101
|
Picarelli MASC, Gobatto D, Patrício F, Rivas EB, Colariccio A. Vírus que infectam fungos fitopatogênicos. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000162016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO: Micovírus são vírus que infectam todos os taxa de fungos. São geralmente crípticos (latentes), mas podem causar pequenas ou imperceptíveis alterações no hospedeiro. Nos fungos fitopatogênicos, os vírus podem interferir com os sintomas e, em alguns casos, reduzir a virulência de seu hospedeiro; por esta razão, são objeto de estudo, por serem um potencial agente de biocontrole e por serem ferramentas importantes para o conhecimento sobre os mecanismos de patogênese de fungos. A presente revisão teve o objetivo de reunir os dados de literatura relacionados aos aspectos gerais da biologia e do comportamento dos micovírus presentes em alguns fungos fitopatogênicos.
Collapse
|
102
|
Pandey B, Naidu RA, Grove GG. Detection and analysis of mycovirus-related RNA viruses from grape powdery mildew fungus Erysiphe necator. Arch Virol 2018; 163:1019-1030. [PMID: 29356991 DOI: 10.1007/s00705-018-3714-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
The fungus, Erysiphe necator Schw., is an important plant pathogen causing powdery mildew disease in grapevines worldwide. In this study, high-throughput sequencing of double-stranded RNA extracted from the fungal tissue combined with bioinformatics was used to examine mycovirus-related sequences associated with E. necator. The results showed the presence of eight mycovirus-related sequences. Five of these sequences representing three new mycoviruses showed alignment with sequences of viruses classified in the genus Alphapartitivirus in the family Partitiviridae. Another three sequences representing three new mycoviruses showed similarity to classifiable members of the genus Mitovirus in the family Narnaviridae. These mycovirus isolates were named Erysiphe necator partitivirus 1, 2, and 3 (EnPV 1-3) and Erysiphe necator mitovirus 1, 2, and 3 (EnMV 1-3) reflecting their E. necator origin and their phylogenetic affiliation with other mycoviruses.
Collapse
Affiliation(s)
- B Pandey
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, USA. .,Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58102, USA.
| | - R A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, USA
| | - G G Grove
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, USA
| |
Collapse
|
103
|
Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D. Virome Characterization of a Collection of S. sclerotiorum from Australia. Front Microbiol 2018; 8:2540. [PMID: 29375495 PMCID: PMC5768646 DOI: 10.3389/fmicb.2017.02540] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Sclerotinia sclerotiorum is a devastating plant pathogen that attacks numerous economically important broad acre and vegetable crops worldwide. Mycoviruses are widespread viruses that infect fungi, including S. sclerotiorum. As there were no previous reports of the presence of mycoviruses in this pathogen in Australia, studies were undertaken using RNA_Seq analysis to determine the diversity of mycoviruses in 84 Australian S. sclerotiorum isolates collected from various hosts. After RNA sequences were subjected to BLASTp analysis using NCBI database, 285 contigs representing partial or complete genomes of 57 mycoviruses were obtained, and 34 of these (59.6%) were novel viruses. These 57 viruses were grouped into 10 distinct lineages, namely Endornaviridae (four novel mycoviruses), Genomoviridae (isolate of SsHADV-1), Hypoviridae (two novel mycoviruses), Mononegavirales (four novel mycovirusess), Narnaviridae (10 novel mycoviruses), Partitiviridae (two novel mycoviruses), Ourmiavirus (two novel mycovirus), Tombusviridae (two novel mycoviruses), Totiviridae (one novel mycovirus), Tymovirales (five novel mycoviruses), and two non-classified mycoviruses lineages (one Botrytis porri RNA virus 1, one distantly related to Aspergillus fumigatus tetramycovirus-1). Twenty-five mitoviruses were determined and mitoviruses were dominant in the isolates tested. This is not only the first study to show existence of mycoviruses in S. sclerotiorum in Australia, but highlights how they are widespread and that many novel mycoviruses occur there. Further characterization of these mycoviruses is warranted, both in terms of exploring these novel mycoviruses for innovative biocontrol of Sclerotinia diseases and in enhancing our overall knowledge on viral diversity, taxonomy, ecology, and evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Pei You
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Martin J. Barbetti
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
104
|
A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res 2018; 244:75-83. [DOI: 10.1016/j.virusres.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
|
105
|
Shimura H, Masuta C, Koda Y. Metagenomic Analyses of the Viruses Detected in Mycorrhizal Fungi and Their Host Orchid. Methods Mol Biol 2018; 1746:161-172. [PMID: 29492893 DOI: 10.1007/978-1-4939-7683-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, mycorrhizal association with soilborne fungi is indispensable for orchid families. Fungal structures from compatible endo-mycorrhizal fungi in orchid cells are digested in cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until shoots develop (leaves) and become photoautotrophic. Seeds of all orchid species surely geminate with the help of their own fungal partners, and this specific partnership has been acquired for a long evolutional history between orchids and fungi.We have studied the interactions between orchids and mycorrhizal fungi and recently conducted transcriptome analyses (RNAseq) by a next-generation sequencing (NGS) approach. It is possible that orchid RNA isolated form naturally grown plants is contaminated with RNAs derived from mycorrhizal fungi in the orchid cells. To avoid such contamination, we here prepared aseptically germinated orchid plants (i.e., fungus-free plants) together with a pure-cultured fungal isolate and field-growing orchid samples. In the cDNA library prepared from orchid and fungal tissues, we found that partitivirus-like sequences were common in an orchid and its mycorrhizal fungus. These partitivirus-like sequences were closely related by a phylogenetic analysis, suggesting that transmission of an ancestor virus between the two organisms occurred through the specific relation of the orchid and its associated fungus.
Collapse
Affiliation(s)
- Hanako Shimura
- Laboratory of Horticultural Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasunori Koda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
106
|
Abstract
Plant-associated fungi are infected by viruses at the incidence rates from a few % to over 90%. Multiple viruses often coinfect fungal hosts, and occasionally alter their phenotypes, but most of the infections are asymptomatic. Phenotypic alterations are grouped into two types: harmful or beneficial to the host fungi. Harmful interactions between viruses and hosts include hypovirulence and/or debilitation that are documented in a number of phytopathogenic fungi, exemplified by the chestnut blight, white root rot, and rapeseed rot fungi. Beneficial interactions are observed in a limited number of plant endophytic and pathogenic fungi where heat tolerance and virulence are enhanced, respectively. Coinfections of fungi provided a platform for discoveries of interesting virus/virus interactions that include synergistic, as in the case for those in plants, and unique antagonistic and mutualistic interactions between unrelated RNA viruses. Also discussed here are coinfection-induced genome rearrangements and frequently observed coinfections by the simplest positive-strand RNA virus, the mitoviruses.
Collapse
Affiliation(s)
- Bradley I Hillman
- Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States.
| | - Aulia Annisa
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan.
| |
Collapse
|
107
|
Zheng L, Lu X, Liang X, Jiang S, Zhao J, Zhan G, Liu P, Wu J, Kang Z. Molecular Characterization of Novel Totivirus-Like Double-Stranded RNAs from Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. Front Microbiol 2017; 8:1960. [PMID: 29067018 PMCID: PMC5641321 DOI: 10.3389/fmicb.2017.01960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022] Open
Abstract
Characterization of newly isolated mycoviruses may contribute to understanding of the evolution and diversity of viruses. Here, a deep sequencing approach was used to analyze the double-stranded RNA (dsRNA) mycoviruses isolated from field-collected P. striiformis samples in China. Database searches showed the presence of at least four totivirus-like sequences, termed Puccinia striiformis virus 1 to 4 (PsV1 to 4). All of these identified sequences contained two overlapping open reading frames (ORFs) which encode a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp) showing similar structures to members of the genus Totivirus. Each PsV contained a -1 ribosomal frameshifting region with a slippery site and a pseudoknot structure in the overlapped regions of these ORFs, indicating that the RdRp is translated as a CP-RdRp fusion. Phylogenetic analyses based on RdRp and CP suggested that these novel viruses belong to the genus Totivirus in the family Totiviridae. The presences of these PsVs were further validated by transmission electron microscope (TEM) and RT-PCR. Taken together, our results demonstrate the presence of diverse, novel totiviruses in the P. striiformis field populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
108
|
A mitovirus isolated from the phytopathogenic fungus Alternaria brassicicola. Arch Virol 2017; 162:2869-2874. [DOI: 10.1007/s00705-017-3371-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
109
|
Ding Z, Zhou T, Guo LY. Characterization of a novel strain of Botryosphaeria dothidea chrysovirus 1 from the apple white rot pathogen Botryosphaeria dothidea. Arch Virol 2017; 162:2097-2102. [DOI: 10.1007/s00705-017-3320-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/25/2017] [Indexed: 12/24/2022]
|
110
|
The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1. Arch Virol 2017; 162:2119-2124. [DOI: 10.1007/s00705-017-3317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
111
|
Complete Genome Sequence of a Novel Hypovirus from the Phytopathogenic Fungus Fusarium langsethiae. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01722-16. [PMID: 28254984 PMCID: PMC5334591 DOI: 10.1128/genomea.01722-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a novel positive single-stranded RNA virus, termed Fusarium langsethiae hypovirus 1 (FlHV1), from the isolate AH32 of the phytopathogenic fungus Fusarium langsethiae. The properties of FlHV1 permit assignment to the genus Alphahypovirus in the family Hypoviridae. This is the first report of a mycovirus identified in F. langsethiae.
Collapse
|
112
|
Zhong J, Chen D, Zhu HJ, Gao BD, Zhou Q. Hypovirulence of Sclerotium rolfsii Caused by Associated RNA Mycovirus. Front Microbiol 2016; 7:1798. [PMID: 27891121 PMCID: PMC5103162 DOI: 10.3389/fmicb.2016.01798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Mycoviruses associated with hypovirulence are potential biological control agents and could be useful to study the pathogenesis of fungal host pathogens. Sclerotium rolfsii, a pathogenic fungus, causes southern blight in a wide variety of crops. In this study, we isolated a series of dsRNAs from a debilitated S. rolfsii strain, BLH-1, which had pronounced phenotypic aberrations including reduced pathogenicity, mycelial growth and deficient sclerotia production. Virus-curing and horizontal transmission experiments that eliminated or transmitted, respectively, all dsRNA elements showed that the dsRNAs were involved in the hypovirulent traits of BLH-1. Ultrastructure examination also showed hyphae fracture and cytoplasm or organelle degeneration in BLH-1 hyphal cells compared to the virus-free strain. Three assembled cDNA contigs generated from the cDNA library cloned from the purified dsRNA indicated that strain BLH-1 was infected by at least three novel mycoviruses. One has similarity to the hypovirulence-associated Sclerotinia sclerotiorum hypovirus 2 (SsHV2) in the family Hypoviridae, and the other two are related to two different unclassified dsRNA mycovirus families. To our knowledge, this is the first report of S. rolfsii hypovirulence that was correlated with its associated dsRNA.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Dan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Hong J Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Bi D Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University Changsha, China
| |
Collapse
|
113
|
Deep Sequencing Analysis Reveals the Mycoviral Diversity of the Virome of an Avirulent Isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 2016; 11:e0165965. [PMID: 27814394 PMCID: PMC5096721 DOI: 10.1371/journal.pone.0165965] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Rhizoctonia solani represents an important plant pathogenic Basidiomycota species complex and the host of many different mycoviruses, as indicated by frequent detection of dsRNA elements in natural populations of the fungus. To date, eight different mycoviruses have been characterized in Rhizoctonia and some of them have been reported to modulate its virulence. DsRNA extracts of the avirulent R. solani isolate DC17 (AG2-2-IV) displayed a diverse pattern, indicating multiple infections with mycoviruses. Deep sequencing analysis of the dsRNA extract, converted to cDNA, revealed that this isolate harbors at least 17 different mycovirus species. Based on the alignment of the conserved RNA-dependent RNA-polymerase (RdRp) domain, this viral community included putative members of the families Narnaviridae, Endornaviridae, Partitiviridae and Megabirnaviridae as well as of the order Tymovirales. Furthermore, viruses, which could not be assigned to any existing family or order, but showed similarities to so far unassigned species like Sclerotinia sclerotiorum RNA virus L, Rhizoctonia solani dsRNA virus 1, Aspergillus foetidus slow virus 2 or Rhizoctonia fumigata virus 1, were identified. This is the first report of a fungal isolate infected by 17 different viral species and a valuable study case to explore the diversity of mycoviruses infecting R. solani.
Collapse
|
114
|
Urayama SI, Kimura Y, Katoh Y, Ohta T, Onozuka N, Fukuhara T, Arie T, Teraoka T, Komatsu K, Moriyama H. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus. Virus Res 2016; 223:10-9. [DOI: 10.1016/j.virusres.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
|
115
|
Osaki H, Sasaki A, Nomiyama K, Tomioka K. Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 2016; 52:835-847. [DOI: 10.1007/s11262-016-1379-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023]
|
116
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
117
|
Chen X, He H, Yang X, Zeng H, Qiu D, Guo L. The complete genome sequence of a novel Fusarium graminearum RNA virus in a new proposed family within the order Tymovirales. Arch Virol 2016; 161:2899-903. [PMID: 27376377 DOI: 10.1007/s00705-016-2961-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
Abstract
The complete nucleotide sequence of Fusarium graminearum deltaflexivirus 1 (FgDFV1), a novel positive single-stranded (+ss) RNA mycovirus, was sequenced and analyzed. The complete genome of FgDFV1/BJ59 was shown to be 8246 nucleotides (nt) long excluding the poly(A) tail. FgDFV1/BJ59 was predicted to contain a large open reading frame (ORF 1) and four smaller ORFs (2-5). ORF1 encodes a putative replication-associated polyprotein (RP) of 2042 amino acids (aa) and contains three conserved domains, viral RNA methyltransferase (Mtr), viral RNA helicase (Hel) and RNA-dependent RNA polymerase (RdRp). ORFs 2-5 encode four putative small hypothetical proteins (12-18 kDa) with unknown biological functions. Phylogenetic analysis based on RP sequences indicated that FgDFV1 is phylogenetically related to soybean leaf-associated mycoflexivirus 1 (SlaMyfV1) and Sclerotinia sclerotiorum deltaflexivirus 1 (SsDFV1), which form a well-supported and independent group belonging to a newly proposed family Deltaflexiviridae within the order Tymovirales. However, FgDFV1 is markedly different from SsDFV1 and SlaMyfV1 in genome organization and nucleotide sequence. FgDFV1 may represent an additional species in the new genus Deltaflexivirus or possibly a new genus in the proposed family Deltaflexiviridae.
Collapse
Affiliation(s)
- Xiaoguang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
118
|
Kondo H, Hisano S, Chiba S, Maruyama K, Andika IB, Toyoda K, Fujimori F, Suzuki N. Reprint of "Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi". Virus Res 2016; 219:39-50. [PMID: 27208846 DOI: 10.1016/j.virusres.2016.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/29/2022]
Abstract
The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Sakae Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Fumihiro Fujimori
- Department of Environmental Education, Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8062, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
119
|
Sasaki A, Nakamura H, Suzuki N, Kanematsu S. Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res 2016; 219:73-82. [DOI: 10.1016/j.virusres.2015.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
120
|
Isolation and characterization of a novel mycovirus from Penicillium digitatum. Virology 2016; 494:15-22. [DOI: 10.1016/j.virol.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023]
|
121
|
Marzano SYL, Domier LL. Reprint of “Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes”. Virus Res 2016; 219:11-21. [DOI: 10.1016/j.virusres.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 10/21/2022]
|
122
|
Characterization of a novel double-stranded RNA mycovirus conferring hypovirulence from the phytopathogenic fungus Botryosphaeria dothidea. Virology 2016; 493:75-85. [DOI: 10.1016/j.virol.2016.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/26/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022]
|
123
|
Differential Inductions of RNA Silencing among Encapsidated Double-Stranded RNA Mycoviruses in the White Root Rot Fungus Rosellinia necatrix. J Virol 2016; 90:5677-92. [PMID: 27030271 DOI: 10.1128/jvi.02951-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED RNA silencing acts as a defense mechanism against virus infection in a wide variety of organisms. Here, we investigated inductions of RNA silencing against encapsidated double-stranded RNA (dsRNA) fungal viruses (mycoviruses), including a partitivirus (RnPV1), a quadrivirus (RnQV1), a victorivirus (RnVV1), a mycoreovirus (RnMyRV3), and a megabirnavirus (RnMBV1) in the phytopathogenic fungus Rosellinia necatrix Expression profiling of RNA silencing-related genes revealed that a dicer-like gene, an Argonaute-like gene, and two RNA-dependent RNA polymerase genes were upregulated by RnMyRV3 or RnMBV1 infection but not by other virus infections or by constitutive expression of dsRNA in R. necatrix Massive analysis of viral small RNAs (vsRNAs) from the five mycoviruses showed that 19- to 22-nucleotide (nt) vsRNAs were predominant; however, their ability to form duplexes with 3' overhangs and the 5' nucleotide preferences of vsRNAs differed among the five mycoviruses. The abundances of 19- to 22-nt vsRNAs from RnPV1, RnQV1, RnVV1, RnMyRV3, and RnMBV1 were 6.8%, 1.2%, 0.3%, 13.0%, and 24.9%, respectively. Importantly, the vsRNA abundances and accumulation levels of viral RNA were not always correlated, and the origins of the vsRNAs were distinguishable among the five mycoviruses. These data corroborated diverse interactions between encapsidated dsRNA mycoviruses and RNA silencing. Moreover, a green fluorescent protein (GFP)-based sensor assay in R. necatrix revealed that RnMBV1 infection induced silencing of the target sensor gene (GFP gene and the partial RnMBV1 sequence), suggesting that vsRNAs from RnMBV1 activated the RNA-induced silencing complex. Overall, this study provides insights into RNA silencing against encapsidated dsRNA mycoviruses. IMPORTANCE Encapsidated dsRNA fungal viruses (mycoviruses) are believed to replicate inside their virions; therefore, there is a question of whether they induce RNA silencing. Here, we investigated inductions of RNA silencing against encapsidated dsRNA mycoviruses (a partitivirus, a quadrivirus, a victorivirus, a mycoreovirus, and a megabirnavirus) in Rosellinia necatrix We revealed upregulation of RNA silencing-related genes in R. necatrix infected with a mycoreovirus or a megabirnavirus but not with other viruses, which was consistent with the relatively high abundances of vsRNAs from the two mycoviruses. We also showed common and different molecular features and origins of the vsRNAs from the five mycoviruses. Furthermore, we demonstrated the activation of RNA-induced silencing complex by mycoviruses in R. necatrix Taken together, our data provide insights into an RNA silencing pathway against encapsidated dsRNA mycoviruses which is differentially induced among encapsidated dsRNA mycoviruses; that is, diverse replication strategies exist among encapsidated dsRNA mycoviruses.
Collapse
|
124
|
Two Novel Relative Double-Stranded RNA Mycoviruses Infecting Fusarium poae Strain SX63. Int J Mol Sci 2016; 17:ijms17050641. [PMID: 27144564 PMCID: PMC4881467 DOI: 10.3390/ijms17050641] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022] Open
Abstract
Two novel double-stranded RNA (dsRNA) mycoviruses, termed Fusarium poae dsRNA virus 2 (FpV2) and Fusarium poae dsRNA virus 3 (FpV3), were isolated from the plant pathogenic fungus, Fusarium poae strain SX63, and molecularly characterized. FpV2 and FpV3, with respective genome sequences of 9518 and 9419 base pairs (bps), are both predicted to contain two discontinuous open reading frames (ORFs), ORF1 and ORF2. A hypothetical polypeptide (P1) and a RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively. Phytoreo_S7 domain (pfam07236) homologs were detected downstream of the RdRp domain (RdRp_4; pfam02123) of the ORF2-coded proteins of both FpV2 and FpV3. The same shifty heptamers (GGAAAAC) were both found immediately before the stop codon UAG of ORF1 in FpV2 and FpV3, which could mediate programmed –1 ribosomal frameshifting (–1 PRF). Phylogenetic analysis based on RdRp sequences clearly place FpV2 and FpV3 in a taxonomically unassigned dsRNA mycovirus group. Together, with a comparison of genome organization, a new taxonomic family termed Fusagraviridae is proposed to be created to include FpV2- and FpV3-related dsRNA mycoviruses, within which FpV2 and FpV3 would represent two distinct virus species.
Collapse
|
125
|
Marzano SYL, Domier LL. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res 2016; 213:332-342. [PMID: 26547008 DOI: 10.1016/j.virusres.2015.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 11/25/2022]
Abstract
Mycoviruses can be beneficial to plants in that they can debilitate pathogenic fungi thereby reducing the severity of associated plant diseases. Studies to date have focused primarily on culturable fungi that represent a fraction of natural fungal populations. The nonculturable fungi, however, can harbor diverse populations of mycoviruses that reduce plant disease or enhance resistance to abiotic stress. Metatranscriptome analysis of field-grown plant samples using high-throughput sequencing offers the possibility of unbiased detection and quantification of mycoviruses regardless of the culturability of their fungal hosts together with the complete associated microbial consortia. In this study, we describe the fungal viromes of the phyllosphere of production soybean fields in Illinois, USA by analyzing the metatranscriptomes of thousands of soybean leaf samples collected during the 2008 and 2009 growing seasons. The analyses identified 25 partial genome sequences that represented at least 22 mycovirus genomes, only one of which had been described previously. The novel mycovirus genomes showed similarity to 10 distinct lineages including the genera Alphapartitivirus, Botybirnavirus, Endornavirus, Mitovirus, Mycoflexivirus, Ourmiavirus, Totivirus, Victorivirus, family Tombusviridae, order Mononegavirales, and the recently proposed genus Gemycircularvirus. The present study adds to the wealth of mycoviruses associated with plant phytobiomes and establishes groundwork needed for further characterization of the viruses.
Collapse
Affiliation(s)
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA; United States Department of Agriculture-Agricultural Research Service, Urbana, IL, USA.
| |
Collapse
|
126
|
Petrzik K, Sarkisova T, Starý J, Koloniuk I, Hrabáková L, Kubešová O. Molecular characterization of a new monopartite dsRNA mycovirus from mycorrhizal Thelephora terrestris (Ehrh.) and its detection in soil oribatid mites (Acari: Oribatida). Virology 2016; 489:12-9. [DOI: 10.1016/j.virol.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
|
127
|
Zhang R, Hisano S, Tani A, Kondo H, Kanematsu S, Suzuki N. A capsidless ssRNA virus hosted by an unrelated dsRNA virus. Nat Microbiol 2016; 1:15001. [DOI: 10.1038/nmicrobiol.2015.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
|
128
|
Li P, Lin Y, Zhang H, Wang S, Qiu D, Guo L. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 489:86-94. [PMID: 26744993 DOI: 10.1016/j.virol.2015.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
We isolated a novel mycovirus, Fusarium graminearum mycotymovirus 1 (FgMTV1/SX64), which is related to members of the family Tymoviridae, from the plant pathogenic fungus F. graminearum strain SX64. The complete 7863 nucleotide sequence of FgMTV1/SX64, excluding the poly (A) tail, was determined. The genome of FgMTV1/SX64 is predicted to contain four open reading frames (ORFs). The largest ORF1 is 6723 nucleotides (nt) in length and encodes a putative polyprotein of 2242 amino acids (aa), which contains four conserved domains, a methyltransferase (Mtr), tymovirus endopeptidase (Pro), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp), of the replication-associated proteins (RPs) of the positive-strand RNA viruses. ORFs 2-4 putatively encode three putative small hypothetical proteins, but their functions are still unknown. Sequence alignments and phylogenetic analyses based on the putative RP protein and the three conserved domains (Mtr, Hel and RdRp) showed that FgMTV1/SX64 is most closely related to, but distinctly branched from, the viruses from the family Tymoviridae. Although FgMTV1/SX64 infection caused mild or no effect on conidia production, biomass and virulence of its host F. graminearum strain SX64, its infection had significant effects on the growth rate, colony diameter and deoxynivalenol (DON) production. This is the first molecular characterization of a tymo-like mycovirus isolated from a plant pathogenic fungus. It is proposed that the mycovirus FgMTV1/SX64 is a representative member of new proposed lineage Mycotymovirus in the family Tymoviridae.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yanhong Lin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
129
|
Kondo H, Hisano S, Chiba S, Maruyama K, Andika IB, Toyoda K, Fujimori F, Suzuki N. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi. Virus Res 2015; 213:353-364. [PMID: 26592174 DOI: 10.1016/j.virusres.2015.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Sakae Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Fumihiro Fujimori
- Department of Environmental Education, Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8062, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
130
|
Li K, Zheng D, Cheng J, Chen T, Fu Y, Jiang D, Xie J. Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Res 2015; 219:92-99. [PMID: 26603216 DOI: 10.1016/j.virusres.2015.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that Sclerotinia sclerotiorum, an important plant pathogen fungus, harbors diverse mycoviruses. A new mycovirus, tentatively named as Sclerotinia sclerotiorum deltaflexivirus 1 (SsDFV1), was isolated from a S. sclerotiorum strain AX19 containing multiple dsRNA elements. The complete genome of SsDFV1 was shown to be 8178 nucleotides long excluding the poly (A) tail. SsDFV1 has a large putative open reading frame (ORF1) and three smaller ORFs (2-4). ORF1 encodes a putative methyltransferase-helicase-RdRp polyprotein of 2075 amino acids. ORFs (2-4) encode three putative small hypothetical proteins (<40kDa) with unknown biological functions. No evidence for a coat protein encoded by SsDFV1 was obtained. Multiple alignment suggested that three conserved domains, RdRp, methyltransferase, and helicase, from SsDFV1 have lower identity (approximately 25%) with all the reported viruses of four approved families, Alphaflexiviridae, Betaflexiviridae, Gammaflexiviridae and Tymoviridae in the order Tymovirales. Moreover, a phylogenetic tree also suggested that the SsDFV1 could not be phylogenetically placed in any of the approved families, and forms a separated cluster distinct from other known viruses. Therefore, these combined results suggest that SsDFV1 could represent a new positive-sense single-stranded RNA virus with some unique molecular features, and we propose to create a tentative family Deltaflexiviridae that accommodates SsDFV1.
Collapse
Affiliation(s)
- Kunfei Li
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Dan Zheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Tao Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
131
|
Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res 2015; 219:22-38. [PMID: 26546154 DOI: 10.1016/j.virusres.2015.10.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022]
Abstract
The number of reported mycoviruses is increasing exponentially due to the current ability to detect mycoviruses using next-generation sequencing (NGS) approaches, with a large number of viral genomes built in-silico using data from fungal transcriptome projects. We decided to screen a collection of fungi originating from a specific marine environment (associated with the seagrass Posidonia oceanica) for the presence of mycoviruses: our findings reveal a wealth of diversity among these symbionts and this complexity will require further studies to address their specific role in this ecological niche. In specific, we identified twelve new virus species belonging to nine distinct lineages: they are members of megabirnavirus, totivirus, chrysovirus, partitivirus and five still undefined clades. We showed evidence of an endogenized virus ORF, and evidence of accumulation of dsRNA from metaviridae retroviral elements. We applied different techniques for detecting the presence of mycoviruses including (i) dsRNA extraction and cDNA cloning, (ii) small and total RNA sequencing through NGS techniques, (iii) rolling circle amplification (RCA) and total DNA extraction analyses, (iv) virus purifications and electron microscopy. We tried also to critically evaluate the intrinsic value and limitations of each of these techniques. Based on the samples we could compare directly, RNAseq analysis is superior to sRNA for de novo assembly of mycoviruses. To our knowledge this is the first report on the virome of fungi isolated from marine environment. The GenBank/eMBL/DDBJ accession numbers of the sequences reported in this paper are: KT601099-KT601110; KT601114-KT601120; KT592305; KT950836-KT950841.
Collapse
|
132
|
Yaegashi H, Kanematsu S. Natural infection of the soil-borne fungus Rosellinia necatrix with novel mycoviruses under greenhouse conditions. Virus Res 2015; 219:83-91. [PMID: 26555164 DOI: 10.1016/j.virusres.2015.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022]
Abstract
Fungi are an important component of the soil ecosystem. Mycoviruses have numerous potential impacts on soil fungi, including phytopathogenic fungal species. However, the diversity and ecology of mycoviruses in soil fungi is largely unexplored. Our previous work has shown that the soil-borne phytopathogenic fungus Rosellinia necatrix was infected with several novel mycoviruses after growing for 2-3 years in an apple orchard. In this study, we investigated whether natural infection of R. necatrix with mycoviruses occurs under limited conditions. Virus-free R. necatrix isolates were grown in a small bucket containing soil samples for a short time (1.5-4.5 months) under greenhouse conditions. Screening of dsRNA mycoviruses among 365 retrieved isolates showed that four, including 6-31, 6-33, 6-35, and 7-11, harbored virus-like dsRNAs. Molecular characterization of the dsRNAs revealed that three retrieved isolates, 6-31, 6-33, and 6-35 were infected with a novel endornavirus and isolate 7-11 is infected with a novel partitivirus belonging to the genus Alphapartitivirus. These novel mycoviruses had no overt biological impact on R. necatrix. Overall, this study indicates that natural infections of R. necatrix with new mycoviruses can occur under experimental soil conditions.
Collapse
Affiliation(s)
- Hajime Yaegashi
- Apple Research Division, Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), Japan
| | - Satoko Kanematsu
- Apple Research Division, Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), Japan.
| |
Collapse
|
133
|
Komatsu K, Urayama SI, Katoh Y, Fuji SI, Hase S, Fukuhara T, Arie T, Teraoka T, Moriyama H. Detection of Magnaporthe oryzae chrysovirus 1 in Japan and establishment of a rapid, sensitive and direct diagnostic method based on reverse transcription loop-mediated isothermal amplification. Arch Virol 2015; 161:317-26. [PMID: 26547578 DOI: 10.1007/s00705-015-2666-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Magnaporthe oryzae chrysovirus 1 (MoCV1) is a mycovirus with a dsRNA genome that infects the rice blast fungus Magnaporthe oryzae and impairs its growth. To date, MoCV1 has only been found in Vietnamese isolates of M. oryzae, and the distribution of this virus in M. oryzae isolates from other parts of the world remains unknown. In this study, using a one-step reverse transcription PCR (RT-PCR) assay, we detected a MoCV1-related virus in M. oryzae in Japan (named MoCV1-AK) whose sequence shares considerable similarity with that of the MoCV1 Vietnamese isolate. To establish a system for a comprehensive survey of MoCV1 infection in the field, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for direct detection of the virus. The sensitivity of the RT-LAMP assay was at least as high as that of the one-step RT-PCR assay. In addition, we detected MoCV1-AK in M. oryzae-infected oatmeal agar plates and lesions on rice leaves using the RT-LAMP assay without dsRNA extraction, by simple sampling with a toothpick. Preliminary screening of MoCV1 in Japanese M. oryzae isolates indicated that MoCV1 is currently distributed in rice fields in Japan. Our results provide a first example of the application of RT-LAMP for the detection of mycoviruses, which will accelerate surveys for mycovirus infection.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Syun-Ichi Urayama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Yu Katoh
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Shin-Ichi Fuji
- Laboratory of Plant Protection, Faculty of Bioresorce Sciences, Akita Prefectural University, Akita, Japan
| | - Shu Hase
- Laboratory of Plant Pathology, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Tohru Teraoka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
134
|
Vainio EJ, Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res 2015; 219:2-10. [PMID: 26477938 DOI: 10.1016/j.virusres.2015.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 11/17/2022]
Abstract
The genus Heterobasidion consists of several species of necrotrophic and saprotrophic fungi, and includes some of the most detrimental organisms in boreal conifer forests. These fungi host a widespread and diverse mycovirus community composed of more than 16 species of Partitiviridae, a species of Narnaviridae and one taxonomically unassigned virus related to the Curvularia thermal tolerance virus. These viruses are able to cross species borders, co-infect single host strains and cause phenotypic changes in their hosts. The abundance of viruses increases over time in Heterobasidion infection centers, and they are targeted by fungal RNA interference. Long-term field studies are essential for obtaining a comprehensive view of virus effects in the nature.
Collapse
Affiliation(s)
- Eeva J Vainio
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| |
Collapse
|
135
|
Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N. A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. Virus Res 2015; 219:62-72. [PMID: 26494168 DOI: 10.1016/j.virusres.2015.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
The family Partitiviridae comprises of five genera with bi-segmented dsRNA genomes that accommodate members infecting plants, fungi or protists. All partitiviruses with only a few exceptions cause asymptomatic infections. We report the characterization of a novel betapartitivirus termed Rosellinia necatrix partitivirus 6 (RnPV6) from a field isolate of a plant pathogenic fungus, white root rot fungus. RnPV6 has typical partitivirus features: dsRNA1 and dsRNA2 are 2462 and 2499bps in length encoding RNA-dependent RNA polymerase and capsid protein. Purified particles are spherical with a diameter of 30nm. Taking advantage of infectivity as virions, RnPV6 was introduced into a model filamentous fungal host, chestnut blight fungus to investigate virus/host interactions. Unlike other partitiviruses tested previously, RnPV6 induced profound phenotypic alterations with symptoms characterized by a reduced growth rate and enhanced pigmentation and was tolerant to host RNA silencing. In addition, a variety of defective RNAs derived from dsRNA1 appear after virion transfection. These sub-viral RNAs were shown to interfere with RnPV6 replication, at least for that of cognate segment dsRNA1. Presence of these sub-viral elements resulted in reduced symptom expression by RnPV6, suggesting their nature as defective-interfering RNAs. The features of RnPV6 are similar to but distinct from those of a previously reported alphapartitivirus, Rosellinia necatrix partitivirus 2 that is susceptible to RNA silencing.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan.
| | - Yu-Hsin Lin
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan.
| | - Satoko Kanematsu
- Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), Morioka, Iwate 020-0123, Japan.
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan.
| |
Collapse
|
136
|
Miyazaki N, Salaipeth L, Kanematsu S, Iwasaki K, Suzuki N. Megabirnavirus structure reveals a putative 120-subunit capsid formed by asymmetrical dimers with distinctive large protrusions. J Gen Virol 2015; 96:2435-2441. [DOI: 10.1099/vir.0.000182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Naoyuki Miyazaki
- National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Lakha Salaipeth
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Satoko Kanematsu
- NARO Institute of Fruit Tree Science, 92 Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
137
|
A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. Proc Natl Acad Sci U S A 2015; 112:9100-5. [PMID: 26139522 DOI: 10.1073/pnas.1419225112] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report the discovery and characterization of a double-stranded RNA (dsRNA) mycovirus isolated from the human pathogenic fungus Aspergillus fumigatus, Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1), which reveals several unique features not found previously in positive-strand RNA viruses, including the fact that it represents the first dsRNA (to our knowledge) that is not only infectious as a purified entity but also as a naked dsRNA. The AfuTmV-1 genome consists of four capped dsRNAs, the largest of which encodes an RNA-dependent RNA polymerase (RdRP) containing a unique GDNQ motif normally characteristic of negative-strand RNA viruses. The third largest dsRNA encodes an S-adenosyl methionine-dependent methyltransferase capping enzyme and the smallest dsRNA a P-A-S-rich protein that apparently coats but does not encapsidate the viral genome as visualized by atomic force microscopy. A combination of a capping enzyme with a picorna-like RdRP in the AfuTmV-1 genome is a striking case of chimerism and the first example (to our knowledge) of such a phenomenon. AfuTmV-1 appears to be intermediate between dsRNA and positive-strand ssRNA viruses, as well as between encapsidated and capsidless RNA viruses.
Collapse
|
138
|
Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes 2015; 51:167-70. [PMID: 26116286 DOI: 10.1007/s11262-015-1219-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Here we present the genome sequence of a novel dsRNA virus we designed as Rhizoctonia solani RNA virus HN008 (RsRV-HN008) from a filamentous fungus R. solani. Its genome (7596 nucleotides) contains two non-overlapping open reading frames (ORF1 and ORF2). ORF1 encoded a 128 kDa protein that showed no significant identity to any other virus sequence in the NCBI database. ORF2 encoded a protein with a molecular weight of 140 kDa and shared a low percentage of sequence identity to the RdRps of unclassified dsRNA viruses. Sequence analysis revealed that RsRV-HN008 may be a member of a novel unclassified family of mycoviruses.
Collapse
|
139
|
Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus. J Virol 2015; 89:8567-79. [PMID: 26063429 DOI: 10.1128/jvi.00243-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5'-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus (Sclerotinia sclerotiorum megabirnavirus 1 [SsMBV1]) that was isolated from an apparently hypovirulent strain, SX466, of Sclerotinia sclerotiorum. Although SsMBV1 is phylogenetically related to RnMBV1, SsMBV1 is markedly distinct from other reported megabirnaviruses with two features of VLPs and conserved domains. Our results convincingly showed that SsMBV1 is viable in the absence of L2-dsRNA/SsMBV1 (a potential large satellite-like RNA or genuine genomic virus component). More interestingly, we detected a conserved papain-like protease domain that commonly exists in ssRNA viruses, including members of the families Potyviridae and Hypoviridae. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer might have occurred from an ssRNA virus to a dsRNA virus, which may provide new insights into the evolutionary history of dsRNA and ssRNA viruses.
Collapse
|
140
|
A novel mycovirus identified from the rice false smut fungus Ustilaginoidea virens. Virus Genes 2015; 51:159-62. [PMID: 26041139 DOI: 10.1007/s11262-015-1212-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The complete sequence of a novel mycovirus infecting Ustilaginoidea virens, the causal agent of false smut of rice, is reported here and designated as Ustilaginoidea virens unassigned RNA virus HNND-1 (UvURV-HNND-1). This virus has an undivided dsRNA genome of 2903 nt in length and contains two non-overlapping open reading frames (ORF1 and 2), with the small ORF1 encoding a protein of unknown function that showed sequence similarity to the comparable protein in virus Alternaria longipes dsRNA virus 1(AlRV1) and a larger ORF2 encoded the protein showing identities to the RNA-dependent RNA polymerases of AlRV1 and some other unassigned dsRNA viruses. Phylogenetic analysis showed that UvURV-HNND-1 is more closely related to unclassified viruses such as AlRV1 and distinct from distantly related members of the family Partitiviridae. Here, we propose in accordance with previous reports that UvURV-HNND-1 might belong to a new mycovirus genus together with AlRV1 and other similar viruses.
Collapse
|
141
|
Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 2015; 6:406. [PMID: 25999933 PMCID: PMC4422086 DOI: 10.3389/fmicb.2015.00406] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus S. sclerotiorum botybirnavirus 1 (SsBRV1) that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ∼38 nm in diameter, and three double-stranded RNA (dsRNA) segments (dsRNA1, 2, and 3 with lengths of 6.4, 6.0, and 1.7 kbp, respectively) were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1) and Ustilago maydis dsRNA virus-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Qihua Wang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
142
|
Li P, Zhang H, Chen X, Qiu D, Guo L. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 481:151-60. [PMID: 25781585 DOI: 10.1016/j.virol.2015.02.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 01/13/2023]
Abstract
A novel mycovirus, termed Fusarium graminearum Hypovirus 2 (FgHV2/JS16), isolated from a plant pathogenic fungus, Fusarium graminearum strain JS16, was molecularly and biologically characterized. The genome of FgHV2/JS16 is 12,800 nucleotides (nts) long, excluding the poly (A) tail. This genome has only one large putative open reading frame, which encodes a polyprotein containing three normal functional domains, papain-like protease, RNA-dependent RNA polymerase, RNA helicase, and a novel domain with homologous bacterial SMC (structural maintenance of chromosomes) chromosome segregation proteins. A defective RNA segment that is 4553-nts long, excluding the poly (A) tail, was also detected in strain JS16. The polyprotein shared significant aa identities with Cryphonectria hypovirus 1 (CHV1) (16.8%) and CHV2 (16.2%). Phylogenetic analyses based on multiple alignments of the polyprotein clearly divided the members of Hypoviridae into two major groups, suggesting that FgHV2/JS16 was a novel hypovirus of a newly proposed genus-Alphahypovirus-composed of the members of Group 1, including CHV1, CHV2, FgHV1 and Sclerotinia sclerotiorum hypovirus 2. FgHV2/JS16 was shown to be associated with hypovirulence phenotypes according to comparisons of the biological properties shared between FgHV2/JS16-infected and FgHV2/JS16-free isogenic strains. Furthermore, we demonstrated that FgHV2/JS16 infection activated the RNA interference pathway in Fusarium graminearum by relative quantitative real time RT-PCR.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
143
|
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology 2015; 479-480:356-68. [PMID: 25771805 DOI: 10.1016/j.virol.2015.02.034] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, KY, USA.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Daohong Jiang
- State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
144
|
Osaki H, Sasaki A, Nomiyama K, Sekiguchi H, Tomioka K, Takehara T. Isolation and characterization of two mitoviruses and a putative alphapartitivirus from Fusarium spp. Virus Genes 2015; 50:466-73. [PMID: 25687123 DOI: 10.1007/s11262-015-1182-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/07/2015] [Indexed: 11/24/2022]
Abstract
The filamentous fungus Fusarium spp. includes several important plant pathogens. We attempted to reveal presence of double-stranded (ds) RNAs in the genus. Thirty-seven Fusarium spp. at the MAFF collection were analyzed. In the strains of Fusarium coeruleum, Fusarium globosum and Fusarium solani f. sp. pisi, single dsRNA bands were detected. The strains of F. coeruleum and F. solani f. sp. pisi cause potato dry rot and mulberry twig blight, respectively. Sequence analyses revealed that dsRNAs in F. coeruleum and F. globosum consisted of 2423 and 2414 bp, respectively. Using the fungal mitochondrial translation table, the positive strands of these cDNAs were found to contain single open reading frames with the potential to encode a protein of putative 757 and 717 amino acids (molecular mass 88.5 and 84.0 kDa, respectively), similar to RNA-dependent RNA polymerases of members of the genus Mitovirus. These dsRNAs in F. coeruleum and F. globosum were assigned to the genus Mitovirus (family Narnaviridae), and these two mitoviruses were designated as Fusarium coeruleum mitovirus 1 and Fusarium globosum mitovirus 1. On the other hand, a positive strand of cDNA (1950 bp) from dsRNA in F. solani f. sp. pisi contained an ORF potentially encoding a putative RdRp of 608 amino acids (72.0 kDa). The putative RdRp was shown to be related to those of members of the genus of Alphapartitivirus (family Partitiviridae). We coined the name Fusarium solani partitivirus 2 for dsRNA in F. solani f. sp. pisi.
Collapse
Affiliation(s)
- Hideki Osaki
- NARO Western Region Agricultural Research Center, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan,
| | | | | | | | | | | |
Collapse
|
145
|
Shimizu T, Yaegashi H, Ito T, Kanematsu S. Systemic RNA interference is not triggered by locally-induced RNA interference in a plant pathogenic fungus, Rosellinia necatrix. Fungal Genet Biol 2015; 76:27-35. [PMID: 25677378 DOI: 10.1016/j.fgb.2015.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 01/28/2023]
Abstract
The white root rot fungus, Rosellinia necatrix, damages a wide range of fruit trees. R. necatrix is known to host a variety of mycoviruses, and several of these have potential as biological control agents. RNA interference (RNAi) is a fungal defense mechanism against viral infection, and it is therefore important to understand the RNAi amplification and transmission systems in R. necatrix for effective use of mycoviruses in disease control. In this study, we describe an intriguing RNAi signal transmission phenomenon in R. necatrix. In R. necatrix transformants with autonomously replicating vectors carrying a hairpin structure to induce RNAi, the gene silencing effect was distributed locally and unevenly, based on the vector distribution. This indicates that R. necatrix has no mechanism to propagate silencing signals systemically, unlike Caenorhabditis elegans and Arabidopsis thaliana. Furthermore, the expression of RNA-dependent RNA polymerase homologs was not upregulated during RNAi induction, suggesting that silencing signals are not amplified at sufficient levels to induce systemic RNAi in R. necatrix. Our results also suggest that, in addition to hairpin-induced RNAi, there is either a 5' transitive RNAi or quelling-like gene silencing system in R. necatrix. This is the first study demonstrating that systemic RNAi is not induced by local RNAi in fungi.
Collapse
Affiliation(s)
- Takeo Shimizu
- Apple Research Division, Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Hajime Yaegashi
- Apple Research Division, Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Tsutae Ito
- Apple Research Division, Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Satoko Kanematsu
- Apple Research Division, Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate 020-0123, Japan.
| |
Collapse
|
146
|
Novel hypovirulence-associated RNA mycovirus in the plant-pathogenic fungus Botrytis cinerea: molecular and biological characterization. Appl Environ Microbiol 2015; 81:2299-310. [PMID: 25595766 DOI: 10.1128/aem.03992-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botrytis cinerea is a pathogenic fungus causing gray mold on numerous economically important crops and ornamental plants. This study was conducted to characterize the biological and molecular features of a novel RNA mycovirus, Botrytis cinerea RNA virus 1 (BcRV1), in the hypovirulent strain BerBc-1 of B. cinerea. The genome of BcRV1 is 8,952 bp long with two putative overlapped open reading frames (ORFs), ORF1 and ORF2, coding for a hypothetical polypeptide (P1) and RNA-dependent RNA polymerase (RdRp), respectively. A -1 frameshifting region (designated the KNOT element) containing a shifty heptamer, a heptanucleotide spacer, and an H-type pseudoknot was predicted in the junction region of ORF1 and ORF2. The -1 frameshifting role of the KNOT element was experimentally confirmed through determination of the production of the fusion protein red fluorescent protein (RFP)-green fluorescent protein (GFP) by the plasmid containing the construct dsRed-KNOT-eGFP in Escherichia coli. BcRV1 belongs to a taxonomically unassigned double-stranded RNA (dsRNA) mycovirus group. It is closely related to grapevine-associated totivirus 2 and Sclerotinia sclerotiorum nonsegmented virus L. BcRV1 in strain BerBc-1 was found capable of being transmitted vertically through macroconidia and horizontally to other B. cinerea strains through hyphal contact. The presence of BcRV1 was found to be positively correlated with hypovirulence in B. cinerea, with the attenuation effects of BcRV1 on mycelial growth and pathogenicity being greatly affected by the accumulation level of BcRV1.
Collapse
|
147
|
Vainio EJ, Jurvansuu J, Streng J, Rajamäki ML, Hantula J, Valkonen JPT. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J Gen Virol 2014; 96:714-725. [PMID: 25480928 DOI: 10.1099/jgv.0.000003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of virus-derived small RNAs with high-throughput sequencing has been successful for detecting novel viruses in plants and invertebrates. However, the applicability of this method has not been demonstrated in fungi, although fungi were among the first organisms reported to utilize RNA silencing. Here, we used virus-infected isolates of the fungal species complex Heterobasidion annosum sensu lato as a model system to test whether mycovirus genome segments can be detected with small RNA deep sequencing. Species of the genus Heterobasidion are some of the most devastating forest pathogens in boreal forests. These fungi cause wood decay and are commonly infected with species of the family Partitiviridae and the unassigned virus species Heterobasidion RNA virus 6. Small RNA deep sequencing allowed the simultaneous detection of all eight double-stranded RNA virus strains known to be present in the tested samples and one putative mitovirus species (family Narnaviridae) with a single-stranded RNA genome, designated here as Heterobasidion mitovirus 1. Prior to this study, no members of the family Narnaviridae had been described as infecting species of Heterobasidion. Quantification of viral double- and single-stranded RNA with quantitative PCR indicated that co-infecting viral species and viruses with segmented genomes can be detected with small RNA deep sequencing despite vast differences in the amount of RNA. This is the first study demonstrating the usefulness of this method for detecting fungal viruses. Moreover, the results suggest that viral genomes are processed into small RNAs by different species of Heterobasidion.
Collapse
Affiliation(s)
- Eeva J Vainio
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Jaana Jurvansuu
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Janne Streng
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Hantula
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
148
|
Detection and characterization of a novel Gammapartitivirus in the phytopathogenic fungus Colletotrichum acutatum strain HNZJ001. Virus Res 2014; 190:104-9. [DOI: 10.1016/j.virusres.2014.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
149
|
Xiao X, Cheng J, Tang J, Fu Y, Jiang D, Baker TS, Ghabrial SA, Xie J. A novel partitivirus that confers hypovirulence on plant pathogenic fungi. J Virol 2014; 88:10120-33. [PMID: 24965462 PMCID: PMC4136314 DOI: 10.1128/jvi.01036-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Members of the family Partitiviridae have bisegmented double-stranded RNA (dsRNA) genomes and are not generally known to cause obvious symptoms in their natural hosts. An unusual partitivirus, Sclerotinia sclerotiorum partitivirus 1 (SsPV1/WF-1), conferred hypovirulence on its natural plant-pathogenic fungal host, Sclerotinia sclerotiorum strain WF-1. Cellular organelles, including mitochondria, were severely damaged. Hypovirulence and associated traits of strain WF-1 and SsPV1/WF-1 were readily cotransmitted horizontally via hyphal contact to different vegetative compatibility groups of S. sclerotiorum and interspecifically to Sclerotinia nivalis and Sclerotinia minor. S. sclerotiorum strain 1980 transfected with purified SsPV1/WF-1 virions also exhibited hypovirulence and associated traits similar to those of strain WF-1. Moreover, introduction of purified SsPV1/WF-1 virions into strain KY-1 of Botrytis cinerea also resulted in reductions in virulence and mycelial growth and, unexpectedly, enhanced conidial production. However, virus infection suppressed hyphal growth of most germinating conidia of B. cinerea and was eventually lethal to infected hyphae, since very few new colonies could develop following germ tube formation. Taken together, our results support the conclusion that SsPV1/WF-1 causes hypovirulence in Sclerotinia spp. and B. cinerea. Cryo-EM (cryo-electron microscopy) reconstruction of the SsPV1 particle shows that it has a distinct structure with similarity to the closely related partitiviruses Fusarium poae virus 1 and Penicillium stoloniferum virus F. These findings provide new insights into partitivirus biological activities and clues about molecular interactions between partitiviruses and their hosts. IMPORTANCE Members of the Partitiviridae are believed to occur commonly in their phytopathogenic fungal and plant hosts. However, most partitiviruses examined so far appear to be associated with latent infections. Here we report a partitivirus, SsPV1/WF-1, that was isolated from a hypovirulent strain of Sclerotinia sclerotiorum and describe its biological and molecular features. We have demonstrated that SsPV1 confers hypovirulence. Furthermore, SsPV1 can infect and cause hypovirulence in Botrytis cinerea. Our study also suggests that SsPV1 has a vigorous ability to proliferate and spread via hyphal contact. SsPV1 can overcome vegetative incompatibility barriers and can be transmitted horizontally among different vegetative compatibility groups of S. sclerotiorum, even interspecifically. Cryo-EM reconstruction of SsPV1 shows that it has a distinct structure with similarity to closely related partitiviruses. Our studies exploit a novel system, SsPV1 and its hosts, which can provide the means to explore the mechanisms by which partitiviruses interact with their hosts.
Collapse
Affiliation(s)
- Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Yanping Fu
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Timothy S Baker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Said A Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jiatao Xie
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
150
|
Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci U S A 2014; 111:12205-10. [PMID: 25092337 DOI: 10.1073/pnas.1401786111] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mycoviruses are widespread in nature and often occur with dsRNA and positive-stranded RNA genomes. Recently, strong evidence from RNA sequencing analysis suggested that negative-stranded (-)ssRNA viruses could infect fungi. Here we describe a (-)ssRNA virus, Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), isolated from a hypovirulent strain of Sclerotinia sclerotiorum. The complete genome of SsNSRV-1 is 10,002 nt with six ORFs that are nonoverlapping and linearly arranged. Conserved gene-junction sequences that occur widely in mononegaviruses, (A/U)(U/A/C)UAUU(U/A)AA(U/G)AAAACUUAGG(A/U)(G/U), were identified between these ORFs. The analyses 5' and 3' rapid amplification of cDNA ends showed that all genes can be transcribed independently. ORF V encodes the largest protein that contains a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain. Putative enveloped virion-like structures with filamentous morphology similar to members of Filoviridae were observed both in virion preparation samples and in ultrathin hyphal sections. The nucleocapsids are long, flexible, and helical; and are 22 nm in diameter and 200-2,000 nm in length. SDS/PAGE showed that the nucleocapsid possibly contains two nucleoproteins with different molecular masses, ∼43 kDa (p43) and ∼41 kDa (p41), and both are translated from ORF II. Purified SsNSRV-1 virions successfully transfected a virus-free strain of S. sclerotiorum and conferred hypovirulence. Phylogenetic analysis based on RdRp showed that SsNSRV-1 is clustered with viruses of Nyamiviridae and Bornaviridae. Moreover, SsNSRV-1 is widely distributed, as it has been detected in different regions of China. Our findings demonstrate that a (-)ssRNA virus can occur naturally in fungi and enhance our understanding of the ecology and evolution of (-)ssRNA viruses.
Collapse
|