [PMID: 22719254 PMCID: PMC3375315 DOI: 10.1371/journal.ppat.1002760] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational "scars" in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.
Collapse
|
149
|
Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J Bacteriol 2012; 194:4285-94. [PMID: 22685276 DOI: 10.1128/jb.00803-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that utilizes polar type IV pili (T4P) for twitching motility and adhesion in the environment and during infection. Pilus assembly requires FimX, a GGDEF/EAL domain protein that binds and hydrolyzes cyclic di-GMP (c-di-GMP). Bacteria lacking FimX are deficient in twitching motility and microcolony formation. We carried out an extragenic suppressor screen in PA103ΔfimX bacteria to identify additional regulators of pilus assembly. Multiple suppressor mutations were mapped to PA0171, PA1121 (yfiR), and PA3703 (wspF), three genes previously associated with small-colony-variant phenotypes. Multiple independent techniques confirmed that suppressors assembled functional surface pili, though at both polar and nonpolar sites. Whole-cell c-di-GMP levels were elevated in suppressor strains, in agreement with previous studies that had shown that the disrupted genes encoded negative regulators of diguanylate cyclases. Overexpression of the regulated diguanylate cyclases was sufficient to suppress the ΔfimX pilus assembly defect, as was overexpression of an unrelated diguanylate cyclase from Caulobacter crescentus. Furthermore, under natural conditions of high c-di-GMP, PA103ΔfimX formed robust biofilms that showed T4P staining and were structurally distinct from those formed by nonpiliated bacteria. These results are the first demonstration that P. aeruginosa assembles a surface organelle, type IV pili, over a broad range of c-di-GMP concentrations. Assembly of pili at low c-di-GMP concentrations requires a polarly localized c-di-GMP binding protein and phosphodiesterase, FimX; this requirement for FimX is bypassed at high c-di-GMP concentrations. Thus, P. aeruginosa can assemble the same surface organelle in distinct ways for motility or adhesion under very different environmental conditions.
Collapse
|
150
|
Chen LC, Chen JC, Shu JC, Chen CY, Chen SC, Chen SH, Lin CY, Lu CY, Chen CC. Interplay of RsbM and RsbK controls the σ(B) activity of Bacillus cereus. Environ Microbiol 2012; 14:2788-99. [PMID: 22640257 DOI: 10.1111/j.1462-2920.2012.02788.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alternative transcription factor σ(B) of Bacillus cereus controls the expression of a number of genes that respond to environmental stress. Four proteins encoded in the sigB gene cluster, including RsbV, RsbW, RsbY (RsbU) and RsbK, are known to be essential in the σ(B)-mediated stress response. In the context of stress, the hybrid sensor kinase RsbK is thought to phosphorylate the response regulator RsbY, a PP2C serine phosphatase, leading to the dephosphorylation of the phosphorylated RsbV. The unphosphorylated RsbV then sequesters the σ(B) antagonist, RsbW, ultimately liberating σ(B). The gene arrangement reveals an open reading frame, bc1007, flanked immediately downstream by rsbK within the sigB gene cluster. However, little is known about the function of bc1007. In this study, the deletion of bc1007 resulted in high constitutive σ(B) expression independent of environmental stimuli, indicating that bc1007 plays a role in σ(B) regulation. A bacterial two-hybrid analysis demonstrated that BC1007 interacts directly with RsbK, and autoradiographic studies revealed a specific C(14)-methyl transfer from the radiolabelled S-adenosylmethionine to RsbK when RsbK was incubated with purified BC1007. Our data suggest that BC1007 (RsbM) negatively regulates σ(B) activity by methylating RsbK. Additionally, mutagenic substitution was employed to modify 12 predicted methylation residues in RsbK. Certain RsbK mutants were able to rescue σ(B) activation in a rsbK-deleted bacterial strain, but RsbK(E439A) failed to activate σ(B), and RsbK(E446A) only moderately induced σ(B). These results suggest that Glu439 is the preferred methylation site and that Glu446 is potentially a minor methylation site. Gene arrays of the rsbK orthologues and the neighbouring rsbM orthologues are found in a wide range of bacteria. The regulation of sigma factors through metylation of RsbK-like sensor kinases appears to be widespread in the microbial world.
Collapse
Affiliation(s)
- Lei-Chin Chen
- Department of Nutrition, I-Shou University, Jiaosu Village, Yanchao District, Kaohsiung 82445, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|