101
|
Tominaga K, Srikantan S, Lee EK, Subaran SS, Martindale JL, Abdelmohsen K, Gorospe M. Competitive regulation of nucleolin expression by HuR and miR-494. Mol Cell Biol 2011; 31:4219-31. [PMID: 21859890 PMCID: PMC3187287 DOI: 10.1128/mcb.05955-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 11/20/2022] Open
Abstract
The RNA-binding protein (RBP) nucleolin promotes the expression of several proliferative proteins. Nucleolin levels are high in cancer cells, but the mechanisms that control nucleolin expression are unknown. Here, we show that nucleolin abundance is controlled posttranscriptionally via factors that associate with its 3' untranslated region (3'UTR). The RBP HuR was found to interact with the nucleolin (NCL) 3'UTR and specifically promoted nucleolin translation without affecting nucleolin mRNA levels. In human cervical carcinoma HeLa cells, analysis of a traceable NCL 3'UTR bearing MS2 RNA hairpins revealed that NCL RNA was mobilized to processing bodies (PBs) after silencing HuR, suggesting that the repression of nucleolin translation may occur in PBs. Immunoprecipitation of MS2-tagged NCL 3'UTR was used to screen for endogenous repressors of nucleolin synthesis. This search identified miR-494 as a microRNA that potently inhibited nucleolin expression, enhanced NCL mRNA association with argonaute-containing complexes, and induced NCL RNA transport to PBs. Importantly, miR-494 and HuR functionally competed for modulation of nucleolin expression. Moreover, the promotion of cell growth previously attributed to HuR was due in part to the HuR-elicited increase in nucleolin expression. Our collective findings indicate that nucleolin expression is positively regulated by HuR and negatively regulated via competition with miR-494.
Collapse
Affiliation(s)
- Kumiko Tominaga
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Subramanya Srikantan
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Eun Kyung Lee
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Sarah S. Subaran
- Laboratory of Cardiovascular Science, NIA-IRP, NIH, Baltimore, Maryland 21224
| | | | - Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| | - Myriam Gorospe
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, Maryland 21224
| |
Collapse
|
102
|
Nishikawa E, Osada H, Okazaki Y, Arima C, Tomida S, Tatematsu Y, Taguchi A, Shimada Y, Yanagisawa K, Yatabe Y, Toyokuni S, Sekido Y, Takahashi T. miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 2011; 71:6165-73. [PMID: 21856745 DOI: 10.1158/0008-5472.can-11-1020] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancers with neuroendocrine (NE) features are often very aggressive but the underlying molecular mechanisms remain elusive. The transcription factor ASH1/ASCL1 is a master regulator of pulmonary NE cell development that is involved in the pathogenesis of lung cancers with NE features (NE-lung cancers). Here we report the definition of the microRNA miR-375 as a key downstream effector of ASH1 function in NE-lung cancer cells. miR-375 was markedly induced by ASH1 in lung cancer cells where it was sufficient to induce NE differentiation. miR-375 upregulation was a prerequisite for ASH1-mediated induction of NE features. The transcriptional coactivator YAP1 was determined to be a direct target of miR-375. YAP1 showed a negative correlation with miR-375 in a panel of lung cancer cell lines and growth inhibitory activities in NE-lung cancer cells. Our results elucidate an ASH1 effector axis in NE-lung cancers that is functionally pivotal in controlling NE features and the alleviation from YAP1-mediated growth inhibition.
Collapse
Affiliation(s)
- Eri Nishikawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Olde Loohuis NFM, Kos A, Martens GJM, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2011; 69:89-102. [PMID: 21833581 PMCID: PMC3249201 DOI: 10.1007/s00018-011-0788-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/24/2011] [Accepted: 07/21/2011] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation.
Collapse
Affiliation(s)
- N F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
104
|
Jung H, O'Hare CM, Holt CE. Translational regulation in growth cones. Curr Opin Genet Dev 2011; 21:458-64. [PMID: 21530230 PMCID: PMC3683644 DOI: 10.1016/j.gde.2011.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Axonal growth cones (GCs) steer in response to extrinsic cues using mechanisms that include local protein synthesis. This adaptive form of gene regulation occurs with spatial precision and depends on subcellular mRNA localisation. Recent genome-wide studies have shown unexpectedly complex and dynamically changing mRNA repertoires in growing axons and GCs. Axonal targeting of some transcripts seems to be highly selective and involves sequence diversity in non-coding regions generated by transcriptional and/or post-transcriptional mechanisms. New evidence reports direct coupling of a guidance receptor to the protein synthesis machinery and other findings demonstrate that some guidance cues can repress translation. The recent findings shed further light on the exquisitely regulated process that enables distant cellular compartments to respond to local stimuli.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | | | | |
Collapse
|
105
|
Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, Guo X, Zheng D, Lachman HM. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25:88-103. [PMID: 21797804 DOI: 10.3109/01677063.2011.597908] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology has the potential to transform regenerative medicine. It also offers a powerful tool for establishing in vitro models of disease, in particular, for neuropsychiatric disorders where live human neurons are essentially impossible to procure. Using iPSCs derived from three schizophrenia (SZ) patients, one of whom has 22q11.2del (velocardiofacial syndrome; VCFS), the authors developed a culture system to study SZ on a molecular and cellular level. SZ iPSCs were differentiated into functional, primarily glutamatergic neurons that were able to fire action potentials after ∼8 weeks in culture. Early differentiating neurons expressed a number of transcription factors/chromatin remodeling proteins and synaptic proteins relevant to SZ pathogenesis, including ZNF804A, RELN, CNTNAP2, CTNNA2, SMARCA2, and NRXN1. Although a small number of lines were developed in this preliminary study, the SZ line containing 22q11.2del showed a significant delay in the reduction of endogenous OCT4 and NANOG expression that normally occurs during differentiation. Constitutive expression of OCT4 has been observed in Dgcr8-deficient mouse embryonic stem cells (mESCs); DGCR8 maps to the 22q11.2-deleted region. These findings demonstrate that the method of inducing neural differentiation employed is useful for disease modeling in SZ and that the transition of iPSCs with 22q11.2 deletions towards a differentiated state may be marked by subtle changes in expression of pluripotency-associated genes.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10416, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 2011; 38:239-46. [PMID: 21291493 DOI: 10.1111/j.1440-1681.2011.05493.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. Adipocyte hypertrophy and hyperplasia are important processes in the development of obesity. To understand obesity and its associated diseases, it is important to elucidate the molecular mechanisms governing adipogenesis. MicroRNA-375 has been shown to inhibit differentiation of neurites, and participate in the regulation of insulin secretion and blood homeostasis. However, it is unknown whether miR-375 plays a role in adipocyte differentiation. 2. To investigate the role of miR-375 in adipocyte differentiation, we compared the miR-375 expression level between 3T3-L1 pre-adipocytes and adipocytes using miRNA microarray and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis. Furthermore, we evaluated the effects of overexpression or inhibition of miR-375 on 3T3-L1 adipocyte differentiation. 3. In the present study, we found that miR-375 expression was increased after induction of adipogenic differentiation. Overexpression of miR-375 enhanced 3T3-L1 adipocyte differentiation, as evidenced by its ability to increase mRNA levels of both CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ2), and induction of adipocyte fatty acid-binding protein (aP2) and triglyceride (TG) accumulation. Furthermore, we found overexpression of miR-375 suppressed phosphorylation levels of extracellular signal-regulated kinases 1/2 (ERK1/2). In contrast, anti-miR-375 increased ERK1/2 phosphorylation levels and inhibited mRNA expression of C/EBPα, PPARγ2 and aP2 in 3T3-L1 adipocyte, accompanied by decreased adipocyte differentiation. 4. Taken together, these data suggest that miR-375 promotes 3T3-L1 adipocyte differentiation, possibly through modulating the ERK-PPARγ2-aP2 pathway.
Collapse
Affiliation(s)
- Hong-Yan Ling
- Department of Physiology, School of Medicine, Health Key Laboratory for Pharmacoproteomics of Hunan Province/Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Mazar J, DeBlasio D, Govindarajan SS, Zhang S, Perera RJ. Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett 2011; 585:2467-76. [PMID: 21723283 DOI: 10.1016/j.febslet.2011.06.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/31/2022]
Abstract
To identify epigenetically regulated miRNAs in melanoma, we treated a stage 3 melanoma cell line WM1552C, with 5AzadC and/or 4-PBA. Several hypermethylated miRNAs were detected, one of which, miR-375, was highly methylated and was studied further. Minimal CpG island methylation was observed in melanocytes, keratinocytes, normal skin, and nevus but hypermethylation was observed in patient tissue samples from primary, regional, distant, and nodular metastatic melanoma. Ectopic expression of miR-375 inhibited melanoma cell proliferation, invasion, and cell motility, and induced cell shape changes, strongly suggesting that miR-375 may have an important function in the development and progression of human melanomas.
Collapse
Affiliation(s)
- Joseph Mazar
- Sanford Burnham Medical Research Institute, Orlando, FL 32827, United States
| | | | | | | | | |
Collapse
|
108
|
Numakawa T, Richards M, Adachi N, Kishi S, Kunugi H, Hashido K. MicroRNA function and neurotrophin BDNF. Neurochem Int 2011; 59:551-8. [PMID: 21723895 DOI: 10.1016/j.neuint.2011.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRs), endogenous small RNAs, regulate gene expression through repression of translational activity after binding to target mRNAs. miRs are involved in various cellular processes including differentiation, metabolism, and apoptosis. Furthermore, possible involvement of miRs in neuronal function have been proposed. For example, miR-132 is closely related to neuronal outgrowth while miR-134 plays a role in postsynaptic regulation, suggesting that brain-specific miRs are critical for synaptic plasticity. On the other hand, numerous studies indicate that BDNF (brain-derived neurotrophic factor), one of the neurotrophins, is essential for a variety of neuronal aspects such as cell differentiation, survival, and synaptic plasticity in the central nervous system (CNS). Interestingly, recent studies, including ours, suggest that BDNF exerts its beneficial effects on CNS neurons via up-regulation of miR-132. Here, we present a broad overview of the current knowledge concerning the association between neurotrophins and various miRs.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
INTRODUCTION Gastric cancer remains a major cancer burden in the world, with a poor 5-year survival rate. It is necessary to develop new effective therapeutic strategies to improve the long-term clinical outcome. MicroRNA (miRNA), a class of small non-coding RNA, has been identified as a key regulator of gene expression, and is implicated in the pathogenesis of gastric cancer. AREAS COVERED This review summarizes the role of miRNAs in gastric carcinogenesis, with an emphasis on the expression and function of miR-375 in gastric cancer and beyond. It also discusses the opportunities and challenges of miR-375 as a potential therapeutic target for gastric cancer. The genes targeted by miR-375, including JAK2 and 3'-phosphoinositide dependent protein kinase-1 (PDK1), are also candidates for gastric cancer therapy. EXPERT OPINION Although radical surgery and rational chemotherapy are still the main treatment for gastric cancer, targeting miRNAs, in combination with other conventional therapies, may serve as a promising therapy strategy to improve the clinical outcome.
Collapse
Affiliation(s)
- Yanjun Xu
- Zhejiang University School of Medicine, Department of Cell Biology, Program in Molecular Cell Biology, Hangzhou, China
| | | | | | | |
Collapse
|