101
|
Generation of porcine reproductive and respiratory syndrome (PRRS) virus-like-particles (VLPs) with different protein composition. J Virol Methods 2016; 236:77-86. [PMID: 27435337 DOI: 10.1016/j.jviromet.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/03/2023]
Abstract
The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus.
Collapse
|
102
|
Singleton H, Graham SP, Bodman-Smith KB, Frossard JP, Steinbach F. Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1. Front Microbiol 2016; 7:832. [PMID: 27313573 PMCID: PMC4889594 DOI: 10.3389/fmicb.2016.00832] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection.
Collapse
Affiliation(s)
- Helen Singleton
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| | - Simon P Graham
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| | | | | | - Falko Steinbach
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| |
Collapse
|
103
|
Zhang L, Cui Z, Zhou L, Kang Y, Li L, Li J, Dai Y, Yu S, Li N. Developing a Triple Transgenic Cell Line for High-Efficiency Porcine Reproductive and Respiratory Syndrome Virus Infection. PLoS One 2016; 11:e0154238. [PMID: 27182980 PMCID: PMC4868347 DOI: 10.1371/journal.pone.0154238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens in the swine industry worldwide. Due to the lack of robust cell lines and small animal models, the pathogenesis of PRRSV infection and mechanism for protective vaccination are still not yet well understood. To obtain useful cell lines, several groups have attempted to construct different transgenic cell lines with three PRRSV receptors: CD163, CD169, and CD151. The results showed that CD163 is essential for PRRSV entry into target cells and replication, and both CD169 and CD151 play key roles during PRRSV infection. However, their interplay and combined effect remains unclear. In this study, we generated transgenic BHK-21 derived cell lines co-expressing different combinations of the three receptors, which were transfected with CD163 alone, or the combination of CD163 and CD169, or the combination of CD163 and CD151, or the combination of CD163, CD169, and CD151 using the PiggyBac transposon system. Our results showed that the synergistic interaction among the three receptors was important to improve the susceptibility of cells during PRRSV infection. Through a series of comparable analyses, we confirmed that the cell line co-expressing triple receptors sustained viral infection and replication, and was superior to the current cell platform used for the PRRSV study, MARC-145 cells. Moreover, we found that PRRSV infection of the transgenic cell lines could trigger IFN-stimulated gene responses similar to those of porcine alveolar macrophages and MARC-145 cells. In summary, we developed a stable transgenic cell line susceptible to PRRSV, which may not only provide a useful tool for virus propagation, vaccine development, and pathogenesis studies, but also establish the foundation for small animal model development.
Collapse
Affiliation(s)
- Linlin Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhengzhi Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Youmin Kang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinxiu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yunping Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- * E-mail: (SY); (NL)
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- * E-mail: (SY); (NL)
| |
Collapse
|
104
|
Feng J, Bai X, Cui T, Zhou H, Chen Y, Xie J, Shi Q, Wang H, Zhang G. In Vitro Antiviral Activity of Germacrone Against Porcine Reproductive and Respiratory Syndrome Virus. Curr Microbiol 2016; 73:317-323. [PMID: 27178541 DOI: 10.1007/s00284-016-1042-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/08/2016] [Indexed: 10/21/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious diseases affecting the swine industry worldwide; however, there is no efficient control strategies against PRRSV at present. Therefore, development of new antiviral treatment strategies is urgently needed. As reported, germacrone can efficiently impair influenza virus replication. In this study, we exploited whether germacrone has the potential to inhibit PRRSV infection. Our results showed that the germacrone significantly inhibited replication of PRRSV in vitro and repressed the synthesis of viral RNA and protein. However, it did not block PRRSV binding and entry. Further studies confirmed that germacrone impaired PRRSV replication at an early stage, and inhibited infection of both classic and highly pathogenic type II PRRSV strains. Collectively, our findings imply that the germacrone has the potential to be used as an anti-PRRSV drug.
Collapse
Affiliation(s)
- Jiaping Feng
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaolei Bai
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Tiantian Cui
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Han Zhou
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yao Chen
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiexiong Xie
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qingwei Shi
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Heng Wang
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Guihong Zhang
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
105
|
Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread. J Virol 2016; 90:5163-5175. [PMID: 26984724 DOI: 10.1128/jvi.00036-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intercellular nanotube connections have been identified as an alternative pathway for cellular spreading of certain viruses. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nanotubes were observed connecting two distant cells with contiguous membranes, with the core infectious viral machinery (viral RNA, certain replicases, and certain structural proteins) present in/on the intercellular nanotubes. Live-cell movies tracked the intercellular transport of a recombinant PRRSV that expressed green fluorescent protein (GFP)-tagged nsp2. In MARC-145 cells expressing PRRSV receptors, GFP-nsp2 moved from one cell to another through nanotubes in the presence of virus-neutralizing antibodies. Intercellular transport of viral proteins did not require the PRRSV receptor as it was observed in receptor-negative HEK-293T cells after transfection with an infectious clone of GFP-PRRSV. In addition, GFP-nsp2 was detected in HEK-293T cells cocultured with recombinant PRRSV-infected MARC-145 cells. The intercellular nanotubes contained filamentous actin (F-actin) with myosin-associated motor proteins. The F-actin and myosin IIA were identified as coprecipitates with PRRSV nsp1β, nsp2, nsp2TF, nsp4, nsp7-nsp8, GP5, and N proteins. Drugs inhibiting actin polymerization or myosin IIA activation prevented nanotube formation and viral clusters in virus-infected cells. These data lead us to propose that PRRSV utilizes the host cell cytoskeletal machinery inside nanotubes for efficient cell-to-cell spread. This form of virus transport represents an alternative pathway for virus spread, which is resistant to the host humoral immune response. IMPORTANCE Extracellular virus particles transmit infection between organisms, but within infected hosts intercellular infection can be spread by additional mechanisms. In this study, we describe an alternative pathway for intercellular transmission of PRRSV in which the virus uses nanotube connections to transport infectious viral RNA, certain replicases, and certain structural proteins to neighboring cells. This process involves interaction of viral proteins with cytoskeletal proteins that form the nanotube connections. Intercellular viral spread through nanotubes allows the virus to escape the neutralizing antibody response and may contribute to the pathogenesis of viral infections. The development of strategies that interfere with this process could be critical in preventing the spread of viral infection.
Collapse
|
106
|
Gao J, Xiao S, Xiao Y, Wang X, Zhang C, Zhao Q, Nan Y, Huang B, Liu H, Liu N, Lv J, Du T, Sun Y, Mu Y, Wang G, Syed SF, Zhang G, Hiscox JA, Goodfellow I, Zhou EM. MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection. Sci Rep 2016; 6:25120. [PMID: 27112594 PMCID: PMC4845007 DOI: 10.1038/srep25120] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/08/2016] [Indexed: 11/09/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is an important swine disease worldwide. PRRSV has a limited tropism for certain cells, which may at least in part be attributed to the expression of the necessary cellular molecules serving as the virus receptors or factors on host cells for virus binding or entry. However, these molecules conferring PRRSV infection have not been fully characterized. Here we show the identification of non-muscle myosin heavy chain 9 (MYH9) as an essential factor for PRRSV infection using the anti-idiotypic antibody specific to the PRRSV glycoprotein GP5. MYH9 physically interacts with the PRRSV GP5 protein via its C-terminal domain and confers susceptibility of cells to PRRSV infection. These findings indicate that MYH9 is an essential factor for PRRSV infection and provide new insights into PRRSV-host interactions and viral entry, potentially facilitating development of control strategies for this important swine disease.
Collapse
Affiliation(s)
- Jiming Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yihong Xiao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiangpeng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongliang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ningning Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Junhua Lv
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin 150001, China
| | - Shahid Faraz Syed
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaiping Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
107
|
Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol 2016; 161:1579-89. [DOI: 10.1007/s00705-016-2812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|
108
|
Influence of the amino acid residues at 70 in M protein of porcine reproductive and respiratory syndrome virus on viral neutralization susceptibility to the serum antibody. Virol J 2016; 13:51. [PMID: 27004554 PMCID: PMC4802621 DOI: 10.1186/s12985-016-0505-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/11/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the significant economic losses in pig industry in the world. The adaptive immune responses of the host act as an important source of selective pressure in the evolutionary process of the virus. In the previous study, we confirmed that the amino acid (aa) residues at 102 and 104 sites in GP5 played an important role in escaping from the neutralizing antibodies (NAbs) against highly pathogenic PRRSV (HP-PRRSV). In this study, we further analyzed the aa mutants affecting neutralization susceptibility of NAbs in other structure proteins in NAbs resistant variants. Methods Based on the different aa residues of the structural proteins between the resistant virus BB20s and the parent virus BB, 12 recombinant PRRSV strains containing these aa residue substitutions were constructed using reverse genetic techniques. The neutralizing antibody (NA) titers of the recombinant strains were tested on MARC-145 and porcine alveolar macrophages (PAMs). And the NAbs binding abilities of parent and rescued viruses were tested by using ELISA method. Results By using the neutralization assay, it was revealed that the NA titer of N4 serum with rBB/Ms was significantly lower than that with rBB. Meanwhile, NA titer of the serum with rBB20s/M was significantly higher than that with rBB20s. The ELISA binding results showed that rBB/Ms had higher binding inability to N4 than did rBB. And alignment of M protein revealed that the variant aa residue lysine (K) at 70 was also existed in field type 2 and vaccine PRRSV strains. Conclusions The aa residue at 70 in M protein of PRRSV played an important role in regulating neutralization susceptibility to the porcine serum NAbs. It may be helpful for monitoring the antigen variant strains in the field and developing new vaccine against PRRSV in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0505-7) contains supplementary material, which is available to authorized users.
Collapse
|
109
|
Lee SC, Choi HW, Nam E, Noh YH, Lee S, Lee YJ, Park GS, Shin JH, Yoon IJ, Kang SY, Lee C. Pathogenicity and genetic characteristics associated with cell adaptation of a virulent porcine reproductive and respiratory syndrome virus nsp2 DEL strain CA-2. Vet Microbiol 2016; 186:174-88. [PMID: 27016772 DOI: 10.1016/j.vetmic.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most common and world-widespread viral pathogen of swine. We previously reported genomic sequences and pathogenicity of type 2 Korean PRRSV strains belonging to the virulent lineage 1 family, which contain remarkable amino acid deletions in nonstructural protein 2 (nsp2 DEL) compared to VR-2332. Here, a virulent type 2 Korean PRRSV nsp2 DEL strain, CA-2, was serially propagated in MARC-145 cells for up to 100 passages (CA-2-P100). As the passage number increased, the phenotypic characteristics of cell-adapted CA-2 strains were altered, in terms of higher viral titers and larger plaque sizes compared to the parental virus. Pro-inflammatory cytokine genes, including TNF-α, IL-8, MCP-1, and MCP-2, were found to be significantly down-regulated in PAM cells with the CA-2-P100 strain compared to its parental nsp2 DEL virus. Animal inoculation studies demonstrated that the virulence of CA-2-P100 was reduced significantly, with showing normal weight gain, body temperatures, and lung lesions comparable to the control group. Furthermore, high-passage CA-2-P100 showed declined and transient viremia kinetics, as well as delayed and low PRRSV-specific antibody responses in infected pigs. In addition, we determined whole genome sequences of low to high-passage derivatives of CA-2. The nsp2 DEL pattern was conserved for 100 passages, whereas no other deletions or insertions arose during the cell adaptation process. However, CA-2-P100 possessed 54 random nucleotide substitutions that resulted in 27 amino acid changes distributed throughout the genome, suggesting that these genetic drifts provide a possible molecular basis correlated with the cell-adapted features in vitro and the attenuated phenotype in vivo. Taken together, our data indicate that the cell-attenuated CA-2-P100 strain is a promising candidate for developing a safe and effective live PRRSV vaccine.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hwan-Won Choi
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Eeuri Nam
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Yun-Hee Noh
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Sunhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoo Jin Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gun-Seok Park
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Joong Yoon
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Shien-Young Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
110
|
Eck M, Durán MG, Ricklin ME, Locher S, Sarraseca J, Rodríguez MJ, McCullough KC, Summerfield A, Zimmer G, Ruggli N. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs. Vet Res 2016; 47:33. [PMID: 26895704 PMCID: PMC4761149 DOI: 10.1186/s13567-016-0318-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Collapse
Affiliation(s)
- Melanie Eck
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland. .,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland.
| | - Margarita García Durán
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - Meret E Ricklin
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Samira Locher
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Javier Sarraseca
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - María José Rodríguez
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - Kenneth C McCullough
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland. .,Department of Infectious Disease and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001, Bern, Switzerland.
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| |
Collapse
|
111
|
Wang X, Marthaler D, Rovira A, Rossow S, Murtaugh MP. Emergence of a virulent porcine reproductive and respiratory syndrome virus in vaccinated herds in the United States. Virus Res 2015; 210:34-41. [DOI: 10.1016/j.virusres.2015.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
|
112
|
Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B, Renukaradhya GJ. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu Rev Anim Biosci 2015; 4:129-54. [PMID: 26646630 DOI: 10.1146/annurev-animal-022114-111025] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis, and control. Worldwide, PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic mechanisms, and host immunity, with a special focus on immune factors that modulate PRRSV infections during the acute and chronic/persistent disease phases. We address genetic control of host resistance and probe effects of PRRSV infection on reproductive traits. A major goal is to identify cellular/viral targets and pathways for designing more effective vaccines and therapeutics. Based on progress in viral reverse genetics, host transcriptomics and genomics, and vaccinology and adjuvant technologies, we have identified new areas for PRRS control and prevention. Finally, we highlight the gaps in our knowledge base and the need for advanced molecular and immune tools to stimulate PRRS research and field applications.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC ARS USDA, Beltsville, Maryland 20705;
| | - Ying Fang
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | - Andrea Ladinig
- University of Veterinary Medicine, Vienna 1210, Austria;
| | - Nanhua Chen
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , , .,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China;
| | - Yanhua Li
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | - Bob Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | | |
Collapse
|
113
|
Tian D, Ni YY, Zhou L, Opriessnig T, Cao D, Piñeyro P, Yugo DM, Overend C, Cao Q, Lynn Heffron C, Halbur PG, Pearce DS, Calvert JG, Meng XJ. Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs. Virology 2015; 485:402-13. [DOI: 10.1016/j.virol.2015.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
|
114
|
Chen Y, He S, Sun L, Luo Y, Sun Y, Xie J, Zhou P, Su S, Zhang G. Genetic variation, pathogenicity, and immunogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus strain XH-GD at different passage levels. Arch Virol 2015; 161:77-86. [PMID: 26483282 DOI: 10.1007/s00705-015-2597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/02/2015] [Indexed: 02/01/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases of swine worldwide. Immunization with an attenuated vaccine is considered an effective method for reducing the economic losses resulting from porcine reproductive and respiratory syndrome virus (PRRSV) infection. Several studies have shown that PRRSV can be attenuated by passage in Marc-145 cells, but it is still not clear whether this attenuation influences the immunogenicity of PRRSV and what the mechanism of attenuation is. In order to study the mechanism of attenuation and immunogenicity of highly pathogenic (HP) PRRSV, the HP-PRRSV strain XH-GD was serially 122 times passaged in Marc-145 cells. Genomic sequence comparisons were made at selected passages. To explore the differences in pathogenicity and immunogenicity at different passages, three passages (P5, P62 and P122) were selected for an animal challenge experiment, which showed that passage in Marc-145 cells resulted in attenuation of the virus. After 122 passages, 35 amino acid changes were observed in the structural proteins and non-structural proteins. The animal challenge experiment showed that pathogenicity decreased with increasing passage number. The N antibody level and specific neutralizing (SN) antibody titers also decreased with increasing passage number in the late stage of the animal experiment. This study indicated that the virulence of XH-GD was decreased by passage in Marc-145 cells and that overattenuation might influence the immunogenicity of virus. These results might contribute to our understanding of the mechanism of attenuation.
Collapse
Affiliation(s)
- Yao Chen
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Shuyi He
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Long Sun
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yongfeng Luo
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yankuo Sun
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Jiexiong Xie
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Pei Zhou
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Shuo Su
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Guihong Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
115
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
116
|
Zhang Q, Yoo D. PRRS virus receptors and their role for pathogenesis. Vet Microbiol 2015; 177:229-41. [PMID: 25912022 DOI: 10.1016/j.vetmic.2015.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 02/09/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is endemic in most pig producing countries worldwide and causes enormous economic losses to the swine industry. Specifically differentiated porcine alveolar macrophages are the primary target for PRRSV infection in pigs. At least six cellular molecules have been described so far as putative receptors for PRRSV, and they include heparan sulfate, vimentin, CD151, sialoadhesin (CD169; siglec-1), dendritic cell-specific intercellular adhesion melecule-3-grabbing non-integrin (DC-SIGN; CD209), and CD163 (SRCR, cysteine-rich scavenger receptor). Progress has been made to shed light on the interactions between cells and PRRSV, and this review describes the advances and current understanding of the entry of PRRSV to cells with a particular focus on the role of CD163 and sialoadhesin for infection and PRRSV pathogenesis. CD163 is most likely the primary and core receptor for PRRSV and determines the susceptibility of cells to the virus. Sialoadhesin is either unnecessary for infection or may function as an accessory protein. Sialoadhesin has been mostly studied for genotype I PRRSV whereas the utilization of CD163 has been mostly studied using genotype II PRRSV, and whether each genotype indeed utilizes a different receptor is unclear.
Collapse
Affiliation(s)
- Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
117
|
Broadly neutralizing antibodies against the rapidly evolving porcine reproductive and respiratory syndrome virus. Virus Res 2015; 203:56-65. [PMID: 25845944 DOI: 10.1016/j.virusres.2015.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022]
Abstract
Neutralizing antibodies are a critical part of the immune armory for defense against viruses, and the mechanism by which many effective vaccines work to protect against viral infections. However, infections by rapidly evolving and genetically diverse viruses are often characterized by ineffective neutralizing antibody responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly genetically diverse RNA virus that causes PRRS, the most significant disease of pigs worldwide. The prevailing view of immunity to PRRSV is characterized by delayed and ineffectual production of neutralizing antibodies lacking cross-reactivity that is necessary for vaccine efficacy. Using an ELISA-based neutralizing assay developed to analyze PRRSV growth in porcine alveolar macrophages, the naturally permissive cell of PRRSV, we showed that sera from previously infected commercial sows had high levels of neutralizing activity against diverse PRRSV strains, including across distinct genotypes of PRRSV. Fifty percent cross-neutralization titers in excess of 1/1024 were observed. Neutralizing activity was dose-dependent and was maintained in the immunoglobulin fraction. Presence of high-titer, anti-PRRSV antibody activity that cross-neutralizes diverse strains of virus has prompted reevaluation of the role of neutralizing antibodies for cross-protection against PRRSV under field conditions. Understanding conditions that favor development of cross-neutralizing activity will be crucial for improved strategies to enhance cross-protection against PRRSV. More detailed studies are expected to elucidate mechanisms of neutralizing antibody production and maturation and to investigate conserved epitope targets of cross-neutralization in this rapidly evolving virus.
Collapse
|
118
|
Chen JZ, Peng JM, Bai Y, Wang Q, Liu YM, Zhang QY, Chang D, Zhang WC, Zhao HY, Ye C, An TQ, Cai XH, Tian ZJ, Tong GZ. Characterization of two novel porcine reproductive and respiratory syndrome virus isolates with deletions in the GP2 gene. Vet Microbiol 2015; 176:344-51. [DOI: 10.1016/j.vetmic.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/15/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022]
|
119
|
Different clinical, virological, serological and tissue tropism outcomes of two new and one old Belgian type 1 subtype 1 porcine reproductive and respiratory virus (PRRSV) isolates. Vet Res 2015; 46:37. [PMID: 25885416 PMCID: PMC4367851 DOI: 10.1186/s13567-015-0166-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/18/2015] [Indexed: 12/02/2022] Open
Abstract
In this study, the pathogenic behavior of PRRSV 13V091 and 13V117, isolated in 2013 from two different Belgian farms with enzootic respiratory problems shortly after weaning in the nursery, were compared with the Belgian strain 07V063 isolated in 2007. Full-length genome sequencing was performed to identify their origin. Twelve weeks-old pigs were inoculated intranasally (IN) with 13V091, 13V117 or 07V063 (9 pigs/group). At 10 days post inoculation (dpi), 4 animals from each group were euthanized and tissues were collected for pathology, virological and serological analysis. 13V091 infection resulted in the highest respiratory disease scores and longest period of fever. Gross lung lesions were more pronounced for 13V091 (13%), than for 13V117 (7%) and 07V063 (11%). The nasal shedding and viremia was also most extensive with 13V091. The 13V091 group showed the highest virus replication in conchae, tonsils and retropharyngeal lymph nodes. 13V117 infection resulted in the lowest virus replication in lymphoid tissues. 13V091 showed higher numbers of sialoadhesin− infected cells/mm2 in conchae, tonsils and spleen than 13V117 and 07V063. Neutralizing antibody response with 07V063 was stronger than with 13V091 and 13V117. It can be concluded that (i) 13V091 is a highly pathogenic type 1 subtype 1 PRRSV strain that replicates better than 07V063 and 13V117 and has a strong tropism for sialoadhesin− cells and (ii) despite the close genetic relationship between 13V117 and 07V063, 13V117 has an increased nasal replication and shedding, but a decreased replication in lymphoid tissues compared to 07V063.
Collapse
|
120
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide. Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
121
|
PRRSV receptors and their roles in virus infection. Arch Microbiol 2015; 197:503-12. [PMID: 25666932 DOI: 10.1007/s00203-015-1088-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted cell tropism and prefers to invade well-differentiated cells of the monocyte/macrophage lineage, such as pulmonary alveolar macrophages and African green monkey kidney cell line MA-104 and its derivatives, such as Marc-145, Vero and CL-2621. PRRSV infection of the host cells actually is a receptor-mediated endocytosis and replication process. The presence and absence of the cellular receptors decide whether the cell lines are permissive or non-permissive to PRRSV infection. Several PRRSV non-permissive cell lines, such as BHK-21, PK-15 and CHO-K1, have been shown to become sensitive to the virus infection upon expression of the recombinant receptor proteins. Up to now, heparin sulfate, sialoadhesin, CD163, CD151 and vimentin have been identified as the important PRRSV receptors via their involvement in virus attachment, internalization or uncoating. Each receptor is characterized by the distribution in different cells, the function in virus different infection stages and the interaction model with the viral proteins or genes. Joint forces of the receptors recently attract attentions due to the specific function. PRRSV receptors have become the targets for designing the new anti-viral reagents or the recombinant cell lines used for isolating the viruses or developing more effective vaccines due to their more conserved sequences compared with the genetic variation of the virus. In this paper, the role of PRRSV receptors and the molecular mechanism of the interaction between the virus and the receptors are reviewed.
Collapse
|
122
|
Li J, Murtaugh MP. Functional analysis of porcine reproductive and respiratory syndrome virus N-glycans in infection of permissive cells. Virology 2015; 477:82-88. [PMID: 25662311 DOI: 10.1016/j.virol.2015.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
Abstract
The role of envelope protein-linked N-glycans in porcine reproductive and respiratory syndrome virus (PRRSV) infection of permissive cells was examined. N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) oligomer-specific lectins bound to PRRSV and blocked virus attachment, resulting in reduced viral infection. However, addition of GlcNAc oligomers and LacNAc to cell culture together with PRRSV did not block infection. Removal or alteration of envelope protein-linked N-glycans also did not affect virus infection, indicating that PRRSV N-glycans are not required for virus infection. These findings show that steric hindrance of glycans on the PRRSV envelope by lectins or, presumably, other space-filling molecules, may interfere nonspecifically with infection by blocking protein interactions with cell surface receptors. Glycans themselves appear not to be required for infection of permissive cells, but may have important roles in avoidance of host immunity and in protein structure, intracellular virion growth and assembly.
Collapse
Affiliation(s)
- Juan Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
123
|
Caì Y, Postnikova EN, Bernbaum JG, Yú SQ, Mazur S, Deiuliis NM, Radoshitzky SR, Lackemeyer MG, McCluskey A, Robinson PJ, Haucke V, Wahl-Jensen V, Bailey AL, Lauck M, Friedrich TC, O'Connor DH, Goldberg TL, Jahrling PB, Kuhn JH. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway. J Virol 2015; 89:844-56. [PMID: 25355889 PMCID: PMC4301170 DOI: 10.1128/jvi.02697-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.
Collapse
Affiliation(s)
- Yíngyún Caì
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - John G Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Shu Qìng Yú
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Steven Mazur
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Nicole M Deiuliis
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Matthew G Lackemeyer
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Adam McCluskey
- Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Victoria Wahl-Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Adam L Bailey
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Michael Lauck
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Tony L Goldberg
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
124
|
Sun L, Zhou Y, Liu R, Li Y, Gao F, Wang X, Fan H, Yuan S, Wei Z, Tong G. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability. Virus Res 2014; 197:17-25. [PMID: 25499299 DOI: 10.1016/j.virusres.2014.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 11/27/2022]
Abstract
ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30.
Collapse
Affiliation(s)
- Lichang Sun
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, PR China
| | - Yan Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Runxia Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanhua Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaomin Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hongjie Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, PR China
| | - Shishan Yuan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Zuzhang Wei
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; College of Animal Science and Technology, Guangxi University, Nanning 530005, PR China.
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
125
|
Chen N, Dekkers JCM, Ewen CL, Rowland RRR. Porcine reproductive and respiratory syndrome virus replication and quasispecies evolution in pigs that lack adaptive immunity. Virus Res 2014; 195:246-9. [PMID: 25451069 DOI: 10.1016/j.virusres.2014.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/01/2022]
Abstract
The replication of porcine reproductive and respiratory syndrome virus (PRRSV) was studied in a line of pigs possessing a severe combined immunodeficiency (SCID). Real-time RT-PCR revealed a unique course of infection for the SCID group. During the course of infection, viremia was initially significantly lower than normal littermates, but by 21 days was significantly elevated. Deep sequencing of the viral structural genes at days 11 and 21 identified seven amino acid substitutions in both normal and SCID pigs. The most significant change was a W99R substitution in GP2, which was present in the inoculum at a frequency of 35%, but eventually disappeared from all pigs regardless of immune status. Therefore, amino acid substitutions that appear during acute infection are likely the result of the adaptation of the virus to replication in pigs and not immune selection.
Collapse
Affiliation(s)
- Nanhua Chen
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, United States
| | - Catherine L Ewen
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
126
|
Veit M, Matczuk AK, Sinhadri BC, Krause E, Thaa B. Membrane proteins of arterivirus particles: structure, topology, processing and function. Virus Res 2014; 194:16-36. [PMID: 25278143 PMCID: PMC7172906 DOI: 10.1016/j.virusres.2014.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Arteriviruses are important pathogens in veterinary medicine. We review the structure and processing of their membrane proteins. Some features are unique from a cell biological point of view. New data on this topic are also presented. We speculate on the role of the membrane proteins during virus entry and budding.
Arteriviruses, such as equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV), are important pathogens in veterinary medicine. Despite their limited genome size, arterivirus particles contain a multitude of membrane proteins, the Gp5/M and the Gp2/3/4 complex, the small and hydrophobic E protein and the ORF5a protein. Their function during virus entry and budding is understood only incompletely. We summarize current knowledge of their primary structure, membrane topology, (co-translational) processing and intracellular targeting to membranes of the exocytic pathway, which are the budding site. We profoundly describe experimental data that led to widely believed conceptions about the function of these proteins and also report new results about processing steps for each glycoprotein. Further, we depict the location and characteristics of epitopes in the membrane proteins since the late appearance of neutralizing antibodies may lead to persistence, a characteristic hallmark of arterivirus infection. Some molecular features of the arteriviral proteins are rare or even unique from a cell biological point of view, particularly the prevention of signal peptide cleavage by co-translational glycosylation, discovered in EAV-Gp3, and the efficient use of overlapping sequons for glycosylation. This article reviews the molecular mechanisms of these cellular processes. Based on this, we present hypotheses on the structure and variability of arteriviral membrane proteins and their role during virus entry and budding.
Collapse
Affiliation(s)
- Michael Veit
- Institut für Virologie, Veterinärmedizin, Freie Universität Berlin, Germany.
| | | | | | - Eberhard Krause
- Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Bastian Thaa
- Institut für Virologie, Veterinärmedizin, Freie Universität Berlin, Germany
| |
Collapse
|
127
|
Identification of two dominant linear epitopes on the GP3 protein of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). Res Vet Sci 2014; 97:238-43. [PMID: 25135493 DOI: 10.1016/j.rvsc.2014.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/30/2014] [Accepted: 07/20/2014] [Indexed: 10/24/2022]
Abstract
Glycosylated protein 3 (GP3) of PRRSV is variable between different PRRSV strains, so it is helpful for subtype classifying by using distinct epitopes. In this study, two dominant linear GP3 epitopes that were recognized by highly dilute serum in an enzyme-linked immunosorbent assay (ELISA) were identified. Sequence alignments of 36 North American (NA) PRRSV isolates revealed that the epitope H(87)DELGFMV(94) is well conserved, whereas the epitope T(59)RQAAAEILE(68) differs in other low-virulence NA-type strains, which have at least one amino acid mutation in this region. A mutational analysis revealed that none of these mutations could be recognized by the purified antibodies directed against the corresponding epitope, indicating that the genetic variations altered the antigenicity of the antigenic region. Using ELISA, we also found that antibodies directed against the two epitopes were present in more than 45 of 50 HP-PRRS-positive pig sera, suggesting that their antigenicity is excellent in vivo.
Collapse
|
128
|
Vatter HA, Di H, Donaldson EF, Baric RS, Brinton MA. Each of the eight simian hemorrhagic fever virus minor structural proteins is functionally important. Virology 2014; 462-463:351-62. [PMID: 25036340 DOI: 10.1016/j.virol.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022]
Abstract
The simian hemorrhagic fever virus (SHFV) genome differs from those of other members of the family Arterivirus in encoding two adjacent sets of four minor structural protein open reading frames (ORFs). A stable, full-length, infectious SHFV-LVR cDNA clone was constructed. Virus produced from this clone had replication characteristics similar to those of the parental virus. A subgenomic mRNA was identified for the SHFV ORF previously identified as 2b. As an initial means of analyzing the functional relevance of each of the SHFV minor structural proteins, a set of mutant infectious clones was generated, each with the start codon of one minor structural protein ORF mutated. Different phenotypes were observed for each ortholog of the pairs of minor glycoproteins and all of the eight minor structural proteins were required for the production of infectious extracellular virus indicating that the duplicated sets of SHFV minor structural proteins are not functionally redundant.
Collapse
Affiliation(s)
- Heather A Vatter
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Eric F Donaldson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
129
|
Attenuation and immunogenicity of a live high pathogenic PRRSV vaccine candidate with a 32-amino acid deletion in the nsp2 protein. J Immunol Res 2014; 2014:810523. [PMID: 25009824 PMCID: PMC4070328 DOI: 10.1155/2014/810523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) QY1 was serially passed on Marc-145 cells. Virulence of different intermediate derivatives of QY1 (P5, P60, P80, and P100) were determined. The study found that QY1 had been gradually attenuated during the in vitro process. Pathogenicity study showed that pigs inoculated with QY1 P100 and P80 did not develop any significant PRRS clinic symptoms. However, mild-to-moderate clinical signs and acute HP-PRRSV symptoms of infection were observed in pigs inoculated with QY1 P60 and P5, respectively. Furthermore, we determined the whole genome sequences of these four intermediate viruses. The results showed that after 100 passages, compared to QY1 P5, a total of 32 amino acid mutations were found. Moreover, there were one nucleotide deletion and a unique 34-amino acid deletion found at 5′UTR and in nsp2 gene during the attenuation process, respectively. Such deletions were genetically stable in vivo. Following PRRSV experimental challenge, pigs inoculated with a single dose of QY1 P100 developed no significant clinic symptoms and well tolerated lethal challenge, while QY1 P80 group still developed mild fever in the clinic trial after challenge. Thus, we concluded that QY1 P100 was a promising and highly attenuated PRRSV vaccine candidate.
Collapse
|
130
|
Yun SI, Lee YM. Overview: Replication of porcine reproductive and respiratory syndrome virus. J Microbiol 2013; 51:711-23. [PMID: 24385346 PMCID: PMC7091224 DOI: 10.1007/s12275-013-3431-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| |
Collapse
|
131
|
Karuppannan AK, Qiang J, Chang CC, Kwang J. A novel baculovirus vector shows efficient gene delivery of modified porcine reproductive and respiratory syndrome virus antigens and elicits specific immune response. Vaccine 2013; 31:5471-8. [PMID: 24035590 DOI: 10.1016/j.vaccine.2013.08.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 01/19/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating epizootic of porcine species. Current vaccines are inadequate to control the disease burden and outbreaks in the field. We report a novel baculovirus vaccine vector with White spot syndrome virus immediate early 1 shuttle promoter, with strong activity in both insect cells and mammalian cells, for immunization against PRRSV. The insect cell cultured baculovirus vector produces PRRSV envelope glycoproteins ORF2a, ORF3, ORF4 and ORF5, which are similar to the antigens in the infectious PRRS virion, and these antigens are stably incorporated on the surface of the baculovirus. Further, the baculovirus vector efficiently transduces these antigens in cells of porcine origin, thereby simulating a live infection. The baculovirus vectored PRRSV antigens, upon inoculation in mice, elicits robust neutralizing antibodies against the infective PRRS virus. Further, the experiments indicate that hitherto under emphasized ORF2a and ORF4 are important target antigens for neutralizing PRRSV infectivity.
Collapse
Affiliation(s)
- Anbu K Karuppannan
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai 600051, India
| | | | | | | |
Collapse
|
132
|
Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): portals for porcine reproductive and respiratory syndrome virus entry into target cells. J Gen Virol 2013; 94:1955-1960. [DOI: 10.1099/vir.0.053082-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acid-binding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest – in combination with other published data – that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.
Collapse
|
133
|
Nguyen VG, Kim HK, Moon HJ, Park SJ, Chung HC, Choi MK, Park BK. Evolutionary Dynamics of a Highly Pathogenic Type 2 Porcine Reproductive and Respiratory Syndrome Virus: Analyses of Envelope Protein-Coding Genes. Transbound Emerg Dis 2013; 62:411-20. [PMID: 23981823 DOI: 10.1111/tbed.12154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has long been an economically devastating swine viral disease. The recent emergence of a highly pathogenic type 2 PRRSV with high mobility and mortality in China, spreading in Vietnam, Laos, and Thailand has placed neighbouring countries at risk. This study applied a codon-based extension of the Bayesian relaxed clock model and the fixed effects maximum-likelihood method to investigate and compare the evolutionary dynamics of type 2 PRRSV for all of known structural envelope protein-coding genes. By comparing the highly pathogenic type 2 PRRSV clade against the typical type 2 PRRSV clade, this study demonstrated that the highly pathogenic clade evolved at high rates in all of the known structural genes but did not display rapid evolutionary dynamics compared with typical type 2 PRRSV. In contrast, the ORF3, ORF5 and ORF6 genes of the highly pathogenic clade evolved in a qualitatively different manner from the genes of the typical clade. At the population level, several codons of the sequence elements that were involved in viral neutralization, as well as codons that were associated with in vitro attenuation/over-attenuation, were predicted to be selected differentially between the typical clade and the highly pathogenic clade. The results of this study suggest that the multigenic factors of the envelope protein-coding genes contribute to diversifying the biological properties (virulence, antigenicity, etc.) of the highly pathogenic clade compared with the typical clade of type 2 PRRSV.
Collapse
Affiliation(s)
- V G Nguyen
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Hanoi University of Agriculture, Hanoi, Vietnam
| | - H K Kim
- Research Evaluation Team, Institute for Basic Science, Daejeon, Korea
| | - H J Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - S J Park
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - H C Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - M K Choi
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - B K Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
134
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
135
|
Kim DG, Song CS, Choi IS, Park SY, Lee JB, Lee SS. The signal sequence of type II porcine reproductive and respiratory syndrome virus glycoprotein 3 is sufficient for endoplasmic reticulum retention. J Vet Sci 2013; 14:307-13. [PMID: 23820208 PMCID: PMC3788156 DOI: 10.4142/jvs.2013.14.3.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/15/2012] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein 3 (GP3) of type II porcine reproductive and respiratory syndrome virus has the characteristic domains of a membrane protein. However, this protein has been reported to be retained in the endoplasmic reticulum (ER) rather than transported to the plasma membrane of the cell. In this study, we performed confocal laser scanning microscopy analysis of variants of GP3 and foundthat the signal sequence of the GP3 led to confinement of GP3 in the ER, while the functional ortransmembrane domain did not affect its localization. Based on these results, we concludedthat the signal sequence of GP3 contains the ER retention signal, which might play an important role in assembly of viral proteins.
Collapse
Affiliation(s)
- Do-Geun Kim
- Department of Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
136
|
Zhou L, Ni YY, Piñeyro P, Cossaboom CM, Subramaniam S, Sanford BJ, Dryman BA, Huang YW, Meng XJ. Broadening the heterologous cross-neutralizing antibody inducing ability of porcine reproductive and respiratory syndrome virus by breeding the GP4 or M genes. PLoS One 2013; 8:e66645. [PMID: 23826108 PMCID: PMC3691207 DOI: 10.1371/journal.pone.0066645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens, which causes reproductive failure in sows and respiratory disease in piglets. A major hurdle to control PRRSV is the ineffectiveness of the current vaccines to confer protection against heterologous strains. Since both GP4 and M genes of PRRSV induce neutralizing antibodies, in this study we molecularly bred PRRSV through DNA shuffling of the GP4 and M genes, separately, from six genetically different strains of PRRSV in an attempt to identify chimeras with improved heterologous cross-neutralizing capability. The shuffled GP4 and M genes libraries were each cloned into the backbone of PRRSV strain VR2385 infectious clone pIR-VR2385-CA. Three GP4-shuffled chimeras and five M-shuffled chimeras, each representing sequences from all six parental strains, were selected and further characterized in vitro and in pigs. These eight chimeric viruses showed similar levels of replication with their backbone strain VR2385 both in vitro and in vivo, indicating that the DNA shuffling of GP4 and M genes did not significantly impair the replication ability of these chimeras. Cross-neutralization test revealed that the GP4-shuffled chimera GP4TS14 induced significantly higher cross-neutralizing antibodies against heterologous strains FL-12 and NADC20, and similarly that the M-shuffled chimera MTS57 also induced significantly higher levels of cross-neutralizing antibodies against heterologous strains MN184B and NADC20, when compared with their backbone parental strain VR2385 in infected pigs. The results suggest that DNA shuffling of the GP4 or M genes from different parental viruses can broaden the cross-neutralizing antibody-inducing ability of the chimeric viruses against heterologous PRRSV strains. The study has important implications for future development of a broadly protective vaccine against PRRSV.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Yan-Yan Ni
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Pablo Piñeyro
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Caitlin M. Cossaboom
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Brenton J. Sanford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Barbara A. Dryman
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Yao-Wei Huang
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| |
Collapse
|
137
|
Abstract
SIGNIFICANCE The hemoglobin (Hb) scavenger receptor, CD163, is a macrophage-specific protein and the upregulated expression of this receptor is one of the major changes in the macrophage switch to alternative activated phenotypes in inflammation. Accordingly, a high CD163 expression in macrophages is a characteristic of tissues responding to inflammation. The scavenging of the oxidative and proinflammatory Hb leading to stimulation of the heme-oxygenase-1 and production of anti-inflammatory heme metabolites indicates that CD163 thereby indirectly contributes to the anti-inflammatory response. RECENT ADVANCES In addition to this biological role in inflammation, CD163 is a potential inflammation biomarker and a therapeutic target. The biomarker form of CD163 is the soluble plasma CD163 that arises from the increased shedding of CD163 mediated by the tumor necrosis factor-α (TNF-α) cleaving enzyme. This explains that a steadily increasing literature documents that the plasma level of soluble CD163 is increased in a large spectrum of acute and chronic inflammatory disorders. The nonshed membrane form of CD163 in macrophages constitutes a target for drugs to be directed to macrophages in inflammation. This approach has been used in an animal inflammation model to highly increase the apparent therapeutic index of anti-inflammatory glucocorticoid drug that was coupled to an anti-CD163 antibody. Furthermore, other recent animal data, which indirectly involve CD163 in macrophages, demonstrate that injections of haptoglobin attenuate Hb-induced damages after blood transfusion. CRITICAL ISSUES AND FUTURE DIRECTIONS The diagnostic and therapeutic properties of CD163 await further clinical studies and regulatory approval before implementation in the clinic.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers/metabolism
- Gene Expression Regulation
- Haptoglobins/metabolism
- Hemoglobins/metabolism
- Humans
- Inflammation/diagnosis
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/therapy
- Macrophages/drug effects
- Macrophages/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Anders Etzerodt
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Søren K. Moestrup
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
138
|
Thaa B, Sinhadri BC, Tielesch C, Krause E, Veit M. Signal peptide cleavage from GP5 of PRRSV: a minor fraction of molecules retains the decoy epitope, a presumed molecular cause for viral persistence. PLoS One 2013; 8:e65548. [PMID: 23755249 PMCID: PMC3675037 DOI: 10.1371/journal.pone.0065548] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the major pathogen in the pig industry. Variability of the antigens and persistence are the biggest challenges for successful control and elimination of the disease. GP5, the major glycoprotein of PRRSV, is considered an important target of neutralizing antibodies, which however appear only late in infection. This was attributed to the presence of a “decoy epitope” located near a hypervariable region of GP5. This region also harbors the predicted signal peptide cleavage sites and (dependent on the virus strain) a variable number of potential N-glycosylation sites. Molecular processing of GP5 has not been addressed experimentally so far: whether and where the signal peptide is cleaved and (as a consequence) whether the “decoy epitope” is present in virus particles. We show that the signal peptide of GP5 from the American type 2 reference strain VR-2332 is cleaved, both during in vitro translation in the presence of microsomes and in transfected cells. This was found to be independent of neighboring glycosylation sites and occurred in a variety of porcine cells for GP5 sequences derived from various type 2 strains. The exact signal peptide cleavage site was elucidated by mass spectrometry of virus-derived and recombinant GP5. The results revealed that the signal peptide of GP5 is cleaved at two sites. As a result, a mixture of GP5 proteins exists in virus particles, some of which still contain the “decoy epitope” sequence. Heterogeneity was also observed for the use of glycosylation sites in the hypervariable region. Lastly, GP5 mutants were engineered where one of the signal peptide cleavage sites was blocked. Wildtype GP5 exhibited exactly the same SDS-PAGE mobility as the mutant that is cleavable at site 2 only. This indicates that the overwhelming majority of all GP5 molecules does not contain the “decoy epitope”.
Collapse
Affiliation(s)
- Bastian Thaa
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | | | - Claudia Tielesch
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Michael Veit
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
139
|
Genomic sequencing reveals mutations potentially related to the overattenuation of a highly pathogenic porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:613-9. [PMID: 23408525 DOI: 10.1128/cvi.00672-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) continues to evolve when serially passaged in Marc-145 cells. In this study, we analyzed the genomic and antigenic variants of HP-PRRSV strain JXA1 during in vitro passage. Protective efficacies of JXA1 from passages 100, 110, 120, 140, and 170 against the high-virulence parental virus were evaluated by inoculating pigs with each of these viruses and then challenging with JXA1 from passage 5 at 28 days postimmunization. We found that the antigenicities of JXA1 from passages after 110 were significantly reduced. Inoculation with JXA1 from passages after 110 provided only insufficient protection against the parental strain challenge, indicating that the immunogenicity of JXA1 is significantly decreased when it is in vitro passaged for 110 times and more. To identify the genomic variants that emerged during the overattenuation, eight complete genomes of highly passaged JXA1 were sequenced. One guanine deletion in the 5' untranslated region (UTR), two nucleotide substitutions in the 3' UTR, and 65 amino acid mutations in nonstructural and structural proteins that accompanied with the attenuation and overattenuation were determined. Genomic sequencing of in vitro serially passaged HP-PRRSV first identified the mutations potentially correlated with the overattenuation of a HP-PRRSV strain. These results facilitate the research aimed at elucidating the mechanisms for PRRSV genomic and antigenic changes and may also contribute to developing a safe and effective PRRSV vaccine.
Collapse
|
140
|
Hu J, Zhang C. Porcine reproductive and respiratory syndrome virus vaccines: current status and strategies to a universal vaccine. Transbound Emerg Dis 2013; 61:109-20. [PMID: 23343057 DOI: 10.1111/tbed.12016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 12/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, the most significant infectious disease currently affecting swine industry worldwide. In the United States alone, the economic losses caused by PRRS amount to more than 560 million US dollars every year. Due to immune evasion strategies and the antigenic heterogeneity of the virus, current commercial PRRSV vaccines (killed-virus and modified-live vaccines) are of unsatisfactory efficacy, especially against heterologous infection. Continuous efforts have been devoted to develop better PRRSV vaccines. Experimental PRRSV vaccines, including live attenuated vaccines, recombinant vectors expressing PRRSV viral proteins, DNA vaccines and plant-made subunit vaccines, have been developed. However, the genetic and antigenic heterogeneity of the virus limits the value of almost all of the PRRSV vaccines tested. Developing a universal vaccine that can provide broad protection against circulating PRRSV strains has become a major challenge for current vaccine development. This paper reviews current status of PRRSV vaccine development and discusses strategies to develop a universal PRRSV vaccine.
Collapse
Affiliation(s)
- J Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
141
|
Provost C, Jia JJ, Music N, Lévesque C, Lebel MÈ, del Castillo JRE, Jacques M, Gagnon CA. Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line. Virol J 2012; 9:267. [PMID: 23148668 PMCID: PMC3546013 DOI: 10.1186/1743-422x-9-267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.
Collapse
Affiliation(s)
- Chantale Provost
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine (CRIP), Faculté de médecine vétérinaire Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, J2S 7C6, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol 2012; 87:372-83. [PMID: 23077311 DOI: 10.1128/jvi.02305-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.
Collapse
|
143
|
Li J, Murtaugh MP. Dissociation of porcine reproductive and respiratory syndrome virus neutralization from antibodies specific to major envelope protein surface epitopes. Virology 2012; 433:367-76. [PMID: 22981434 DOI: 10.1016/j.virol.2012.08.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 06/09/2012] [Accepted: 08/17/2012] [Indexed: 12/19/2022]
Abstract
Glycoprotein 5 (GP5) and membrane (M) protein are the major proteins in the envelope of porcine reproductive and respiratory syndrome virus (PRRSV). Although viral neutralization epitopes are reported in GP5 and M of type 2 PRRSV, their significance as targets of porcine humoral immunity is not well described. Thus, we constructed recombinant polypeptides containing ectodomain neutralization epitopes to examine their involvement in porcine antibody neutralization and antiviral immunity. PRRSV infection elicited ectodomain-specific antibodies, whose titers did not correlate with the neutralizing antibody (NA) response. Ectodomain-specific antibodies from PRRSV-neutralizing serum bound virus but did not neutralize infectivity. Furthermore, immunization of pigs with ectodomain polypeptides raised specific antibodies and provided partial protection without a detectable NA response. Finally the polypeptides did not block infection of porcine macrophages. These results suggest that the GP5/M ectodomain peptide epitopes are accessible for host antibody recognition, but are not associated with antibody-mediated virus neutralization.
Collapse
Affiliation(s)
- Juan Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
144
|
Dinh PX, Panda D, Das PB, Das SC, Das A, Pattnaik AK. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Virology 2012; 432:460-9. [PMID: 22832124 DOI: 10.1016/j.virol.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 05/25/2012] [Accepted: 07/03/2012] [Indexed: 12/19/2022]
Abstract
Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.
Collapse
Affiliation(s)
- Phat X Dinh
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, USA
| | | | | | | | | | | |
Collapse
|
145
|
Effect of the host cell line on the vaccine efficacy of an attenuated porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2012; 148:116-25. [DOI: 10.1016/j.vetimm.2012.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
146
|
Wei Z, Tian D, Sun L, Lin T, Gao F, Liu R, Tong G, Yuan S. Influence of N-linked glycosylation of minor proteins of porcine reproductive and respiratory syndrome virus on infectious virus recovery and receptor interaction. Virology 2012; 429:1-11. [DOI: 10.1016/j.virol.2012.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 12/31/2011] [Accepted: 03/07/2012] [Indexed: 01/27/2023]
|
147
|
Arterivirus minor envelope proteins are a major determinant of viral tropism in cell culture. J Virol 2012; 86:3701-12. [PMID: 22258262 DOI: 10.1128/jvi.06836-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Arteriviruses are enveloped positive-strand RNA viruses for which the attachment proteins and cellular receptors have remained largely controversial. Arterivirus particles contain at least eight envelope proteins, an unusually large number among RNA viruses. These appear to segregate into three groups: major structural components (major glycoprotein GP5 and membrane protein [M]), minor glycoproteins (GP2a, GP3, and GP4), and small hydrophobic proteins (E and the recently discovered ORF5a protein). Biochemical studies previously suggested that the GP5-M heterodimer of porcine reproductive and respiratory syndrome virus (PRRSV) interacts with porcine sialoadhesin (pSn) in porcine alveolar macrophages (PAM). However, another study proposed that minor protein GP4, along with GP2a, interacts with CD163, another reported cellular receptor for PRRSV. In this study, we provide genetic evidence that the minor envelope proteins are the major determinant of arterivirus entry into cultured cells. A PRRSV infectious cDNA clone was equipped with open reading frames (ORFs) encoding minor envelope and E proteins of equine arteritis virus (EAV), the only known arterivirus displaying a broad tropism in cultured cells. Although PRRSV and EAV are only distantly related and utilize diversified transcription-regulating sequences (TRSs), a viable chimeric progeny virus was rescued. Strikingly, this chimeric virus (vAPRRS-EAV2ab34) acquired the broad in vitro cell tropism of EAV, demonstrating that the minor envelope proteins play a critical role as viral attachment proteins. We believe that chimeric arteriviruses of this kind will be a powerful tool for further dissection of the arterivirus replicative cycle, including virus entry, subgenomic RNA synthesis, and virion assembly.
Collapse
|
148
|
Du Y, Pattnaik AK, Song C, Yoo D, Li G. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology 2012; 424:18-32. [PMID: 22222209 PMCID: PMC7111931 DOI: 10.1016/j.virol.2011.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/22/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.
Collapse
Affiliation(s)
- Yijun Du
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
149
|
Cellular poly(c) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication. J Virol 2011; 85:12939-49. [PMID: 21976648 DOI: 10.1128/jvi.05177-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine results in substantial economic losses to the swine industry worldwide. Identification of cellular factors involved in PRRSV life cycle not only will enable a better understanding of virus biology but also has the potential for the development of antiviral therapeutics. The PRRSV nonstructural protein 1 (nsp1) has been shown to be involved in at least two important functions in the infected hosts: (i) mediation of viral subgenomic (sg) mRNA transcription and (ii) suppression of the host's innate immune response mechanisms. To further our understanding of the role of the viral nsp1 in these processes, using nsp1β, a proteolytically processed functional product of nsp1 as bait, we have identified the cellular poly(C)-binding proteins 1 and 2 (PCBP1 and PCBP2) as two of its interaction partners. The interactions of PCBP1 and PCBP2 with nsp1β were confirmed both by coimmunoprecipitation in infected cells and/or in plasmid-transfected cells and also by in vitro binding assays. During PRRSV infection of MARC-145 cells, the cytoplasmic PCBP1 and PCBP2 partially colocalize to the viral replication-transcription complexes. Furthermore, recombinant purified PCBP1 and PCBP2 were found to bind the viral 5' untranslated region (5'UTR). Small interfering RNA (siRNA)-mediated silencing of PCBP1 and PCBP2 in cells resulted in significantly reduced PRRSV genome replication and transcription without adverse effect on initial polyprotein synthesis. Overall, the results presented here point toward an important role for PCBP1 and PCBP2 in regulating PRRSV RNA synthesis.
Collapse
|
150
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|