101
|
Sasaki M, Kumagai H, Takegawa K, Tohda H. Characterization of genome-reduced fission yeast strains. Nucleic Acids Res 2013; 41:5382-99. [PMID: 23563150 PMCID: PMC3664816 DOI: 10.1093/nar/gkt233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Schizosaccharomyces pombe genome is one of the smallest among the free-living eukaryotes. We further reduced the S. pombe gene number by large-scale gene deletion to identify a minimal gene set required for growth under laboratory conditions. The genome-reduced strain has four deletion regions: 168.4 kb in the left arm of chromosome I, 155.4 kb in the right arm of chromosome I, 211.7 kb in the left arm of chromosome II and 121.6 kb in the right arm of chromosome II. The deletions corresponded to a loss of 223 genes of the original ~5100. The quadruple-deletion strain, with a total deletion size of 657.3 kb, showed a decreased ability to uptake glucose and some amino acids in comparison with the parental strain. The strain also showed increased gene expression of the mating pheromone M-factor precursor and the nicotinamide adenine dinucleotide phosphate -specific glutamate dehydrogenase. There was also a 2.7-fold increase in the concentration of cellular adenosine triphosphate, and levels of the heterologous proteins, enhanced green fluorescent protein and secreted human growth hormone were increased by 1.7- and 1.8-fold, respectively. The transcriptome data from this study have been submitted to the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38620 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=vjkxjewuywgcovc&acc=GSE38620).
Collapse
Affiliation(s)
- Mayumi Sasaki
- ASPEX Division, Research Center, Asahi Glass Co, Ltd, Yokohama, Kanagawa 221-8755, Japan
| | | | | | | |
Collapse
|
102
|
Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:897-909. [PMID: 23173928 DOI: 10.1111/tpj.12080] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 05/19/2023]
Abstract
The target of rapamycin (TOR) pathway is a major regulator of growth in all eukaryotes, integrating energy, nutrient and stress signals into molecular decisions. By using large-scale MS-based metabolite profiling of primary, secondary and lipid compounds in combination with array-based transcript profiling, we show that the TOR protein not only regulates growth but also influences nutrient partitioning and central energy metabolism. The study was performed on plants exhibiting conditional down-regulation of AtTOR expression, revealing strong regulation of genes involved in pathways such as the cell cycle, cell-wall modifications and senescence, together with major changes in transcripts and metabolites of the primary and secondary metabolism. In agreement with these results, our morphological and metabolic analyses disclosed major metabolic changes leading to massive accumulations of storage lipids and starch. The implications of these data in the context of the general role of TOR in eukaryotic systems are discussed in parallel with the plant-specific aspects of TOR function. Finally, we propose a role for harnessing the plant TOR pathway by utilizing it as a potent metabolic switch, offering a possible route for biotechnological optimization of plant energy content and carbon partitioning for the production of bioenergy.
Collapse
Affiliation(s)
- Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Nakase Y, Nakase M, Kashiwazaki J, Murai T, Otsubo Y, Mabuchi I, Yamamoto M, Takegawa K, Matsumoto T. Fission yeast Any1, β-arrestin-like protein, is involved in TSC-Rheb signaling and the regulation of amino acid transporters. J Cell Sci 2013; 126:3972-81. [DOI: 10.1242/jcs.128355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rheb GTPase and the Tsc1-Tsc2 protein complex, which serves as a GTPase-activating protein for Rheb, play critical roles in the regulation of cell growth in response to extracellular conditions. In Schizosaccharomyces pombe, Rheb and Tsc1-Tsc2 regulate cell cycle progression, the onset of meiosis, and the uptake of amino acids. In cells lacking Tsc2 (Δtsc2), the amino acid transporter Aat1, which is normally expressed on the plasma membrane under starvation conditions, is confined to the Golgi. Here, we show that the loss of either pub1+, encoding an E3 ubiquitin ligase, or any1+, encoding a β-arrestin-like protein, allows constitutive expression of Aat1 on the plasma membrane in Δtsc2 cells, suggesting that Pub1 and Any1 are required for localization of Aat1 to the Golgi. Subsequent analysis revealed that in the Golgi, Pub1 and Any1 form a complex that ubiquitinates Aat1. Physical interaction of Pub1 and Any1 is more stable in Δtsc2 than in wild-type cells and is independent of Tor2 activity. These results indicate that the TSC-Rheb signaling pathway regulates localization of amino acid transporters via Pub1 and Any1 in Tor2-independent manner. Our study demonstrates that unlike budding yeast in which Rsp5 and ARTs, a pair of proteins analogous to Pub1 and Any1, respectively, primarily act to reduce expression of the transporters on PM when nutrients are abundant, the primary role of fission yeast Pub1 and Any1 is to store the transporter in the Golgi under nutrient-rich conditions.
Collapse
|
104
|
Fission yeast TOR signaling is essential for the down-regulation of a hyperactivated stress-response MAP kinase under salt stress. Mol Genet Genomics 2012; 288:63-75. [PMID: 23271606 DOI: 10.1007/s00438-012-0731-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/13/2012] [Indexed: 01/22/2023]
Abstract
TOR (target of rapamycin) signaling regulates cell growth and division in response to environmental stimuli such as the availability of nutrients and various forms of stress. The vegetative growth of fission yeast cells, unlike other eukaryotic cells, is not inhibited by treatment with rapamycin. We found that certain mutations including pmc1Δ (Ca(2+)-ATPase), cps9-193 (small GTPase, Ryh1) and cps1-12 (1,3-β-D-glucan synthase, Bgs1) confer a rapamycin-sensitive phenotype to cells under salt stress with potassium chloride (>0.5 M). Cytometric analysis revealed that the mutant cells were unable to enter the mitotic cell cycle when treated with the drug under salt stress. Gene cloning and overexpression experiments revealed that the sensitivity to rapamycin was suppressed by the ectopic expression of tyrosine phosphatases, Pyp1 and Pyp2, which are negative regulators of Spc1/Sty1 mitogen-activated protein kinase (MAPK). The level of tyrosine phosphorylation on Spc1 was higher and sustained substantially longer in these mutants than in the wild type under salt stress. The hyperphosphorylation was significantly suppressed by overexpression of pyp1 (+) with concomitant resumption of the mutant cells' growth. In fission yeast, TOR signaling has been thought to stimulate the stress-response pathway, because mutations of TORC2 components such as Tor1, Sin1 and Ste20 result in similar sensitive phenotypes to environmental stress. The present study, however, strongly suggests that TOR signaling is required for the down-regulation of a hyperactivated Spc1 for reentry into the mitotic cell cycle. This finding may shed light on our understanding of a new stress-responsive mechanism in TOR signaling in higher organisms.
Collapse
|
105
|
Krzyzanowski MK, Kozlowska E, Kozlowski P. Identification and functional analysis of the erh1(+) gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe. PLoS One 2012; 7:e49059. [PMID: 23145069 PMCID: PMC3492181 DOI: 10.1371/journal.pone.0049059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 10/07/2012] [Indexed: 11/19/2022] Open
Abstract
The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S.japonicus), but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1(+) is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1(+) have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1(+) in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol), inhibiting DNA replication (hydroxyurea), and destabilizing the plasma membrane (SDS); this hypersensitivity can be abolished by expression of S. pombe erh1(+) and, to a lesser extent, S. japonicus erh1(+) or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1(+) is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation.
Collapse
Affiliation(s)
- Marek K. Krzyzanowski
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Kozlowska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Kozlowski
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
106
|
Valbuena N, Rozalén AE, Moreno S. Fission yeast TORC1 prevents eIF2α phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. J Cell Sci 2012; 125:5955-9. [PMID: 23108671 DOI: 10.1242/jcs.105395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serine 51 phosphorylation of the eukaryotic initiation factor-2α (eIF2α) is an important mechanism involved in blocking general protein synthesis in response to diverse types of stress. In fission yeast, three kinases (Hri1, Hri2 and Gcn2) can phosphorylate eIF2α at serine 51. In this study, we show that Tor2, as part of the TORC1 complex, prevents the phosphorylation of eIF2α in cells growing in the presence of nitrogen and amino acids. Inhibition of TORC1, either by rapamycin treatment, mutation of Tor2 or nitrogen deprivation, induces Gcn2-dependent phosphorylation of eIF2α.
Collapse
Affiliation(s)
- Noelia Valbuena
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/University of Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
107
|
Takahashi H, Sun X, Hamamoto M, Yashiroda Y, Yoshida M. The SAGA histone acetyltransferase complex regulates leucine uptake through the Agp3 permease in fission yeast. J Biol Chem 2012; 287:38158-67. [PMID: 22992726 DOI: 10.1074/jbc.m112.411165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic responses of unicellular organisms are mostly acute, transient, and cell-autonomous. Regulation of nutrient uptake in yeast is one such rapid response. High quality nitrogen sources such as NH(4)(+) inhibit uptake of poor nitrogen sources, such as amino acids. Both transcriptional and posttranscriptional mechanisms operate in nutrient uptake regulation; however, many components of this system remain uncharacterized in the fission yeast, Schizosaccharomyces pombe. Here, we demonstrate that the Spt-Ada-Gcn acetyltransferase (SAGA) complex modulates leucine uptake. Initially, we noticed that a branched-chain amino acid auxotroph exhibits a peculiar adaptive growth phenotype on solid minimal media containing certain nitrogen sources. In fact, the growth of many auxotrophic strains is inhibited by excess NH(4)Cl, possibly through nitrogen-mediated uptake inhibition of the corresponding nutrients. Surprisingly, DNA microarray analysis revealed that the transcriptional reprogramming during the adaptation of the branched-chain amino acid auxotroph was highly correlated with reprogramming observed in deletions of the SAGA histone acetyltransferase module genes. Deletion of gcn5(+) increased leucine uptake in the prototrophic background and rendered the leucine auxotroph resistant to NH(4)Cl. Deletion of tra1(+) caused the opposite phenotypes. The increase in leucine uptake in the gcn5Δ mutant was dependent on an amino acid permease gene, SPCC965.11c(+). The closest budding yeast homolog of this permease is a relatively nonspecific amino acid permease AGP3, which functions in poor nutrient conditions. Our analysis identified the regulation of nutrient uptake as a physiological function for the SAGA complex, providing a potential link between cellular metabolism and chromatin regulation.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
108
|
Nakashima A, Otsubo Y, Yamashita A, Sato T, Yamamoto M, Tamanoi F. Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. J Cell Sci 2012; 125:5840-9. [PMID: 22976295 DOI: 10.1242/jcs.111146] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Target of rapamycin (TOR), an evolutionarily conserved serine/threonine protein kinase, plays pivotal roles in several important cellular processes in eukaryotes. In the fission yeast Schizosaccharomyces pombe, TOR complex 1 (TORC1), which includes Tor2 as a catalytic subunit, manages the switch between cell proliferation and differentiation by sensing nutrient availability. However, little is known about the direct target of TORC1 that plays key roles in nutrient-dependent TORC1 signaling in fission yeast. Here we report that in fission yeast, three AGC kinase family members, named Psk1, Sck1 and Sck2, which exhibit high homology with human S6K1, are phosphorylated under nutrient-rich conditions and are dephosphorylated by starvation conditions. Among these, Psk1 is necessary for phosphorylation of ribosomal protein S6. Furthermore, Psk1 phosphorylation is regulated by TORC1 in nutrient-dependent and rapamycin-sensitive manners in vivo. Three conserved regulatory motifs (the activation loop, the hydrophobic and the turn motifs) in Psk1 are phosphorylated and these modifications are required for Psk1 activity. In particular, phosphorylation of the hydrophobic motif is catalyzed by TORC1 in vivo and in vitro. Ksg1, a homolog of PDK1, is also important for Psk1 phosphorylation in the activation loop and for its activity. The TORC1 components Pop3, Toc1 and Tco89, are dispensable for Psk1 regulation, but disruption of pop3(+) causes an increase in the sensitivity of TORC1 to rapamycin. Taken together, these results provide convincing evidence that TORC1/Psk1/Rps6 constitutes a nutrient-dependent signaling pathway in fission yeast.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
109
|
Davie E, Petersen J. Environmental control of cell size at division. Curr Opin Cell Biol 2012; 24:838-44. [PMID: 22947494 DOI: 10.1016/j.ceb.2012.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/18/2012] [Indexed: 10/27/2022]
Abstract
Tight coupling between cell growth and cell cycle progression allows cells to adjust their size to the demands of proliferation in varying nutrient environments. Target of rapamycin (TOR) signalling pathways co-ordinate cell growth with cell cycle progression in response to altered nutritional availability. To increase cell size the active TOR Complex 1 (TORC1) promotes cell growth to delay mitosis and cell division, whereas under limited nutrients TORC1 activity is decreased to reduce cell size. It remains unclear why cell size is subject to such tight control. Recent evidence suggests that in addition to modulating cell size, changes in nutrient availability also alter nuclear:cytoplasmic (N/C) ratios and may therefore compromise optimal cellular physiology. This could explain why cells increase their size when conditions are favourable, despite being competent to survive at a smaller size if necessary.
Collapse
Affiliation(s)
- Elizabeth Davie
- University of Manchester, C.4255 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
110
|
Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci U S A 2012; 109:14399-404. [PMID: 22908264 DOI: 10.1073/pnas.1210465109] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
African trypanosomes are protozoan parasites transmitted by a tsetse fly vector to a mammalian host. The life cycle includes highly proliferative forms and quiescent forms, the latter being adapted to host transmission. The signaling pathways controlling the developmental switch between the two forms remain unknown. Trypanosoma brucei contains two target of rapamycin (TOR) kinases, TbTOR1 and TbTOR2, and two TOR complexes, TbTORC1 and TbTORC2. Surprisingly, two additional TOR kinases are encoded in the T. brucei genome. We report that TbTOR4 associates with an Armadillo domain-containing protein (TbArmtor), a major vault protein, and LST8 to form a unique TOR complex, TbTORC4. Depletion of TbTOR4 caused irreversible differentiation of the parasite into the quiescent form. AMP and hydrolysable analogs of cAMP inhibited TbTOR4 expression and induced the stumpy quiescent form. Our results reveal unexpected complexity in TOR signaling and show that TbTORC4 negatively regulates differentiation of the proliferative form into the quiescent form.
Collapse
|
111
|
Kim L, Hoe KL, Yu YM, Yeon JH, Maeng PJ. The fission yeast GATA factor, Gaf1, modulates sexual development via direct down-regulation of ste11+ expression in response to nitrogen starvation. PLoS One 2012; 7:e42409. [PMID: 22900017 PMCID: PMC3416868 DOI: 10.1371/journal.pone.0042409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022] Open
Abstract
Gaf1 is the first GATA family zinc-finger transcription factor identified in Schizosaccharomyces pombe. Here, we report that Gaf1 functions as a negatively acting transcription factor of ste11+, delaying the entrance of cells exposed to transient nitrogen starvation into the meiotic cycle. gaf1Δ strains exhibited accelerated G1-arrest upon nitrogen starvation. Moreover, gaf1Δ mutation caused increased mating and sporulation frequency under both nitrogen-starved and unstarved conditions, while overexpression of gaf1+ led to a significant impairment of sporulation. By microarray analysis, we found that approximately 63% (116 genes) of the 183 genes up-regulated in unstarved gaf1Δ cells were nitrogen starvation-responsive genes, and furthermore that 25 genes among the genes up-regulated by gaf1Δ mutation are Ste11 targets (e.g., gpa1+, ste4+, spk1+, ste11+, and mei2+). The phenotype caused by gaf1Δ mutation was masked by ste11Δ mutation, indicating that ste11+ is epistatic to gaf1+ with respect to sporulation efficiency, and accordingly that gaf1+ functions upstream of ste11+ in the signaling pathway governing sexual development. gaf1Δ strains showed accelerated ste11+ expression under nitrogen starvation and increased ste11+ expression even under normal conditions. Electrophoretic mobility shift assay analysis demonstrated that Gaf1 specifically binds to the canonical GATA motif (5′-HGATAR-3′) spanning from −371 to −366 in ste11+ promoter. Consequently, Gaf1 provides the prime example for negative regulation of ste11+ transcription through direct binding to a cis-acting motif of its promoter.
Collapse
Affiliation(s)
- Lila Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Kwang-Lae Hoe
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Yeong Man Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Ji-Hyun Yeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
112
|
Du W, Hálová L, Kirkham S, Atkin J, Petersen J. TORC2 and the AGC kinase Gad8 regulate phosphorylation of the ribosomal protein S6 in fission yeast. Biol Open 2012; 1:884-8. [PMID: 23213482 PMCID: PMC3507231 DOI: 10.1242/bio.20122022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/13/2012] [Indexed: 11/20/2022] Open
Abstract
TOR (Target Of Rapamycin) signalling coordinates cell growth and division in response to changes in the nutritional environment of the cell. TOR kinases form two distinct complexes: TORC1 and TORC2. In mammals, the TORC1 controlled S6K1 kinase phosphorylates the ribosomal protein S6 thereby co-ordinating cell size and nutritional status. We show that the Schizosaccharomyces pombe AGC kinase Gad8 co-immunoprecipitates with the ribosomal protein S6 (Rps6) and regulates its phosphorylation status. It has previously been shown that Gad8 is phosphorylated by TORC2. Consistent with this, we find that TORC2 as well as TORC1 modulates Rps6 phosphorylation. Therefore, S6 phosphorylation in fission yeast actually represents a read-out of the combined activities of TORC1 and TORC2. In contrast, we find that the in vivo phosphorylation status of Maf1 (a repressor of RNA polymerase III) specifically correlates with TORC1 activity.
Collapse
Affiliation(s)
- Wei Du
- University of Manchester, C.4255 Michael Smith building, Faculty of Life Sciences , Oxford Road, Manchester M13 9PT , UK
| | | | | | | | | |
Collapse
|
113
|
Takahara T, Maeda T. TORC1 of fission yeast is rapamycin-sensitive. Genes Cells 2012; 17:698-708. [PMID: 22762302 DOI: 10.1111/j.1365-2443.2012.01618.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
The target of rapamycin (TOR) protein kinase plays central roles in the regulation of cell growth in response to nutritional availability. TOR forms two distinct multiprotein complexes termed TOR complex 1 (TORC1) and TORC2. Typically, only the activity of TORC1 is inhibited by the immunosuppressant rapamycin. Although rapamycin strongly inhibits cell growth of the budding yeast Saccharomyces cerevisiae through inhibition of TORC1, growth of the fission yeast Schizosaccharomyces pombe appears to be resistant to rapamycin. Here, we demonstrate that rapamycin inhibits the kinase activity of S. pombe TORC1 in vitro in a similar manner to TORC1 of other organisms. We furthermore show that incomplete inhibition of TORC1 by rapamycin underlies the apparent rapamycin resistance of S. pombe. In the presence of caffeine, which potentially lowers TORC1 activity, the growth of wild-type S. pombe cells is sensitive to rapamycin in a TORC1-dependent manner. Moreover, treatment of S. pombe cells with rapamycin plus caffeine induces starvation-specific gene expression and autophagy, similarly to cells with reduced TORC1 activity. These results indicate that rapamycin does inhibit TORC1 in S. pombe, but the inhibition is not sufficient to cause a growth defect. These findings establish a universal action of rapamycin on TORC1 inhibition.
Collapse
Affiliation(s)
- Terunao Takahara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
114
|
Otsubo Y, Yamamoto M. Signaling pathways for fission yeast sexual differentiation at a glance. J Cell Sci 2012; 125:2789-93. [DOI: 10.1242/jcs.094771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yoko Otsubo
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masayuki Yamamoto
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
115
|
Lee H, Khanal Lamichhane A, Garraffo HM, Kwon-Chung KJ, Chang YC. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol Microbiol 2012; 84:130-46. [PMID: 22339665 DOI: 10.1111/j.1365-2958.2012.08016.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study shows the importance of PDK1, TOR and PKC signalling pathways to the basal tolerance of Cryptococcus neoformans towards fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1 or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sin1Δ, ypk1Δ and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
116
|
Yanagida M, Ikai N, Shimanuki M, Sajiki K. Nutrient limitations alter cell division control and chromosome segregation through growth-related kinases and phosphatases. Philos Trans R Soc Lond B Biol Sci 2012; 366:3508-20. [PMID: 22084378 PMCID: PMC3203466 DOI: 10.1098/rstb.2011.0124] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In dividing fission yeast Schizosaccharomyces pombe cells, the balance between Wee1 kinase and Cdc25 phosphatase which control the cyclin-dependent kinase (CDK) at the G2-M transition determines the rod-shaped cell length. Under nitrogen source starvation or glucose limitation, however, cell size determination is considerably modulated, and cell size shortening occurs for wild-type cells. For several mutants of kinases or phosphatases, including CDK, target of rapamycin complex (TORC) 1 and 2, stress-responsive mitogen-activated protein kinase (MAPK) Sty1/Spc1, MAPK kinase Wis1, calcium- and calmodulin-dependent protein kinase kinase-like Ssp1, and type 2A and 2A-related phosphatases inhibitor Sds23, this cell shortening does not normally occur. In tor1 and ssp1 mutants, cell elongation is observed. Sds23 that binds to and inhibits 2A and 2A-related phosphatases is synergistic with Ssp1 in the cell size determination and survival under low glucose and nitrogen source. Tor2 (TORC1) is required for growth, whereas Tor1 (TORC2) is needed for determining division size according to different nutrient conditions. Surprisingly, in growth-diminished tor2 mutant or rapamycin-treated cells, the requirement of separase/Cut1-securin/Cut2 essential for chromosome segregation is greatly alleviated. By contrast, defects of tor1 with secruin/cut2 or overproduction of Cut1 are additive. While Tor1 and Tor2 are opposite in their apparent functions, both may actually coordinate cell division with growth in response to the changes in nutrients.
Collapse
Affiliation(s)
- Mitsuhiro Yanagida
- The G0 Cell Unit, Okinawa Institute of Science and Technology Promotion Corporation, Tancha 1919-1, Onna, Okinawa 904-0412, Japan.
| | | | | | | |
Collapse
|
117
|
van Werven FJ, Amon A. Regulation of entry into gametogenesis. Philos Trans R Soc Lond B Biol Sci 2012; 366:3521-31. [PMID: 22084379 DOI: 10.1098/rstb.2011.0081] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gametogenesis is a fundamental aspect of sexual reproduction in eukaryotes. In the unicellular fungi Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast), where this developmental programme has been extensively studied, entry into gametogenesis requires the convergence of multiple signals on the promoter of a master regulator. Starvation signals and cellular mating-type information promote the transcription of cell fate inducers, which in turn initiate a transcriptional cascade that propels a unique type of cell division, meiosis, and gamete morphogenesis. Here, we will provide an overview of how entry into gametogenesis is initiated in budding and fission yeast and discuss potential conserved features in the germ cell development of higher eukaryotes.
Collapse
Affiliation(s)
- Folkert J van Werven
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
118
|
Valbuena N, Guan KL, Moreno S. The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J Cell Sci 2012; 125:1920-8. [PMID: 22344254 DOI: 10.1242/jcs.094219] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rag family of GTPases has been implicated in the TORC1 activation in Drosophila and in mammalian cells in response to amino acids. We have investigated the role of the Rag GTPases Gtr1 and Gtr2 in TORC1 regulation in Schizosaccharomyces pombe. Fission yeast Gtr1 and Gtr2 are non-essential proteins that enhance cell growth in the presence of amino acids in the medium. The function of Gtr1 and Gtr2 in nutrient signaling is further supported by the observation that even in rich medium the deletion of either gene results in the promotion of mating, meiosis and sporulation, consistent with the downregulation of TORC1. We show that Gtr1 and Gtr2 colocalize with TORC1 in vacuoles, where TORC1 is presumably activated. Epistasis analyses indicated that Gtr1 and Gtr2 function downstream of Vam6 and upstream of TORC1 in response to amino acid signals. Our data demonstrate the existence of an evolutionarily conserved pathway with the Vam6 and Gtr1-Gtr2 pathway activating TORC1, which in turns stimulates cell growth and inhibits sexual differentiation.
Collapse
Affiliation(s)
- Noelia Valbuena
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
119
|
Complex formation, phosphorylation, and localization of protein kinase A of Schizosaccharomyces pombe upon glucose starvation. Biosci Biotechnol Biochem 2012; 75:1456-65. [PMID: 21869531 DOI: 10.1271/bbb.110125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nine sam mutants that undergo sexual differentiation without requiring starvation in Schizosaccharomyces pombe were previously isolated. In this study, we identified a nonsense mutation on the pka1 locus in the sam6 mutant. pka1 encodes a catalytic subunit of protein kinase A (PKA). Replacement and overexpression of pka1 suppressed the KCl sensitivity and hyper-mating phenotype of sam6, confirming that sam6 is an allele of pka1. To characterize further the regulation of Pka1, we tested the physical interaction between Pka1 and Cgs1 (a regulatory subunit of PKA). Pka1 and Cgs1 physically interacted under glucose-limited conditions but not under glucose-rich conditions. In addition, the formation of a Pka1-Cgs1 complex was detected under glucose-limited conditions by Blue Native PAGE. Furthermore, the Pka1 protein was found to be phosphorylated under glucose-starved conditions, and at the same time its localization shifted from the nucleus towards the cytoplasm (mainly the vacuoles), suggesting a strong relationship among phosphorylation, complex formation, and the cytoplasmic distribution of Pka1.
Collapse
|
120
|
Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. EUKARYOTIC CELL 2011; 11:168-82. [PMID: 22194462 DOI: 10.1128/ec.05200-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is a major fungal pathogen in humans. In C. albicans, secreted aspartyl protease 2 (Sap2) is the most highly expressed secreted aspartic protease in vitro and is a virulence factor. Recent research links the small GTPase Rhb1 to C. albicans target of rapamycin (TOR) signaling in response to nitrogen availability. The results of this study show that Rhb1 is related to cell growth through the control of SAP2 expression when protein is the major nitrogen source. This process involves various components of the TOR signaling pathway, including Tor1 kinase and its downstream effectors. TOR signaling not only controls SAP2 transcription but also affects Sap2 protein levels, possibly through general amino acid control. DNA microarray analysis identifies other target genes downstream of Rhb1 in addition to SAP2. These findings provide new insight into nutrients, Rhb1-TOR signaling, and expression of C. albicans virulence factor.
Collapse
|
121
|
Sukegawa Y, Yamashita A, Yamamoto M. The fission yeast stress-responsive MAPK pathway promotes meiosis via the phosphorylation of Pol II CTD in response to environmental and feedback cues. PLoS Genet 2011; 7:e1002387. [PMID: 22144909 PMCID: PMC3228818 DOI: 10.1371/journal.pgen.1002387] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 10/04/2011] [Indexed: 01/27/2023] Open
Abstract
The RRM-type RNA-binding protein Mei2 is a master regulator of meiosis in fission yeast, in which it stabilizes meiosis-specific mRNAs by blocking their destruction. Artificial activation of Mei2 can provoke the entire meiotic process, and it is suspected that Mei2 may do more than the stabilization of meiosis-specific mRNAs. In our current study using a new screening system, we show that Mei2 genetically interacts with subunits of CTDK-I, which phosphorylates serine-2 residues on the C-terminal domain of RNA polymerase II (Pol II CTD). Phosphorylation of CTD Ser-2 is essential to enable the robust transcription of ste11, which encodes an HMG-type transcription factor that regulates the expression of mei2 and other genes necessary for sexual development. CTD Ser-2 phosphorylation increases under nitrogen starvation, and the stress-responsive MAP kinase pathway, mediated by Wis1 MAPKK and Sty1 MAPK, is critical for this stress response. Sty1 phosphorylates Lsk1, the catalytic subunit of CTDK-I. Furthermore, a feedback loop stemming from activated Mei2 to Win1 and Wis4 MAPKKKs operates in this pathway and eventually enhances CTD Ser-2 phosphorylation and ste11 transcription. Hence, in addition to starting meiosis, Mei2 functions to reinforce the commitment to it, once cells have entered this process. This study also demonstrates clearly that the stress-responsive MAP kinase pathway can modulates gene expression through phosphorylation of Pol II CTD. Hundreds of genes are newly expressed during meiosis, a process to form gametes, and the control of meiosis-specific gene expression is not simple. The master regulator of meiosis in fission yeast, Mei2, blocks an RNA destruction system that selectively degrades meiosis-specific mRNAs, highlighting the importance of post-transcriptional control in meiotic gene expression. Here we present another example of unforeseen regulation for meiosis. Ste11 is a key transcription factor responsible for the early meiotic gene expression in fission yeast. The ste11 gene is transcribed robustly only when serine-2 residues on the C-terminal domain (CTD Ser-2) of RNA polymerase II are phosphorylated. We show that the stress-responsive MAP kinase cascade transmits the environmental signal to stimulate CTD Ser-2 phosphorylation. Sty1 MAP kinase appears to phosphorylate and activate the catalytic subunit of CTDK-I, which in turn phosphorylates CTD Ser-2. We demonstrate further that Mei2, expression of which depends on Ste11, can activate the MAP kinase cascade, forming a feedback loop. Thus, we clarify here three important issues in cellular development: the physiological role of CTD Ser-2 phosphorylation, the molecular function of the stress-responsive MAP kinase pathway, and the presence of positive feedback that reinforces the commitment to meiosis.
Collapse
Affiliation(s)
- Yuko Sukegawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Akira Yamashita
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
122
|
Schinko T, Berger H, Lee W, Gallmetzer A, Pirker K, Pachlinger R, Buchner I, Reichenauer T, Güldener U, Strauss J. Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol 2010; 78:720-38. [PMID: 20969648 PMCID: PMC3020322 DOI: 10.1111/j.1365-2958.2010.07363.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
Nitrate is a dominant form of inorganic nitrogen (N) in soils and can be efficiently assimilated by bacteria, fungi and plants. We studied here the transcriptome of the short-term nitrate response using assimilating and non-assimilating strains of the model ascomycete Aspergillus nidulans. Among the 72 genes positively responding to nitrate, only 18 genes carry binding sites for the pathway-specific activator NirA. Forty-five genes were repressed by nitrate metabolism. Because nirA(-) strains are N-starved at nitrate induction conditions, we also compared the nitrate transcriptome with N-deprived conditions and found a partial overlap of differentially regulated genes between these conditions. Nitric oxide (NO)-metabolizing flavohaemoglobins were found to be co-regulated with nitrate assimilatory genes. Subsequent molecular characterization revealed that the strongly inducible FhbA is required for full activity of nitrate and nitrite reductase enzymes. The co-regulation of NO-detoxifying and nitrate/nitrite assimilating systems may represent a conserved mechanism, which serves to neutralize nitrosative stress imposed by an external NO source in saprophytic and pathogenic fungi. Our analysis using membrane-permeable NO donors suggests that signalling for NirA activation only indirectly depends on the nitrate transporters NrtA (CrnA) and NrtB (CrnB).
Collapse
Affiliation(s)
- Thorsten Schinko
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Harald Berger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Wanseon Lee
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Andreas Gallmetzer
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Robert Pachlinger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Ingrid Buchner
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| |
Collapse
|
123
|
Tatebe H, Morigasaki S, Murayama S, Zeng CT, Shiozaki K. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr Biol 2010; 20:1975-82. [PMID: 21035342 DOI: 10.1016/j.cub.2010.10.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 10/11/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND From yeast to human, TOR (target of rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regulators. RESULTS We have identified the Ryh1 GTPase, a human Rab6 ortholog, as an activator of TORC2 signaling in the fission yeast Schizosaccharomyces pombe. Mutational inactivation of Ryh1 or its guanine nucleotide exchange factor compromises the TORC2-dependent phosphorylation of the AGC-family Gad8 kinase. In addition, the effector domain of Ryh1 is important for its physical interaction with TORC2 and for stimulation of TORC2 signaling. Thus, GTP-bound Ryh1 is likely to be the active form stimulatory to TORC2-Gad8 signaling. Consistently, expression of the GTP-locked mutant Ryh1 is sufficient to promote interaction between TORC2 and Gad8 and to induce Gad8 hyperphosphorylation. The loss of functional Ryh1, TORC2, or Gad8 brings about similar vacuolar fragmentation and stress sensitivity, further corroborating their involvement in a common cellular process. Human Rab6 can substitute Ryh1 in S. pombe, and therefore Rab6 may be a potential activator of TORC2 in mammals. CONCLUSIONS In its GTP-bound form, Ryh1, an evolutionarily conserved Rab GTPase, activates TORC2 signaling to the AGC kinase Gad8. The Ryh1 GTPase and the TORC2-Gad8 pathway are required for vacuolar integrity and cellular stress resistance in S. pombe.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Department of Microbiology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
124
|
Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 2010; 11:510. [PMID: 20863387 PMCID: PMC2997006 DOI: 10.1186/1471-2164-11-510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.
Collapse
Affiliation(s)
- Cecelia A Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
125
|
Valbuena N, Moreno S. TOR and PKA pathways synergize at the level of the Ste11 transcription factor to prevent mating and meiosis in fission yeast. PLoS One 2010; 5:e11514. [PMID: 20634885 PMCID: PMC2901329 DOI: 10.1371/journal.pone.0011514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background In the fission yeast Schizosaccharomyces pombe, the TOR (target of rapamycin) and PKA (protein kinase A) signaling transduction pathways regulate the expression of genes required for cell growth and sexual differentiation in response to the nutritional environment. Inhibition of Tor2 signaling results in the induction of genes involved in sexual differentiation, and the cells undergo mating and meiosis, even under good nutritional conditions. The same phenotype is observed in mutants in which the PKA pathway is inactive. By contrast, Tor2 overexpression or mutations that hyperactivate PKA signaling impair sexual differentiation, even under poor nutritional conditions. Accordingly, a very important question is to understand the molecular mechanism by which these two pathways coordinately regulate gene expression in response to nutrients. Methodology/Principal Findings Here we demonstrate that TOR and PKA pathways operate coordinately to negatively regulate sexual differentiation by inhibiting the nuclear accumulation of the Ste11 transcription factor. However, the Tor2 pathway is unable to block the nuclear localization of Ste11 under good nutritional conditions when the PKA pathway is inactive. Using microarray analyses, we found that both pathways inhibit sexual differentiation by blocking ste11-dependent gene expression. Conclusions/Significance We conclude that both the PKA and the TOR pathways inhibit Ste11 nuclear accumulation to repress Ste11-dependent gene expression. However, the PKA pathway plays a quantitatively more important role than the TOR pathway in this process.
Collapse
Affiliation(s)
- Noelia Valbuena
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Salamanca University, Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Salamanca University, Salamanca, Spain
- * E-mail:
| |
Collapse
|
126
|
Chardwiriyapreecha S, Mukaiyama H, Sekito T, Iwaki T, Takegawa K, Kakinuma Y. Avt5p is required for vacuolar uptake of amino acids in the fission yeastSchizosaccharomycespombe. FEBS Lett 2010; 584:2339-45. [DOI: 10.1016/j.febslet.2010.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
127
|
Nakashima A, Sato T, Tamanoi F. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci 2010; 123:777-86. [PMID: 20144990 DOI: 10.1242/jcs.060319] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. pombe using the phospho-Akt substrate antibody. Response of p27 phosphorylation to nitrogen availability is mediated by TORC1 and the TSC-Rhb1 signaling, but not by TORC2 or other nutrient stress-related pathways. Database and biochemical analyses indicate that p27 is identical to ribosomal protein S6 (Rps6). Ser235 and Ser236 in Rps6 are necessary for Rps6 phosphorylation by TORC1. These Rps6 phosphorylations are dispensable for cell viability. Rps6 phosphorylation by TORC1 also responds to availability of glucose and is inhibited by osmotic and oxidative stresses. Rapamycin inhibits the ability of TORC1 to phosphorylate Rps6, owing to interaction of the rapamycin-FKBP12 complex with the FRB domain in Tor2. Rapamycin also leads to a decrease in cell size in a TORC1-dependent manner. Our findings demonstrate that the nutrient-responsive and rapamycin-sensitive TORC1-S6 signaling exists in S. pombe, and that this pathway plays a role in cell size control.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
128
|
Yamamoto M. The selective elimination of messenger RNA underlies the mitosis-meiosis switch in fission yeast. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:788-97. [PMID: 20948174 PMCID: PMC3037521 DOI: 10.2183/pjab.86.788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis-meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions including the nutrient status converge on the activity of an RRM-type RNA-binding protein, Mei2. This protein plays pivotal roles in both the induction and progression of meiosis and has now been found to govern the meiotic program in a quite unexpected manner. Fission yeast contains an RNA degradation system that selectively eliminates meiosis-specific mRNAs during the mitotic cell cycle. Mmi1, a novel RNA-binding protein of the YTH-family, is essential for this process. Mei2 tethers Mmi1 and thereby stabilizes the transcripts necessary for the progression of meiosis.
Collapse
Affiliation(s)
- Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
129
|
Abstract
The TSC/Rheb/TORC1/S6K/S6 signaling pathway plays critical roles in regulating protein synthesis and growth in eukaryotes. Our recent work using fission yeast Schizosaccharomyces pombe revealed that this signaling pathway is conserved from humans to fission yeast. In addition to target of rapamycin (TOR) homologsand tuberous sclerosis complex (TSC) homologs, fission yeast but not budding yeast, has a functional homolog of Rheb, a small G-protein acting as an activator of TOR complex 1 (TORC1). Several lines of genetic evidence suggest that the Tsc1-Tsc2 complex and Rheb act as upstream players of TORC1 in fission yeast. We have recently demonstrated that TORC1, but not TORC2, regulates phosphorylation of ribosomal protein S6 in response to nutrient availability. Candidate S6 kinase (S6K) protein has been identified. In addition, we find that rapamycin prevents a subset of TORC1 activity to regulate S6 phosphorylation in fission yeast.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics Molecular Biology Institute, Jonsson Comprehensive Cancer Center University of California, Los Angeles, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics Molecular Biology Institute, Jonsson Comprehensive Cancer Center University of California, Los Angeles, California, USA
| |
Collapse
|
130
|
Mukaiyama H, Nakase M, Nakamura T, Kakinuma Y, Takegawa K. Autophagy in the fission yeast Schizosaccharomyces pombe. FEBS Lett 2009; 584:1327-34. [PMID: 20036658 DOI: 10.1016/j.febslet.2009.12.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/18/2009] [Accepted: 12/18/2009] [Indexed: 02/03/2023]
Abstract
Autophagy is a non-selective degradation process in eukaryotic cells. The genome sequence of the fission yeast Schizosaccharomyces pombe has revealed that many of the genes required for autophagy are common between the fission yeast and budding yeast, suggesting that the basic machinery of autophagy is conserved between these species. Autophagy in fission yeast is specifically induced by nitrogen starvation based on monitoring a GFP-Atg8p marker. Upon nitrogen starvation, fission yeast cells exit the vegetative cell cycle and initiate sexual differentiation to produce spores. Most of the nitrogen used for de novo protein synthesis during sporulation derives from the autophagic protein degradation system. This review focuses on the recent advances in the role of autophagy in fission yeast.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
131
|
Yanagida M. Cellular quiescence: are controlling genes conserved? Trends Cell Biol 2009; 19:705-15. [PMID: 19833516 DOI: 10.1016/j.tcb.2009.09.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/16/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|
132
|
TOR signaling in invertebrates. Curr Opin Cell Biol 2009; 21:825-36. [DOI: 10.1016/j.ceb.2009.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 01/31/2023]
|
133
|
Cybulski N, Hall MN. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 2009; 34:620-7. [PMID: 19875293 DOI: 10.1016/j.tibs.2009.09.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/15/2022]
|
134
|
Abstract
For decades, the fission yeast Schizosaccharomyces pombe has been used as an excellent model with which to explore how cellular growth is coordinated with the division cycle, a yet-unanswered question in biology. New studies in this organism show that TOR (target of rapamycin) kinase and stress-responsive MAPK (mitogen-activated protein kinase) form a signaling pathway that readjusts the timing of mitotic onset in response to poor nutrient conditions. Nutritional environment appears to be translated into graded activity of the protein kinases that influence the activation of Cdc2, a cyclin-dependent kinase driving cell-cycle progression.
Collapse
Affiliation(s)
- Kazuhiro Shiozaki
- Department of Microbiology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
135
|
Reconstruction of signaling networks regulating fungal morphogenesis by transcriptomics. EUKARYOTIC CELL 2009; 8:1677-91. [PMID: 19749177 DOI: 10.1128/ec.00050-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coordinated control of hyphal elongation and branching is essential for sustaining mycelial growth of filamentous fungi. In order to study the molecular machinery ensuring polarity control in the industrial fungus Aspergillus niger, we took advantage of the temperature-sensitive (ts) apical-branching ramosa-1 mutant. We show here that this strain serves as an excellent model system to study critical steps of polar growth control during mycelial development and report for the first time a transcriptomic fingerprint of apical branching for a filamentous fungus. This fingerprint indicates that several signal transduction pathways, including TORC2, phospholipid, calcium, and cell wall integrity signaling, concertedly act to control apical branching. We furthermore identified the genetic locus affected in the ramosa-1 mutant by complementation of the ts phenotype. Sequence analyses demonstrated that a single amino acid exchange in the RmsA protein is responsible for induced apical branching of the ramosa-1 mutant. Deletion experiments showed that the corresponding rmsA gene is essential for the growth of A. niger, and complementation analyses with Saccharomyces cerevisiae evidenced that RmsA serves as a functional equivalent of the TORC2 component Avo1p. TORC2 signaling is required for actin polarization and cell wall integrity in S. cerevisiae. Congruently, our microscopic investigations showed that polarized actin organization and chitin deposition are disturbed in the ramosa-1 mutant. The integration of the transcriptomic, genetic, and phenotypic data obtained in this study allowed us to reconstruct a model for cellular events involved in apical branching.
Collapse
|
136
|
Paul SK, Oowatari Y, Kawamukai M. A large complex mediated by Moc1, Moc2 and Cpc2 regulates sexual differentiation in fission yeast. FEBS J 2009; 276:5076-93. [PMID: 19682301 DOI: 10.1111/j.1742-4658.2009.07204.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual differentiation in Schizosaccharomyces pombe is triggered by nutrient starvation and is downregulated by cAMP. Screening programs have identified the moc1/sds23, moc2/ded1, moc3 and moc4/zfs1 genes as inducers of sexual differentiation, even in the presence of elevated levels of cAMP. To investigate possible interactions among Moc1, Moc2, Moc3 and Moc4 proteins, we first screened for individual Moc-interacting proteins using the yeast two-hybrid system and verified the interactions with other Moc proteins. Using this screening process, Cpc2 and Rpl32-2 were highlighted as factors involved in interactions with multiple Moc proteins. Cpc2 interacted with Moc1, Moc2 and Moc3, whereas the ribosomal protein Rpl32-2 interacted with all Moc proteins in the two-hybrid system. Physical interactions of Cpc2 with Moc1, Moc2 and Rpl32-2, and of Rpl32-2 with Moc2 were confirmed by coimmunoprecipitation. In addition, using Blue Native/PAGE, we revealed that each Moc protein exists as a large complex. Overexpression of Moc1, Moc2, Moc3, Moc4 and Rpl32-2 resulted in the efficient induction of a key transcription factor Ste11, suggesting that all proteins tested are positive regulators of Ste11. Considering that Moc2/Ded1 is a general translation factor and that Cpc2 associates with many ribosomal proteins, including Rpl32-2, it is possible that a large Moc-mediated complex, detected in this study, may act as a translational regulator involved in the control of sexual differentiation in S. pombe through the induction of Ste11.
Collapse
Affiliation(s)
- Swapan Kumar Paul
- Department of Applied Bioscience and Biotechnology, Shimane University, Matsue, Japan
| | | | | |
Collapse
|
137
|
Distinctive responses to nitrogen starvation in the dominant active mutants of the fission yeast Rheb GTPase. Genetics 2009; 183:517-27. [PMID: 19620394 DOI: 10.1534/genetics.109.105379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rheb, a Ras-like small GTPase conserved from human to yeast, controls Tor kinase and plays a central role in the regulation of cell growth depending on extracellular conditions. Rhb1 (a fission yeast homolog of Rheb) regulates amino acid uptake as well as response to nitrogen starvation. In this study, we generated two mutants, rhb1-DA4 and rhb1-DA8, and characterized them genetically. The V17A mutation within the G1 box defined for the Ras-like GTPases was responsible for rhb1-DA4 and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events--the induction of the meiosis-initiating gene mei2+ and cell division without cell growth--are a typical response to nitrogen starvation. Under nitrogen-rich conditions, Rheb stimulates Tor kinase, which, in turn, suppresses the response to nitrogen starvation. While amino acid uptake was prevented by both rhb1-DA4 and rhb1-DA8 in a dominant fashion, the response to nitrogen starvation was prevented only by rhb1-DA4. rhb1-DA8 thereby allowed genetic dissection of the Rheb-dependent signaling cascade. We postulate that the signaling cascade may branch below Rhb1 or Tor2 and regulate the amino acid uptake and response to nitrogen starvation independently.
Collapse
|
138
|
TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions. Mol Cell Biol 2009; 29:4584-94. [PMID: 19546237 DOI: 10.1128/mcb.01879-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Target Of Rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol-3-kinase-related kinases (PIKKs). TOR proteins are found at the core of two distinct evolutionarily conserved complexes, TORC1 and TORC2. Disruption of TORC1 or TORC2 results in characteristically dissimilar phenotypes. TORC1 is a major cell growth regulator, while the cellular roles of TORC2 are not well understood. In the fission yeast Schizosaccharomyces pombe, Tor1 is a component of the TORC2 complex, which is particularly required during starvation and various stress conditions. Our genome-wide gene expression analysis of Deltator1 mutants indicates an extensive similarity with chromatin structure mutants. Consistently, TORC2 regulates several chromatin-mediated functions, including gene silencing, telomere length maintenance, and tolerance to DNA damage. These novel cellular roles of TORC2 are rapamycin insensitive. Cells lacking Tor1 are highly sensitive to the DNA-damaging drugs hydroxyurea (HU) and methyl methanesulfonate, similar to mutants of the checkpoint kinase Rad3 (ATR). Unlike Rad3, Tor1 is not required for the cell cycle arrest in the presence of damaged DNA. Instead, Tor1 becomes essential for dephosphorylation and reactivation of the cyclin-dependent kinase Cdc2, thus allowing reentry into mitosis following recovery from DNA replication arrest. Taken together, our data highlight critical roles for TORC2 in chromatin metabolism and in promoting mitotic entry, most notably after recovery from DNA-damaging conditions. These data place TOR proteins in line with other PIKK members, such as ATM and ATR, as guardians of genome stability.
Collapse
|
139
|
Hartmuth S, Petersen J. Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J Cell Sci 2009; 122:1737-46. [PMID: 19417002 DOI: 10.1242/jcs.049387] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TOR signalling coordinates growth and division to control cell size. Inhibition of Schizosaccharomyces pombe Tor1, in response to a reduction in the quality of the nitrogen source (nutrient stress), promotes mitotic onset through activation of the mitogen-activated protein kinase (MAPK) Sty1 (also known as Spc1). Here we show that ;nutrient starvation' (complete withdrawal of nitrogen or leucine) blocks mitotic commitment by altering Sty1 signalling and that different degrees of Sty1 activation determine these differences in mitotic commitment decisions. Mammals contain one TOR kinase, whereas yeasts contain two. In each case, they comprise two distinct complexes: TORC1 and TORC2. We find that nutrient-stress-induced control of mitotic onset, through Tor1, is regulated through changes in TORC1 signalling. In minimal medium, Tor1 interacts with the TORC1 component Mip1 (raptor), and overexpression of tor1+ generates growth defects reminiscent of TORC1 mutants. Strains lacking the TORC2-specific components Sin1 and Ste20 (rictor) still advance mitotic onset in response to nutrient stress. By contrast, Mip1 and the downstream effector Gad8 (a S6K kinase homologue), like Tor1, are essential for nutrient stress to advance mitotic onset. We conclude that S. pombe Tor1 and Tor2 can both act in TORC1. However, it is the inhibition of Tor1 as part of TORC1 that promotes mitosis following nutrient stress.
Collapse
Affiliation(s)
- Sonya Hartmuth
- University of Manchester, Faculty of Life Sciences, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
140
|
Helmlinger D, Marguerat S, Villén J, Gygi SP, Bähler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev 2009; 22:3184-95. [PMID: 19056896 DOI: 10.1101/gad.1719908] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SAGA complex is a conserved multifunctional coactivator known to play broad roles in eukaryotic transcription. To gain new insights into its functions, we performed biochemical and genetic analyses of SAGA in the fission yeast, Schizosaccharomyces pombe. Purification of the S. pombe SAGA complex showed that its subunit composition is identical to that of Saccharomyces cerevisiae. Analysis of S. pombe SAGA mutants revealed that SAGA has two opposing roles regulating sexual differentiation. First, in nutrient-rich conditions, the SAGA histone acetyltransferase Gcn5 represses ste11(+), which encodes the master regulator of the mating pathway. In contrast, the SAGA subunit Spt8 is required for the induction of ste11(+) upon nutrient starvation. Chromatin immunoprecipitation experiments suggest that these regulatory effects are direct, as SAGA is physically associated with the ste11(+) promoter independent of nutrient levels. Genetic tests suggest that nutrient levels do cause a switch in SAGA function, as spt8Delta suppresses gcn5Delta with respect to ste11(+) derepression in rich medium, whereas the opposite relationship, gcn5Delta suppression of spt8Delta, occurs during starvation. Thus, SAGA plays distinct roles in the control of the switch from proliferation to differentiation in S. pombe through the dynamic and opposing activities of Gcn5 and Spt8.
Collapse
Affiliation(s)
- Dominique Helmlinger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
141
|
TOR signalling regulates mitotic commitment through stress-activated MAPK and Polo kinase in response to nutrient stress. Biochem Soc Trans 2009; 37:273-7. [PMID: 19143645 DOI: 10.1042/bst0370273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell growth and cell division are coupled to control cell size and this co-ordination is often modulated by the availability of nutrients. In many eukaryotes, TOR (target of rapamycin) signalling is involved in coupling nutrient sensing to cell growth and division controls. Nutrient stress inhibits TOR signalling to advance the timing of cell division and thus leads to continued cell division at reduced cell size. Most changes in the environment stimulate stress-activated MAPK (mitogen-activated protein kinase) signalling pathways. Several MAPKs also have a general role in the control of mitotic onset and cell division. In the present paper, I discuss the interplay between two major signalling pathways, the TOR and the stress MAPK signalling pathways, in controlling mitotic commitment, with the main focus being on fission yeast (Schizosaccharomyces pombe).
Collapse
|
142
|
Bastidas RJ, Heitman J, Cardenas ME. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 2009; 5:e1000294. [PMID: 19197361 PMCID: PMC2631134 DOI: 10.1371/journal.ppat.1000294] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/09/2009] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic cell growth is coordinated in response to nutrient availability, growth factors, and environmental stimuli, enabling cell–cell interactions that promote survival. The rapamycin-sensitive Tor1 protein kinase, which is conserved from yeasts to humans, participates in a signaling pathway central to cellular nutrient responses. To gain insight into Tor-mediated processes in human fungal pathogens, we have characterized Tor signaling in Candida albicans. Global transcriptional profiling revealed evolutionarily conserved roles for Tor1 in regulating the expression of genes involved in nitrogen starvation responses and ribosome biogenesis. Interestingly, we found that in C. albicans Tor1 plays a novel role in regulating the expression of several cell wall and hyphal specific genes, including adhesins and their transcriptional repressors Nrg1 and Tup1. In accord with this transcriptional profile, rapamycin induced extensive cellular aggregation in an adhesin-dependent fashion. Moreover, adhesin gene induction and cellular aggregation of rapamycin-treated cells were strongly dependent on the transactivators Bcr1 and Efg1. These findings support models in which Tor1 negatively controls cellular adhesion by governing the activities of Bcr1 and Efg1. Taken together, these results provide evidence that Tor1-mediated cellular adhesion might be broadly conserved among eukaryotic organisms. Living organisms have an intrinsic ability to coordinate their growth and proliferation in response to nutrient availability. In organisms ranging from yeasts to humans, the Tor1 signaling pathway responds to nutrient-derived signals and orchestrates cell growth. Accordingly, we find that in the human fungal pathogen Candida albicans, Tor1 signaling also functions to promote growth. We also uncovered a novel role for the Tor1 molecular pathway in promoting hyphal growth of C. albicans on semi-solid surfaces and in controlling cell–cell adherence. Gene expression analysis and genetic manipulations implicate the known cell surface adhesins Als1 and Als3 as mediators of Tor1-regulated cellular adhesion. Further genetic analysis identified the transcriptional regulators Bcr1, Efg1, Nrg1, and Tup1 that together with Tor1 compose a regulatory network governing adhesin gene expression and cellular adhesion. Given that the Tor pathway is the target of several small molecule inhibitors including rapamycin, a versatile pharmacological drug used in medicine, there is considerable interest in Tor signaling pathways and their function. Moreover, given the potent fungicidal activity of rapamycin against C. albicans, novel antifungal therapies remain to be developed, which may also include novel antifungal therapies with less immunosuppressive rapamycin analogs.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
143
|
Abstract
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways.
Collapse
Affiliation(s)
- Yoko Otsubo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|
144
|
Abstract
The target of rapamycin (TOR) is a protein kinase with numerous functions in cell growth control. Some of these functions can be potently inhibited by rapamycin, an immunosuppressive and potential anticancer drug. TOR exists as part of two functionally distinct protein complexes. The functions of TOR complex 1 (TORC1) are effectively inhibited by rapamycin, but the mechanism for this inhibition remains elusive. The identification of TORC2 and recent reports that rapamycin can inhibit TORC2 functions, in some cases, challenge current models of TOR regulation. This review discusses the latest findings in yeast and mammals on the possible mechanisms that control TOR activity leading to its many cellular functions
Collapse
Affiliation(s)
- Estela Jacinto
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
145
|
Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci U S A 2008; 105:14579-84. [PMID: 18796613 DOI: 10.1073/pnas.0802668105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Target of rapamycin (TOR) kinases control cell growth through two functionally distinct multiprotein complexes. TOR complex 1 (TORC1) controls temporal cell growth and is sensitive to rapamycin, whereas TOR complex 2 (TORC2) is rapamycin resistant and regulates spatial cell growth. Here, we identified two TOR orthologues, TbTOR1 and TbTOR2, in the protozoan parasite Trypanosoma brucei, as well as orthologues of the well-known TORC1 and TORC2 partners, KOG1/raptor and AVO3/rictor. TbTOR proteins differ in their functions, subcellular localization, and rapamycin sensitivity. TbTOR1 controls cell growth by regulating cell cycle, nucleolus structure, and protein synthesis, whereas TbTOR2 coordinates cell polarization and cytokinesis. Rapamycin treatment of bloodstream trypanosomes resulted in a pronounced reduction of cell proliferation, with an EC(50) of 152 nM. Unique for a eukaryote, we observed that rapamycin acted exclusively by preventing TORC2 formation, with no effect on TORC1. Our findings on TOR signaling in this protozoan, which is located in a distal position in the eukaryotic cell lineage, highlight the clinical possibilities of rapamycin derivates and provide valuable insights into understanding rapamycin-mediated inhibition of TORC2.
Collapse
|
146
|
The Tsc/Rheb signaling pathway controls basic amino acid uptake via the Cat1 permease in fission yeast. Mol Genet Genomics 2008; 279:441-50. [PMID: 18219492 DOI: 10.1007/s00438-008-0320-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
The Tsc/Rheb signaling pathway plays critical roles in the control of growth and cell cycle. Studies in fission yeast have also implicated its importance in the regulation of amino acid uptake. Disruption of tsc2+, one of the tsc+ genes, has been shown to result in decreased arginine uptake and resistance to canavanine. A similar effect is also seen with other basic amino acids. We have identified a permease responsible for the uptake of basic amino acids by genetic complementation and disruption. SPAC869.11 (termed Cat1 for cationic amino acid transporter) contains 12 predicted transmembrane domains and its overexpression in wild type fission yeast leads to the increased uptake of basic amino acids and sensitivity to canavanine. Disruption of cat1+ in the deltatsc2 background interfered with the suppression of the canavanine-resistant phenotype of Atsc2 mutants by a dominant negative Rheb. In deltatsc2 mutant strains, the amount of Cat1 was not altered, but instead was mislocalized. This mislocalization was suppressed by the expression of dominant negative Rheb. In addition, we found that the loss of the E3 ubiquitin ligase, Pub1, also restores proper localization. These results provide a crucial link between Tsc/Rheb signaling and the regulation of the basic amino acid permease in fission yeast.
Collapse
|
147
|
Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME. Signaling cascades as drug targets in model and pathogenic fungi. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2008; 9:856-864. [PMID: 18666033 PMCID: PMC2715221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microbes evolved to produce natural products that inhibit growth of competing soil microorganisms. In many cases these compounds act on fungi, which are eukaryotes with conserved gene sequences closely related to metazoans, including humans. The calcineurin inhibitors cyclosporin A and FK-506, the Tor inhibitor rapamycin, and the Hsp90 inhibitor geldanamycin, all act via targets conserved from yeast to humans. This allows the use of genetically tractable fungi as models to elucidate how these drugs and their targets function in yeast and human cells. These inhibitors also enable studies aimed at harnessing their intrinsic antimicrobial activities to develop novel antifungal therapies. Extensive studies have revealed a globally conserved role for the Tor protein in regulating growth and proliferation in response to nutrients, and targeting its essential functions results in robust antifungal action. Similarly, a conserved and essential role for calcineurin in fungal virulence has been established and could be targeted by inhibitors for therapeutic uses in a variety of clinical settings. Finally, the discovery that inhibitors of calcineurin or Hsp90 result in dramatic synergism with either azoles or glucan synthase inhibitors (candins) provides another therapeutic vantage point. Taken together, these fungal targets and their inhibitors provide a robust platform from which to develop novel antimicrobial therapies.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Jennifer L Reedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Helena Morales-Johansson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| |
Collapse
|
148
|
Oh Y, Donofrio N, Pan H, Coughlan S, Brown DE, Meng S, Mitchell T, Dean RA. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 2008; 9:R85. [PMID: 18492280 PMCID: PMC2441471 DOI: 10.1186/gb-2008-9-5-r85] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/18/2008] [Accepted: 05/20/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood. RESULTS We analyzed genome-wide gene expression changes during spore germination and appressorium formation on a hydrophobic surface compared to induction by cAMP. During spore germination, 2,154 (approximately 21%) genes showed differential expression, with the majority being up-regulated. During appressorium formation, 357 genes were differentially expressed in response to both stimuli. These genes, which we refer to as appressorium consensus genes, were functionally grouped into Gene Ontology categories. Overall, we found a significant decrease in expression of genes involved in protein synthesis. Conversely, expression of genes associated with protein and amino acid degradation, lipid metabolism, secondary metabolism and cellular transportation exhibited a dramatic increase. We functionally characterized several differentially regulated genes, including a subtilisin protease (SPM1) and a NAD specific glutamate dehydrogenase (Mgd1), by targeted gene disruption. These studies revealed hitherto unknown findings that protein degradation and amino acid metabolism are essential for appressorium formation and subsequent infection. CONCLUSION We present the first comprehensive genome-wide transcript profile study and functional analysis of infection structure formation by a fungal plant pathogen. Our data provide novel insight into the underlying molecular mechanisms that will directly benefit efforts to identify fungal pathogenicity factors and aid the development of new disease management strategies.
Collapse
Affiliation(s)
- Yeonyee Oh
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| | - Nicole Donofrio
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
- Current address: University of Delaware, Department of Plant and Soil Science, Newark, DE 19716, USA
| | - Huaqin Pan
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
- Current address: RTI international, Research Triangle Park, NC 27709-2194, USA
| | - Sean Coughlan
- Agilent Technologies, Little Falls, DE 19808-1644, USA
| | - Douglas E Brown
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| | - Shaowu Meng
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| | - Thomas Mitchell
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
- Current address: Ohio State University, Department of Plant Pathology, Columbus, OH 43210, USA
| | - Ralph A Dean
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, NC 27695-7251, USA
| |
Collapse
|
149
|
Song SH, Lim CJ. Nitrogen depletion causes up-regulation of glutathione content and gamma-glutamyltranspeptidase in Schizosaccharomyces pombe. J Microbiol 2008; 46:70-4. [PMID: 18337696 DOI: 10.1007/s12275-007-0244-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This work aims to elucidate the relationship between nitrogen depletion and Glutathione (GSH) level in Schizosaccharomyces pombe. The total GSH level was much higher in the Pap1-positive KP1 cells than in the Pap1-negative TP108-3C cells, suggesting that synthesis of GSH is dependent on Pap1. When the Pap1-positive KP1 cells were transferred to the nitrogen-depleted medium, total GSH level significantly increased up to 6 h and then slightly declined after 9 h. Elevation of the total GSH level was observed to be much less with the Pap1-negative cells. However, glucose deprivation was not able to enhance the GSH level in the KP1 cells. Activity of gamma-glutamyltranspeptidase (gamma-GT), an enzyme in the first step of GSH catabolism, also increased during nitrogen depletion. The total GSH level was more significantly enhanced in the KP1 cells overexpressing gamma-GT2 than gamma-GT1 during nitrogen starvation. Reactive oxygen species (ROS) levels were not changed during nitrogen starvation in both Pap1-positive and Pap1-negative cells. Collectively, nitrogen depletion causes up-regulation of GSH synthesis and gamma-GT in a Pap1-dependent manner.
Collapse
Affiliation(s)
- Seung-Hyun Song
- Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | |
Collapse
|
150
|
Abstract
The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.
Collapse
|