101
|
Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates. PLoS One 2015; 10:e0141350. [PMID: 26529504 PMCID: PMC4631355 DOI: 10.1371/journal.pone.0141350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.
Collapse
|
102
|
Magnette A, Huang TD, Renzi F, Bogaerts P, Cornelis GR, Glupczynski Y. Improvement of identification of Capnocytophaga canimorsus by matrix-assisted laser desorption ionization-time of flight mass spectrometry using enriched database. Diagn Microbiol Infect Dis 2015; 84:12-15. [PMID: 26508105 DOI: 10.1016/j.diagmicrobio.2015.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022]
Abstract
Capnocytophaga canimorsus and Capnocytophaga cynodegmi can be transmitted from dogs or cats and cause serious human infections. We aimed to evaluate the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify these two Capnocytophaga species. Ninety-four C. canimorsus and 10 C. cynodegmi isolates identified by 16S rRNA gene sequencing were analyzed. Using the MALDI BioTyper database, correct identification was achieved for only 16 of 94 (17%) C. canimorsus and all 10 C. cynodegmi strains, according to the manufacturer's log score specifications. Following the establishment of a complementary homemade reference database by addition of 51 C. canimorsus and 8 C. cynodegmi mass spectra, MALDI-TOF MS provided reliable identification to the species level for 100% of the 45 blind-coded Capnocytophaga isolates tested. MALDI-TOF MS can accurately identify C. canimorsus and C. cynodegmi using an enriched database and thus constitutes a valuable diagnostic tool in the clinical laboratory.
Collapse
Affiliation(s)
- Amandine Magnette
- Laboratory of Clinical Microbiology, CHU Dinant-Godinne UCL Namur, B-5530, Yvoir, Belgium
| | - Te-Din Huang
- Laboratory of Clinical Microbiology, CHU Dinant-Godinne UCL Namur, B-5530, Yvoir, Belgium.
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms, Namur Institute for Life Sciences (NARILIS), University of Namur, B-5000, Namur, Belgium
| | - Pierre Bogaerts
- Laboratory of Clinical Microbiology, CHU Dinant-Godinne UCL Namur, B-5530, Yvoir, Belgium
| | - Guy R Cornelis
- Research Unit in Biology of Microorganisms, Namur Institute for Life Sciences (NARILIS), University of Namur, B-5000, Namur, Belgium
| | - Youri Glupczynski
- Laboratory of Clinical Microbiology, CHU Dinant-Godinne UCL Namur, B-5530, Yvoir, Belgium
| |
Collapse
|
103
|
Comparing Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Phenotypic and Molecular Methods for Identification of Species within the Streptococcus anginosus Group. J Clin Microbiol 2015; 53:3580-8. [PMID: 26354817 DOI: 10.1128/jcm.01892-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
The heterogeneity of members of the Streptococcus anginosus group (SAG) has traditionally hampered their correct identification. Recently, the group was subdivided into 6 taxa whose prevalence among human infections is poorly described. We evaluated the accuracy of the Rapid ID32 Strep test, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and a PCR multiplex method to identify 212 SAG isolates recovered from human infections to the species and subspecies level by using multilocus sequence analysis (MLSA) as the gold standard. We also determined the antimicrobial susceptibilities of the isolates. Representatives of all SAG taxa were found among our collection. MALDI-TOF MS and the Rapid ID32 Strep test correctly identified 92% and 68% of the isolates to the species level, respectively, but showed poor performance at the subspecies level, and the latter was responsible for major identification errors. The multiplex PCR method results were in complete agreement with the MLSA identifications but failed to distinguish the subspecies Streptococcus constellatus subsp. pharyngis and S. constellatus subsp. viborgensis. A total of 145 MLSA sequence types were present in our collection, indicating that within each taxon a number of different lineages are capable of causing infection. Significant antibiotic resistance was observed only to tetracycline, erythromycin, and clindamycin and was present in most taxa. MALDI-TOF MS is a reliable method for routine SAG species identification, while the need for identification to the subspecies level is not clearly established.
Collapse
|
104
|
Alibi S, Ferjani A, Gaillot O, Marzouk M, Courcol R, Boukadida J. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches. ACTA ACUST UNITED AC 2015; 63:153-7. [PMID: 26300239 DOI: 10.1016/j.patbio.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods.
Collapse
Affiliation(s)
- S Alibi
- UR12/SP34 laboratoire de microbiologie et immunologie, CHU Farhat-Hached, Sousse, Tunisia; Faculté des sciences de Bizerte, université Carthage, Jarzouna Tunisia.
| | - A Ferjani
- UR12/SP34 laboratoire de microbiologie et immunologie, CHU Farhat-Hached, Sousse, Tunisia
| | - O Gaillot
- UR12/SP34 laboratoire de microbiologie et immunologie, CHU Farhat-Hached, Sousse, Tunisia
| | - M Marzouk
- UR12/SP34 laboratoire de microbiologie et immunologie, CHU Farhat-Hached, Sousse, Tunisia
| | - R Courcol
- Institut de microbiologie, centre hospitalier universitaire de Lille, 59037 Lille cedex, France
| | - J Boukadida
- UR12/SP34 laboratoire de microbiologie et immunologie, CHU Farhat-Hached, Sousse, Tunisia
| |
Collapse
|
105
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
106
|
Proteotyping: Proteomic characterization, classification and identification of microorganisms--A prospectus. Syst Appl Microbiol 2015; 38:246-57. [PMID: 25933927 DOI: 10.1016/j.syapm.2015.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
Modern microbial systematics requires a range of methodologies for the comprehensive characterization, classification and identification of microorganisms. While whole-genome sequences provide the ultimate reference for defining microbial phylogeny and taxonomy, selected biomarker-based strategies continue to provide the means for the bulk of microbial systematic studies. Proteomics, the study of the expression of genes, as well as the structure and function of the resulting proteins, offers indirect measures of genome sequence data. Recent developments in applications of proteomics for analyzing microorganisms have paralleled the growing microbial genome sequence database, as well as the evolution of mass spectrometry (MS) instrumentation and bioinformatics. MALDI-TOF MS, which generates proteomic mass patterns for 'fingerprint'-based characterizations, has provided a marked breakthrough for microbial identification. However, MALDI-TOF MS is limited in the number of targets that can be detected for strain characterization. Advanced methods of tandem mass spectrometry, in which proteins and peptides generated from proteins, are characterized and identified, using LC-MS/MS, provide the ability to detect hundreds or thousands of expressed microbial strain markers for high-resolution characterizations and identifications. Model studies demonstrate the application of proteomics-based analyses for bacterial species- and strain-level detection and identification and for characterization of environmentally relevant, metabolically diverse bacteria. Proteomics-based approaches represent an emerging complement to traditional methods of characterizing microorganisms, enabling the elucidation of the expressed biomarkers of genome sequence information, which can be applied to 'proteotyping' applications of microorganisms at all taxonomic levels.
Collapse
|
107
|
Zhou C, Tao L, Hu B, Ma J, Ye X, Huang S, Ma Y, Shan Y. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of beta-hemolytic streptococci. J Thorac Dis 2015; 7:591-5. [PMID: 25973224 PMCID: PMC4419311 DOI: 10.3978/j.issn.2072-1439.2015.03.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as promising technology for species identification. The purpose of this investigation was to compare the performance of MS and the traditional method for identification of beta-hemolytic streptococci (BHS). METHODS Clinical BHS isolates were identified by the BD Phoenix SMIC/ID Streptococcal panels, and two MALDI-TOF MS platforms: the VITEK MS and the Bruker MALDI Biotyper systems respectively. In case of discordant results, 16sRNA sequencing was performed to provide the reference ID. RESULTS A total of 96 isolates of BHS were analyzed. Thirty-six isolates (20.8%) were re-tested by BD Phoenix for identification failure; and four isolates (4.2%) were rerun on the Bruker system for low identification score. No isolate need a second run for identification by Vitek MS system. Overall, BD Phoenix, BioTyper and Vitek MS automated system accurately identified 76 strains (79.2%), 91 (94.7%) strains and 92 (95.8%) strains, respectively. CONCLUSIONS Our study suggests that MALDI-TOF MS is a superior method to conventional phenotypic methods for BHS identification.
Collapse
|
108
|
Plenz B, Schmidt V, Grosse-Herrenthey A, Krüger M, Pees M. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry. Vet Rec 2015; 176:285. [DOI: 10.1136/vr.102580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Bastian Plenz
- Clinic for Birds and Reptiles; University of Leipzig; An den Tierkliniken 17 Leipzig 04103 Germany
| | - Volker Schmidt
- Clinic for Birds and Reptiles; University of Leipzig; An den Tierkliniken 17 Leipzig 04103 Germany
| | - Anke Grosse-Herrenthey
- Faculty of Veterinary Medicine; Institute of Bacteriology and Mycology, University of Leipzig; An den Tierkliniken 29 Leipzig 04103 Germany
| | - Monika Krüger
- Faculty of Veterinary Medicine; Institute of Bacteriology and Mycology, University of Leipzig; An den Tierkliniken 29 Leipzig 04103 Germany
| | - Michael Pees
- Clinic for Birds and Reptiles; University of Leipzig; An den Tierkliniken 17 Leipzig 04103 Germany
| |
Collapse
|
109
|
Santos T, Capelo JL, Santos HM, Oliveira I, Marinho C, Gonçalves A, Araújo JE, Poeta P, Igrejas G. Use of MALDI-TOF mass spectrometry fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates. J Proteomics 2015; 127:321-31. [PMID: 25753124 DOI: 10.1016/j.jprot.2015.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify intact bacteria than conventional microbiology and/or molecular biology methods. The MALDI-TOF MS method is potentially applicable in diagnostic laboratories to characterize commensal bacterial species, some of which are major pathogens, from human or animal gastrointestinal tracts. The aim of this study was to analyze at the cluster and statistical level the capacity of MALDI-TOF MS to distinguish between previously characterized enterococci and Escherichia coli isolated from wild birds of the Azores archipelago. Soluble proteins were extracted from intact cell cultures of 60 isolates of Enterococcus spp. and 60 isolates of E. coli by an expedient method. MALDI-TOF MS was used to obtain 1200 mass spectra that were statistically analyzed and compared. A total of 215 distinct mass-to-charge (m/z) peaks were obtained, including a peak at m/z 4428±3, which is exclusively found in spectra from Enterococcus isolates, and peaks at m/z 5379±3 and m/z 6253±3, which are only detected in spectra from E. coli isolates. By processing mass spectra and analyzing them statistically with MassUp software, including principal component analysis (PCA) and clustering, it was possible to correctly distinguish between isolates of Enterococcus and Escherichia genera. The results of the proteomic analysis confirm that these tools could be used to characterize whole bacterial cells. In the future, with an optimized protocol for obtaining plasmid-associated proteins and the further development of bioinformatics methods, it is likely that mass peak characteristic of antimicrobial resistance will be detected, increasing the potential usefulness of MALDI-TOF in routine clinical assays. BIOLOGICAL SIGNIFICANCE This study highlights the importance of MALDI-TOF MS in the rapid and reliable identification of bacteria by whole-cell analysis. The mass spectrometry approach performed in this study further contributes for the microbial biomarker discovery culminating in a preferable bacteria identification and antimicrobial resistance tool for the future of clinical microbiology. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Tiago Santos
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Luis Capelo
- Bioscope Group, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal; REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Hugo M Santos
- Bioscope Group, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal; REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Irene Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Catarina Marinho
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alexandre Gonçalves
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Eduardo Araújo
- Bioscope Group, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal; REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
110
|
Bourassa L, Butler-Wu SM. MALDI-TOF Mass Spectrometry for Microorganism Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
111
|
Vogne C, Prod'hom G, Jaton K, Decosterd L, Greub G. A simple, robust and rapid approach to detect carbapenemases in Gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole tandem mass spectrometry, microarray and PCR. Clin Microbiol Infect 2014; 20:O1106-12. [DOI: 10.1111/1469-0691.12715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 11/30/2022]
|
112
|
Use of MALDI-TOF mass spectrometry for rapid identification of group B Streptococcus on chromID Strepto B agar. Int J Infect Dis 2014; 27:44-8. [PMID: 25220051 DOI: 10.1016/j.ijid.2014.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/11/2014] [Accepted: 06/29/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a known leading causative pathogen of neonatal infection. Efficient screening and identification of women colonized with GBS is important for the prevention of invasive neonatal infections. METHODS A total of 628 vaginal/rectal specimens were collected from pregnant women in Beijing, China. The chromogenic medium chromID Strepto B agar (STRB) was evaluated for its reliability in screening GBS from the vaginal/rectal swabs; results were compared to those of blood agar plates (BAP). Furthermore, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to confirm the colonies suspected of being GBS on STRB. RESULTS STRB showed excellent performance for GBS detection and outperformed BAP due to its higher sensitivity. Furthermore, MALDI-TOF MS could reliably differentiate the putative GBS isolates on STRB. CONCLUSIONS This study demonstrated that STRB combined with MALDI-TOF MS is a fast, sensitive, and accurate method for the identification of GBS-colonized pregnant women.
Collapse
|
113
|
Wragg P, Randall L, Whatmore AM. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. J Microbiol Methods 2014; 105:16-21. [PMID: 25014253 DOI: 10.1016/j.mimet.2014.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 01/22/2023]
Abstract
Recent advances in phenotypic and chemotaxonomic methods have improved the ability of systems to resolve bacterial identities at the species level. Key to the effective use of these systems is the ability to draw upon databases which can be augmented with new data gleaned from atypical or novel isolates. In this study we compared the performance of the Biolog GEN III identification system (hereafter, GEN III) with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing in the identification of isolates of veterinary interest. The use of strains that had proven more difficult to identify by routine methods was designed to test the systems' abilities at the extremes of their performance range. Over an 18month period, 100 strains were analysed by all three methods. To highlight the importance of identification to species level, a weighted scoring system was devised to differentiate the capacity to identify at genus and species levels. The overall relative weighted scores were 0.869:0.781:0.769, achieved by 16S rRNA gene sequencing, GEN III and MALDI-TOF MS respectively, when compared to the 'gold standard'. Performance to the genus level was significantly better using 16S rRNA gene sequencing; however, performance to the species level was similar for all three systems.
Collapse
Affiliation(s)
- P Wragg
- Animal Health and Veterinary Laboratories Agency-Penrith Regional Laboratory, Penrith, Cumbria CA11 9RR, United Kingdom.
| | - L Randall
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - A M Whatmore
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
114
|
Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2014; 52:3362-9. [PMID: 25009048 DOI: 10.1128/jcm.00788-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs.
Collapse
|
115
|
MALDI-TOF MS identification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques. Diagn Microbiol Infect Dis 2014; 79:144-8. [DOI: 10.1016/j.diagmicrobio.2014.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
|
116
|
|
117
|
Phenotypical and Genotypical Properties of an Arcanobacterium pluranimalium Strain Isolated from a Juvenile Giraffe (Giraffa camelopardalis reticulata). J Vet Med 2014; 2014:408724. [PMID: 26464930 PMCID: PMC4590887 DOI: 10.1155/2014/408724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 12/23/2022] Open
Abstract
The present study was designed to characterize phenotypically and genotypically an Arcanobacterium pluranimalium strain (A. pluranimalium 4868) following necropsy from a juvenile giraffe. The species identity could be confirmed by phenotypical investigations and by MALDI-TOF MS analysis, by sequencing the 16S rDNA, pluranimaliumlysin encoding gene pla, and glyceraldehyde-3-phosphate dehydrogenase encoding gene gap with sequence similarities to A. pluranimalium reference strain DSM 13483(T) of 99.2%, 89.9%, and 99.1%, respectively. To our knowledge, the present study is the first phenotypic and genotypic characterization of an A. pluranimalium strain isolated from a giraffe.
Collapse
|
118
|
Improving the diagnosis of bloodstream infections: PCR coupled with mass spectrometry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:501214. [PMID: 24818144 PMCID: PMC4000954 DOI: 10.1155/2014/501214] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The reference method for the diagnosis of bloodstream infections is blood culture followed by biochemical identification and antibiotic susceptibility testing of the isolated pathogen. This process requires 48 to 72 hours. The rapid administration of the most appropriate antimicrobial treatment is crucial for the survival of septic patients; therefore, a rapid method that enables diagnosis directly from analysis of a blood sample without culture is needed. A recently developed platform that couples broad-range PCR amplification of pathogen DNA with electrospray ionization mass spectrometry (PCR/ESI-MS) has the ability to identify virtually any microorganism from direct clinical specimens. To date, two clinical evaluations of the PCR/ESI-MS technology for the diagnosis of bloodstream infections from whole blood have been published. Here we discuss them and describe recent improvements that result in an enhanced sensitivity. Other commercially available assays for the molecular diagnosis of bloodstream infections from whole blood are also reviewed. The use of highly sensitive molecular diagnostic methods in combination with conventional procedures could substantially improve the management of septic patients.
Collapse
|
119
|
Further Studies on Arcanobacterium phocisimile: a Novel Species of Genus Arcanobacterium. J Vet Med 2014; 2014:923592. [PMID: 26464945 PMCID: PMC4590858 DOI: 10.1155/2014/923592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022] Open
Abstract
Arcanobacterium phocisimile, a newly described species with the type strain A. phocisimile 2698(T) isolated from a vaginal swab of a harbour seal and four additional A. phocisimile strains also isolated from four harbour seals could reliably be identified by phenotypic properties, by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), and by sequencing the genomic targets 16S rDNA and 16S-23S rDNA intergenic spacer region and the genes rpoB and gap. The A. phocisimile strains investigated in the present study were isolated together with several other bacterial species indicating that the pathogenic importance of A. phocisimile remains unclear. However, the detection of peptidic spectra by MALDI-TOF MS and the presented phenotypic and genotypic approach might help to identify A. phocisimile in future.
Collapse
|
120
|
Improvement of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of difficult-to-identify bacteria and its impact in the workflow of a clinical microbiology laboratory. Diagn Microbiol Infect Dis 2014; 79:1-6. [PMID: 24602850 DOI: 10.1016/j.diagmicrobio.2014.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/21/2022]
Abstract
This study evaluates matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) capability for the identification of difficult-to-identify microorganisms. A total of 150 bacterial isolates inconclusively identified with conventional phenotypic tests were further assessed by 16S rRNA sequencing and by MALDI-TOF MS following 2 methods: a) a simplified formic acid-based, on-plate extraction and b) performing a tube-based extraction step. Using the simplified method, 29 isolates could not be identified. For the remaining 121 isolates (80.7%), we obtained a reliable identification by MALDI-TOF: in 103 isolates, the identification by 16S rRNA sequencing and MALDI TOF coincided at the species level (68.7% from the total 150 analyzed isolates and 85.1% from the samples with MALDI-TOF result), and in 18 isolates, the identification by both methods coincided at the genus level (12% from the total and 14.9% from the samples with MALDI-TOF results). No discordant results were observed. The performance of the tube-based extraction step allowed the identification at the species level of 6 of the 29 unidentified isolates by the simplified method. In summary, MALDI-TOF can be used for the rapid identification of many bacterial isolates inconclusively identified by conventional methods.
Collapse
|
121
|
Evaluation of the Bruker MALDI Biotyper for identification of Gram-positive rods: development of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol 2014; 52:1089-97. [PMID: 24452159 DOI: 10.1128/jcm.02399-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reported matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification rates of Gram-positive rods (GPR) are low compared to identification rates of Gram-positive cocci. In this study, three sample preparation methods were compared for MALDI-TOF MS identification of 190 well-characterized GPR strains: direct transfer, direct transfer-formic acid preparation, and ethanol-formic acid extraction. Using the interpretation criteria recommended by the manufacturer, identification rates were significantly higher for direct transfer-formic acid preparation and ethanol-formic acid extraction than for direct transfer. Reducing the species cutoff from 2.0 to 1.7 significantly increased species identification rates. In a subsequent prospective study, 215 clinical GPR isolates were analyzed by MALDI-TOF MS, and the results were compared to those for identification using conventional methods, with discrepancies being resolved by 16S rRNA and rpoB gene analysis. Using the direct transfer-formic acid preparation and a species cutoff of 1.7, congruencies on the genus and species levels of 87.4% and 79.1%, respectively, were achieved. In addition, the rate of nonidentified isolates dropped from 12.1% to 5.6% when using an extended database, i.e., the Bruker database amended by reference spectra of the 190 GPR of the retrospective study. Our data demonstrate three ways to improve GPR identification by the Bruker MALDI Biotyper, (i) optimize sample preparation using formic acid, (ii) reduce cutoff scores for species identification, and (iii) expand the database. Based on our results, we suggest an identification algorithm for the clinical laboratory combining MALDI-TOF MS with nucleic acid sequencing.
Collapse
|
122
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
123
|
Identification of Arcanobacterium pluranimalium by matrix-assisted laser desorption ionization-time of flight mass spectrometry and, as novel target, by sequencing pluranimaliumlysin encoding gene pla. Vet Microbiol 2014; 168:428-31. [DOI: 10.1016/j.vetmic.2013.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/21/2022]
|
124
|
Kuda T, Izawa Y, Yoshida S, Koyanagi T, Takahashi H, Kimura B. Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
125
|
Ouedraogo R, Daumas A, Capo C, Mege JL, Textoris J. Whole-cell MALDI-TOF mass spectrometry is an accurate and rapid method to analyze different modes of macrophage activation. J Vis Exp 2013:50926. [PMID: 24430799 DOI: 10.3791/50926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MALDI-TOF is an extensively used mass spectrometry technique in chemistry and biochemistry. It has been also applied in medicine to identify molecules and biomarkers. Recently, it has been used in microbiology for the routine identification of bacteria grown from clinical samples, without preparation or fractionation steps. We and others have applied this whole-cell MALDI-TOF mass spectrometry technique successfully to eukaryotic cells. Current applications range from cell type identification to quality control assessment of cell culture and diagnostic applications. Here, we describe its use to explore the various polarization phenotypes of macrophages in response to cytokines or heat-killed bacteria. It allowed the identification of macrophage-specific fingerprints that are representative of the diversity of proteomic responses of macrophages. This application illustrates the accuracy and simplicity of the method. The protocol we described here may be useful for studying the immune host response in pathological conditions or may be extended to wider diagnostic applications.
Collapse
Affiliation(s)
- Richard Ouedraogo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes (URMITE), CNRS UMR 7278, INSERM U1095, Aix Marseille Université
| | | | | | | | | |
Collapse
|
126
|
Sammra O, Balbutskaya A, Zhang S, Hijazin M, Nagib S, Lämmler C, Abdulmawjood A, Prenger-Berninghoff E, Kostrzewa M, Timke M. Further characteristics of Arcanobacterium canis, a novel species of genus Arcanobacterium. Vet Microbiol 2013; 167:619-22. [DOI: 10.1016/j.vetmic.2013.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
127
|
In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves. Anaerobe 2013; 29:118-27. [PMID: 24291759 DOI: 10.1016/j.anaerobe.2013.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/16/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022]
Abstract
A total of 73 chicken and calves isolates were diagnosed using matrix-assisted laser desorption ionization-time-of flight mass spectrometry (Maldi-Tof MS). After a preliminary subtractive screening based on the high acid tolerance at pH 2.5 and bile resistance at 0.3% oxgall, twenty isolates belonging to the species Lactobacillus salivarius, Lactobacillus agilis, Lactobacillus reuteri, Lactobacillus murinus and Lactobacillus amylovorus were in vitro screened for the safety assessment and probiotic properties, including antibiotics susceptibility patterns, biochemical activity and potential for competitive exclusion of biofilm producing pathogens determined by crystal violet and/or quantitative Fluorescent in situ Hybridisation (FISH) assays utilizing 5'Cy 3 labelled probe Enter1432 for enteric group. Antibiotic susceptibility testing was performed according to the ISO norm 10932. The sixteen strains were susceptible to certain antimicrobial agents, except for two chicken (L. salivarius 12K, L. agilis 13K) and two calves (L. reuteri L10/1, L. murinus L9) isolates with the presence non wild-type ECOFFs (epidemiological cut-off) for gentamicin (≥256 μg ml(-1)), tetracycline (≥128 μg ml(-1)), kanamycin (≥256 μg ml(-1)) and streptomycin (≥96 μg ml(-1)). The two referenced chicken isolates gave positive aac(6')Ie-aph(2″)Ia and tet(L) PCR results. The wild-type ECOFFs isolates were subjected to the apiZYM analysis for enzyme profile evaluation and amino acid decarboxylase activities determined by qualitative plate method and multiplex PCR for the detection of four genes involved in the production of histamine (histidine decarboxylase, hdc), tyramine (tyrosine decarboxylase, tyrdc) and putrescine (via eithers ornithine decarboxylase, odc, or agmatine deiminase, agdi). From examined strains only two chicken isolates (L. reuteri 14K; L. salivarius 15K) had no harmful β-glucuronidase, β-glucosidase activities connected with detrimental effects in the gastrointestinal tract and together no amino acid decarboxylase activities and no genes associated with biogenic amines production though only chicken L. salivarius 15K whole cells and acid supernatants shown strong suppressive potential against biofilm-forming Klebsiella and Escherichia coli. Our results highlight that above-mentioned isolate L. salivarius 15K fulfils the principle requirements of a qualified probiotic and may be seen as a reliable candidate for further validation studies in chicken.
Collapse
|
128
|
Charnot-Katsikas A, Tesic V, Boonlayangoor S, Bethel C, Frank KM. Prospective evaluation of the VITEK MS for the routine identification of bacteria and yeast in the clinical microbiology laboratory: assessment of accuracy of identification and turnaround time. J Med Microbiol 2013; 63:235-241. [PMID: 24227878 DOI: 10.1099/jmm.0.063636-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study assessed the accuracy of bacterial and yeast identification using the VITEK MS, and the time to reporting of isolates before and after its implementation in routine clinical practice. Three hundred and sixty-two isolates of bacteria and yeast, consisting of a variety of clinical isolates and American Type Culture Collection strains, were tested. Results were compared with reference identifications from the VITEK 2 system and with 16S rRNA sequence analysis. The VITEK MS provided an acceptable identification to species level for 283 (78 %) isolates. Considering organisms for which genus-level identification is acceptable for routine clinical care, 315 isolates (87 %) had an acceptable identification. Six isolates (2 %) were identified incorrectly, five of which were Shigella species. Finally, the time for reporting the identifications was decreased significantly after implementation of the VITEK MS for a total mean reduction in time of 10.52 h (P<0.0001). Overall, accuracy of the VITEK MS was comparable or superior to that from the VITEK 2. The findings were also comparable to other studies examining the accuracy of the VITEK MS, although differences exist, depending on the diversity of species represented as well as on the versions of the databases used. The VITEK MS can be incorporated effectively into routine use in a clinical microbiology laboratory and future expansion of the database should provide improved accuracy for the identification of micro-organisms.
Collapse
Affiliation(s)
- Angella Charnot-Katsikas
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Vera Tesic
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Sue Boonlayangoor
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Cindy Bethel
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Karen M Frank
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
129
|
Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels. Eur J Clin Microbiol Infect Dis 2013; 33:745-54. [PMID: 24197439 DOI: 10.1007/s10096-013-2006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.
Collapse
|
130
|
Lau SKP, Tang BSF, Teng JLL, Chan TM, Curreem SOT, Fan RYY, Ng RHY, Chan JFW, Yuen KY, Woo PCY. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J Clin Pathol 2013; 67:361-6. [PMID: 24143023 DOI: 10.1136/jclinpath-2013-201818] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Although the revolutionary matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been evaluated for identification of various groups of bacteria, its application in bacteria that are 'difficult-to-identify' by phenotypic tests has been less well studied. We aim to evaluate the usefulness of MALDI-TOF MS for identification of 'difficult-to-identify' bacterial isolates. METHODS We evaluated the performance of the Bruker MALDI-TOF MS system for a collection of 67 diverse clinically important bacterial isolates that were less commonly encountered, possessed ambiguous biochemical profiles or belonged to newly discovered species. The results were compared with 16S rRNA gene sequencing as a reference method for species identification. RESULTS Using 16S rRNA gene sequencing as the reference method, 30 (45%) isolates were identified correctly to species level (score ≥2.0), 20 (30%) were only identified to genus level (score ≥1.7), four (6%) were misidentified (incorrect species with score ≥2.0 or incorrect genus with score ≥1.7) and 13 (19%) showed 'no identification' (score <1.7). Aerobic Gram-positive bacteria showed the highest percentage of correct species identification, followed by aerobic Gram-negative, anaerobic Gram-positive and anaerobic Gram-negative bacteria. Sixteen isolates identified to genus level actually showed the correct species but with scores below the threshold for species identification. Most isolates which showed 'no identification' were due to the absence of the corresponding species in the Bruker database. CONCLUSIONS Expansion of commercial databases to include reference spectra of less commonly encountered and newly discovered species and to increase available spectra for each species is required to improve the accuracy of MALDI-TOF MS for identifying 'difficult-to-identify' bacteria.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, , Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Kishii K, Kikuchi K, Matsuda N, Yoshida A, Okuzumi K, Uetera Y, Yasuhara H, Moriya K. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures. Clin Microbiol Infect 2013; 20:424-30. [PMID: 24125498 DOI: 10.1111/1469-0691.12376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022]
Abstract
The clinical relevance of Acinetobacter species, other than A. baumannii, as human pathogens has not been sufficiently assessed owing to the insufficiency of simple phenotypic clinical diagnostic laboratory tests. Infections caused by these organisms have different impacts on clinical outcome and require different treatment and management approaches. It is therefore important to correctly identify Acinetobacter species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been introduced to identify a wide range of microorganisms in clinical laboratories, but only a few studies have examined its utility for identifying Acinetobacter species, particularly those of the non-Acinetobacter baumannii complex. We therefore evaluated MALDI-TOF MS for identification of Acinetobacter species by comparing it with sequence analysis of rpoB using 123 isolates of Acinetobacter species from blood. Of the isolates examined, we identified 106/123 (86.2%) to species, and 16/123 (13.0%) could only be identified as acinetobacters. The identity of one isolate could not be established. Of the 106 species identified, 89/106 (84.0%) were confirmed by rpoB sequence analysis, and 17/106 (16.0%) were discordant. These data indicate correct identification of 89/123 (72.4%) isolates. Surprisingly, all blood culture isolates were identified as 13 species of Acinetobacter, and the incidence of Acinetobacter pittii was unexpectedly high (42/123; 34.1%) and exceeded that of A. baumannii (22/123; 17.9%). Although the present identification rate using MALDI-TOF MS is not acceptable for species-level identification of Acinetobacter, further expansion of the database should remedy this situation.
Collapse
Affiliation(s)
- K Kishii
- Department of Quality Assessment and Control of Medical Device Sterilization, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:4226-9. [PMID: 24068013 DOI: 10.1128/jcm.02612-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel protocols for inactivation and extraction were developed and used to identify 107 Mycobacterium clinical isolates, including Mycobacterium tuberculosis complex, from solid cultures using Vitek matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The protocol using heat inactivation with sonication and cell disruption with glass beads resulted in 82.2% and 88.8% species and genus level identifications, respectively.
Collapse
|
133
|
Christie-Oleza JA, Miotello G, Armengaud J. Proteogenomic definition of biomarkers for the large Roseobacter clade and application for a quick screening of new environmental isolates. J Proteome Res 2013; 12:5331-9. [PMID: 24044462 DOI: 10.1021/pr400554e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Whole-cell, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry has become a routine and reliable method for microbial characterization due to its simplicity, low cost, and high reproducibility. The identification of microbial isolates relies on the spectral resemblance of low-molecular-weight proteins to already-existing isolates within the databases. This is a gold standard for clinicians who have a finite number of well-defined pathogenic strains but represents a problem for environmental microbiologists with an overwhelming number of organisms to be defined. Here we set a milestone for implementing whole-cell MALDI-TOF mass spectrometry to identify isolates from the biosphere. To make this technique accessible for environmental studies, we propose to (i) define biomarkers that will always show up with an intense m/z signal in the MALDI-TOF spectra and (ii) create a database with all the possible m/z values that these biomarkers can generate to screen new isolates. We tested our method with the relevant marine Roseobacter lineage. The use of shotgun nanoLC-MS/MS proteomics on the small proteome fraction of nine Roseobacter strains and the proteogenomic toolbox helped us to identify potential biomarkers in terms of protein abundance and low variability among strains. We show that the DNA binding protein, HU, and the ribosomal proteins, L29 and L30, are the most robust biomarkers within the Roseobacter clade. The molecular weights of these three biomarkers, as for other conserved homologous proteins, vary due to sequence variation above the genus level. Therefore, we calculated the m/z values expected for each one of the known Roseobacter genera and tested our strategy during an extensive screening of natural marine isolates obtained from coastal waters of the Western Mediterranean Sea. The use of this technique versus standard sequencing methods is discussed.
Collapse
|
134
|
Manji R, Bythrow M, Branda JA, Burnham CAD, Ferraro MJ, Garner OB, Jennemann R, Lewinski MA, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Westblade LF, Ginocchio CC. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis 2013; 33:337-46. [PMID: 24019163 DOI: 10.1007/s10096-013-1961-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Studies have demonstrated that matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, accurate method for the identification of clinically relevant bacteria. The purpose of this study was to evaluate the performance of the VITEK MS v2.0 system (bioMérieux) for the identification of the non-Enterobacteriaceae Gram-negative bacilli (NEGNB). This multi-center study tested 558 unique NEGNB clinical isolates, representing 18 genera and 33 species. Results obtained with the VITEK MS v2.0 were compared with reference 16S rRNA gene sequencing and when indicated recA sequencing and phenotypic analysis. VITEK MS v2.0 provided an identification for 92.5 % of the NEGNB isolates (516 out of 558). VITEK MS v2.0 correctly identified 90.9 % of NEGNB (507 out of 558), 77.8 % to species level and 13.1 % to genus level with multiple species. There were four isolates (0.7 %) incorrectly identified to genus level and five isolates (0.9 %), with one incorrect identification to species level. The remaining 42 isolates (7.5 %) were either reported as no identification (5.0 %) or called "mixed genera" (2.5 %) since two or more different genera were identified as possible identifications for the test organism. These findings demonstrate that the VITEK MS v2.0 system provides accurate results for the identification of a challenging and diverse group of Gram-negative bacteria.
Collapse
Affiliation(s)
- R Manji
- Department of Pathology and Laboratory Medicine, North Shore-LIJ Health System Laboratories, 10 Nevada Drive, Lake Success, NY, 11042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 2013; 19:803-13. [DOI: 10.1111/1469-0691.12217] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/02/2013] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
|
136
|
Identification and subtyping of clinically relevant human and ruminant mycoplasmas by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:3314-23. [PMID: 23903545 DOI: 10.1128/jcm.01573-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) recently emerged as a technology for the identification of bacteria. In this study, we aimed to evaluate its applicability to human and ruminant mycoplasmal identification, which can be demanding and time-consuming when using phenotypic or molecular methods. In addition, MALDI-TOF MS was tested as a subtyping tool for certain species. A total of 29 main spectra (MSP) from 10 human and 13 ruminant mycoplasma (sub)species were included in a mycoplasma MSP database to complete the Bruker MALDI Biotyper database. After broth culture and protein extraction, MALDI-TOF MS was applied for the identification of 119 human and 143 ruminant clinical isolates that were previously identified by antigenic or molecular methods and for subcultures of 73 ruminant clinical specimens that potentially contained several mycoplasma species. MALDI-TOF MS resulted in accurate (sub)species-level identification with a score of ≥1.700 for 96% (251/262) of the isolates. The phylogenetically closest (sub)species were unequivocally distinguished. Although mixtures of the strains were reliably detected up to a certain cellular ratio, only the predominant species was identified from the cultures of polymicrobial clinical specimens. For typing purposes, MALDI-TOF MS proved to cluster Mycoplasma bovis and Mycoplasma agalactiae isolates by their year of isolation and genome profiles, respectively, and Mycoplasma pneumoniae isolates by their adhesin P1 type. In conclusion, MALDI-TOF MS is a rapid, reliable, and cost-effective method for the routine identification of high-density growing mycoplasmal species and shows promising prospects for its capacity for strain typing.
Collapse
|
137
|
Broad-range PCR: past, present, or future of bacteriology? Med Mal Infect 2013; 43:322-30. [PMID: 23876208 DOI: 10.1016/j.medmal.2013.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/08/2013] [Accepted: 06/17/2013] [Indexed: 11/20/2022]
Abstract
PCR targeting the gene encoding 16S ribosomal RNA (commonly named broad-range PCR or 16S PCR) has been used for 20 years as a polyvalent tool to study prokaryotes. Broad-range PCR was first used as a taxonomic tool, then in clinical microbiology. We will describe the use of broad-range PCR in clinical microbiology. The first application was identification of bacterial strains obtained by culture but whose phenotypic or proteomic identification remained difficult or impossible. This changed bacterial taxonomy and allowed discovering many new species. The second application of broad-range PCR in clinical microbiology is the detection of bacterial DNA from clinical samples; we will review the clinical settings in which the technique proved useful (such as endocarditis) and those in which it did not (such as characterization of bacteria in ascites, in cirrhotic patients). This technique allowed identifying the etiological agents for several diseases, such as Whipple disease. This review is a synthesis of data concerning the applications, assets, and drawbacks of broad-range PCR in clinical microbiology.
Collapse
|
138
|
Performance of the Vitek MS v2.0 system in distinguishing Streptococcus pneumoniae from nonpneumococcal species of the Streptococcus mitis group. J Clin Microbiol 2013; 51:3079-82. [PMID: 23784130 DOI: 10.1128/jcm.00824-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Vitek MS v2.0 matrix-assisted laser desorption ionization-time of flight mass spectrometry system accurately distinguished Streptococcus pneumoniae from nonpneumococcal S. mitis group species. Only 1 of 116 nonpneumococcal isolates (<1%) was misidentified as S. pneumoniae. None of 95 pneumococcal isolates was misidentified. This method provides a rapid, simple means of discriminating among these challenging organisms.
Collapse
|
139
|
Bernard K, Pacheco AL, Cunningham I, Gill N, Burdz T, Wiebe D. Emendation of the description of the species
Corynebacterium propinquum
to include strains which produce urease. Int J Syst Evol Microbiol 2013; 63:2146-2154. [DOI: 10.1099/ijs.0.046979-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium propinquum
is a Gram-positive rod occasionally recovered from clinical infections which, according to 16S rRNA gene sequencing, is most closely related (>99 % sequence similarity) to
Corynebacterium pseudodiphtheriticum
. The two species are very similar biochemically, commonly differentiated by a single test, the detection of urease, where strains of
C. propinquum
are described as being urease-non-producing and strains of
C. pseudodiphtheriticum
are described as urease-producing. In this study, historical and contemporary strains of
C. propinquum
and
C. pseudodiphtheriticum
from this laboratory were definitively characterized, which included use of rpoB sequencing. Urease-producing strains of
C. propinquum
as well as typical urease-non-producing isolates were identified after rpoB sequencing, with six of these being originally identified as
C. pseudodiphtheriticum
. Based on these observations, we propose emendation of the description of
C. propinquum
to include strains which produce urease. MALDI-TOF analysis may be a useful tool to differentiate these taxa. Existing commercial databases should be updated to include urease-positive strains of
C. propinquum
.
Collapse
Affiliation(s)
- Kathryn Bernard
- University of Manitoba, Department of Medical Microbiology, Winnipeg, Manitoba, Canada
- Special Bacteriology Unit, ARNI, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ana Luisa Pacheco
- Special Bacteriology Unit, ARNI, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ian Cunningham
- University of Manitoba, Department of Medical Microbiology, Winnipeg, Manitoba, Canada
| | - Navdeep Gill
- University of Victoria, Department of Biochemistry and Microbiology, Victoria, British Columbia, Canada
| | - Tamara Burdz
- Special Bacteriology Unit, ARNI, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Deborah Wiebe
- Special Bacteriology Unit, ARNI, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
140
|
Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 2013; 51:2225-31. [PMID: 23658261 DOI: 10.1128/jcm.00682-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.
Collapse
|
141
|
Charting Uncharted Territory: a Review of the Verification and Implementation Process for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) for Organism Identification. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.clinmicnews.2013.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
142
|
Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:2182-94. [PMID: 23637301 DOI: 10.1128/jcm.00492-13] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.
Collapse
|
143
|
Torres-Sangiao E, Lissarrague-Sanz A, Cañizares-Castellanos A, Bou G. Prostatitis bacteriana. Enferm Infecc Microbiol Clin 2013; 31:344-6. [DOI: 10.1016/j.eimc.2012.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 11/26/2022]
|
144
|
Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin Microbiol 2013; 51:1421-7. [PMID: 23426925 DOI: 10.1128/jcm.02680-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including "heavy" (H) and "light" (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or "score." We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS.
Collapse
|
145
|
Abstract
Advances in implant design, surgical technique, peri-operative antimicrobial prophylaxis and laminar airflow operating room environment have made total joint arthroplasty one of the most successful surgical procedures of all times. Orthopaedic implants, however, remain prone to microbial contamination resulting in persistent risk of implant-associated infection. Treatment of infections associated with orthopaedic devices usually requires appropriate surgical intervention combined with a prolonged antimicrobial therapy. The choice of the best possible treatment regimen depends on duration and pathogenesis of infection, stability of the implant, antimicrobial susceptibility of the pathogen and condition of the surrounding soft tissue. In addition towell known diagnostic procedures new promising tools for rapid and correct microbial diagnosis are being developed as correct diagnosis of the responsible micro-organism and this is paramount for successful treatment of prosthetic joint infection.
Collapse
|
146
|
Wang XH, Zhang G, Fan YY, Yang X, Sui WJ, Lu XX. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J Microbiol Methods 2013; 92:231-5. [PMID: 23305925 DOI: 10.1016/j.mimet.2012.12.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
Abstract
Rapid identification of bacterial pathogens from clinical specimens is essential to establish an adequate empirical antibiotic therapy to treat urinary tract infections (UTIs). We used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) combined with UF-1000i urine flow cytometry of urine specimens to quickly and accurately identify bacteria causing UTIs. We divided each urine sample into three aliquots for conventional identification, UF-1000i, and MALDI-TOF MS, respectively. We compared the results of the conventional method with those of MALDI-TOF MS combined with UF-1000i, and discrepancies were resolved by 16S rRNA gene sequencing. We analyzed 1456 urine samples from patients with UTI symptoms, and 932 (64.0%) were negative using each of the three testing methods. The combined method used UF-1000i to eliminate negative specimens and then MALDI-TOF MS to identify the remaining positive samples. The combined method was consistent with the conventional method in 1373 of 1456 cases (94.3%), and gave the correct result in 1381 of 1456 cases (94.8%). Therefore, the combined method described here can directly provide a rapid, accurate, definitive bacterial identification for the vast majority of urine samples, though the MALDI-TOF MS software analysis capabilities should be improved, with regard to mixed bacterial infection.
Collapse
Affiliation(s)
- X-H Wang
- The Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | | | | | | | | | | |
Collapse
|
147
|
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. INFECTION GENETICS AND EVOLUTION 2013; 13:230-5. [DOI: 10.1016/j.meegid.2012.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023]
|
148
|
Stafsnes MH, Dybwad M, Brunsvik A, Bruheim P. Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collection. Antonie van Leeuwenhoek 2012; 103:603-15. [PMID: 23132278 DOI: 10.1007/s10482-012-9844-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
A challenge in the rational exploitation of microbial culture collections is to avoid superfluous testing of replicas. MALDI-TOF MS has been shown to be an efficient dereplication tool as it can be used to discriminate between bacterial isolates at the species level. A bacterial culture collection of more than 10,000 heterotrophic marine bacterial isolates from sea-water surface layers of the Norwegian Trondheimsfjord and neighbouring coastal areas has been established. A sub-collection of pigmented isolates was earlier screened for novel carotenoids with UVA-Blue light absorbing properties. This was a comprehensive analytical task and it was observed that a significant number of extracts with identical pigment profile were recovered. Hence, this study was undertaken to explore the use of MALDI-TOF MS as a dereplication tool to quickly characterize the bacterial collection. Furthermore, LC-DAD-MS analysis of pigment profiles was performed to check if pigment profile diversity was maintained among isolates kept after the potential MALDI-TOF MS selection step. Four hundred isolates comprising both pigmented and non-pigmented isolates were used for this study. The resulting MALDI-TOF MS dendrogram clearly identified a diversity of different taxa and these were supported by the pigment profile clustering, thus linking the pigment production as species-specific properties. Although one exception was found, it can be concluded that MALDI-TOF MS dereplication is a promising pre-screening tool for more efficient screening of microbial culture collection containing pigments with potential novel properties.
Collapse
Affiliation(s)
- Marit H Stafsnes
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491, Trondheim, Norway
| | | | | | | |
Collapse
|
149
|
Characterization of a new clinical yeast species, Candida tunisiensis sp. nov., isolated from a strain collection from Tunisian hospitals. J Clin Microbiol 2012; 51:31-9. [PMID: 23077122 DOI: 10.1128/jcm.01627-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From a collection of yeast isolates isolated from patients in Tunisian hospitals between September 2006 and July 2010, the yeast strain JEY63 (CBS 12513), isolated from a 50-year-old male that suffered from oral thrush, could not be identified to the species level using conventional methods used in clinical laboratories. These methods include matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), germ tube formation, and the use of CHROMagar Candida and metabolic galleries. Sequence analysis of the nuclear rRNA (18S rRNA, 5.8S rRNA, and 26S rRNA) and internal transcribed spacer regions (ITS1 and ITS2) indicated that the ribosomal DNA sequences of this species were not yet reported. Multiple gene phylogenic analyses suggested that this isolate clustered at the base of the Dipodascaceae (Saccharomycetales, Saccharomycetes, and Ascomycota). JEY63 was named Candida tunisiensis sp. nov. according to several phenotypic criteria and its geographical origin. C. tunisiensis was able to grow at 42°C and does not form chlamydospores and hyphae but could grow as yeast and pseudohyphal forms. C. tunisiensis exhibited most probably a haploid genome with an estimated size of 10 Mb on at least three chromosomes. Using European Committee for Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) Candida albicans susceptibility breakpoints as a reference, C. tunisiensis was resistant to fluconazole (MIC = 8 μg/ml), voriconazole (MIC = 0.5 μg/ml), itraconazole (MIC = 16 μg/ml), and amphotericin B (MIC = 4 μg/ml) but still susceptible to posaconazole (MIC = 0.008 μg/ml) and caspofungin (MIC = 0.5 μg/ml). In conclusion, MALDI-TOF MS permitted the early selection of an unusual isolate, which was still unreported in molecular databases but could not be unambiguously classified based on phylogenetic approaches.
Collapse
|
150
|
Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 2012; 50:3301-8. [PMID: 22855510 PMCID: PMC3457442 DOI: 10.1128/jcm.01405-12] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/24/2012] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been found to be an accurate, rapid, and inexpensive method for the identification of bacteria and yeasts. Previous evaluations have compared the accuracy, time to identification, and costs of the MALDI-TOF MS method against standard identification systems or commercial panels. In this prospective study, we compared a protocol incorporating MALDI-TOF MS (MALDI protocol) with the current standard identification protocols (standard protocol) to determine the performance in actual practice using a specimen-based, bench-by-bench approach. The potential impact on time to identification (TTI) and costs had MALDI-TOF MS been the first-line identification method was quantitated. The MALDI protocol includes supplementary tests, notably for Streptococcus pneumoniae and Shigella, and indications for repeat MALDI-TOF MS attempts, often not measured in previous studies. A total of 952 isolates (824 bacterial isolates and 128 yeast isolates) recovered from 2,214 specimens were assessed using the MALDI protocol. Compared with standard protocols, the MALDI protocol provided identifications 1.45 days earlier on average (P < 0.001). In our laboratory, we anticipate that the incorporation of the MALDI protocol can reduce reagent and labor costs of identification by $102,424 or 56.9% within 12 months. The model included the fixed annual costs of the MALDI-TOF MS, such as the cost of protein standards and instrument maintenance, and the annual prevalence of organisms encountered in our laboratory. This comprehensive cost analysis model can be generalized to other moderate- to high-volume laboratories.
Collapse
Affiliation(s)
- K E Tan
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|