101
|
Xu Y, Liu L, Lopez-Estraño C, Michaeli S. Expression studies on clustered trypanosomatid box C/D small nucleolar RNAs. J Biol Chem 2001; 276:14289-98. [PMID: 11278327 DOI: 10.1074/jbc.m007007200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed three chromosomal loci of the trypanosomatid Leptomonas collosoma encoding box C/D small nucleolar RNAs (snoRNAs). All the snoRNAs that were analyzed here carry two sequences complementary to rRNA target sites and obey the +5 rule for guide methylation. Studies on transgenic parasites carrying the snoRNA-2 gene in the episomal expression vector (pX-neo) indicated that no promoter activity was found immediately adjacent to this gene. Deleting the flanking sequences of snoRNA-2 affected the expression; in the absence of the 3'-flanking (but not 5'-flanking) sequence, the expression was almost completely abolished. The snoRNA genes are transcribed as polycistronic RNA. All snoRNAs can be folded into a common stem-loop structure, which may play a role in processing the polycistronic transcript. snoRNA B2, a member of a snoRNA cluster, was expressed when cloned into the episomal vector, suggesting that each gene within a cluster is individually processed. Studies with permeable cells indicated that snoRNA gene transcription was relatively sensitive to alpha-amanitin, thus supporting transcription by RNA polymerase II. We propose that snoRNA gene expression, similar to protein-coding genes in this family, is regulated at the processing level.
Collapse
MESH Headings
- Amanitins/pharmacology
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA Methylation
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Deletion
- Genetic Vectors
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotides/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA Polymerase II/metabolism
- RNA, Messenger/metabolism
- RNA, Small Nucleolar/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Ribose/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Trypanosoma/genetics
- Trypanosoma/metabolism
Collapse
Affiliation(s)
- Y Xu
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
102
|
Qu LH, Meng Q, Zhou H, Chen YQ, Liang-Hu Q, Qing M, Hui Z, Yue-Qin C. Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. Nucleic Acids Res 2001; 29:1623-30. [PMID: 11266566 PMCID: PMC31268 DOI: 10.1093/nar/29.7.1623] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Revised: 02/05/2001] [Accepted: 02/05/2001] [Indexed: 11/13/2022] Open
Abstract
Ten novel small nucleolar RNA (snoRNA) gene clusters, consisting of two or three snoRNA genes, respectively, were identified from Arabidopsis thaliana. Twelve of the 25 snoRNA genes in these clusters are homologous to those of yeast and mammals according to the conserved antisense sequences that guide 2'-O-ribose methylation of rRNA. The remaining 13 snoRNA genes, including two 5.8S rRNA methylation guides, are new genes identified from A.thaliana. Interestingly, seven methylated nucleotides, predicted by novel snoRNAs Z41a-Z46, are methylated neither in yeast nor in vertebrates. Using primer extension at low dNTP concentration the six methylation sites were determined as expected. These snoRNAs were recognized as specific guides for 2'-O:-ribose methylation of plant rRNAs. Z42, however, did not guide the expected methylation of 25S rRNA in our assay. Thus, its function remains to be elucidated. The intergenic spacers of the gene clusters are rich in uridine (up to 40%) and most of them range in size from 35 to 100 nt. Lack of a conserved promoter element in each spacer and the determination of polycistronic transcription from a cluster by RT-PCR assay suggest that the snoRNAs encoded in the clusters are transcribed as a polycistron under an upstream promoter, and individual snoRNAs are released after processing of the precursor. Numerous snoRNA gene clusters identified from A.thaliana and other organisms suggest that the snoRNA gene cluster is an ancient gene organization existing abundantly in plants.
Collapse
Affiliation(s)
- L H Qu
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Shobuike T, Tatebayashi K, Tani T, Sugano S, Ikeda H. The dhp1(+) gene, encoding a putative nuclear 5'-->3' exoribonuclease, is required for proper chromosome segregation in fission yeast. Nucleic Acids Res 2001; 29:1326-33. [PMID: 11238999 PMCID: PMC29750 DOI: 10.1093/nar/29.6.1326] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Schizosaccharomyces pombe dhp1(+) gene is an ortholog of the Saccharomyces cerevisiae RAT1 gene, which encodes a nuclear 5'-->3' exoribonuclease, and is essential for cell viability. To clarify the cellular functions of the nuclear 5'-->3' exoribonuclease, we isolated and characterized a temperature-sensitive mutant of dhp1 (dhp1-1 mutant). The dhp1-1 mutant showed nuclear accumulation of poly(A)(+) RNA at the restrictive temperature, as was already reported for the rat1 mutant. Interestingly, the dhp1-1 mutant exhibited aberrant chromosome segregation at the restrictive temperature. The dhp1-1 cells frequently contained condensed chromosomes, most of whose sister chromatids failed to separate during mitosis despite normal mitotic spindle elongation. Finally, chromosomes were displaced or unequally segregated. As similar mitotic defects were also observed in Dhp1p-depleted cells, we concluded that dhp1(+) is required for proper chromosome segregation as well as for poly(A)(+) RNA metabolism in fission yeast. Furthermore, we isolated a multicopy suppressor of the dhp1-1 mutant, referred to as din1(+). We found that the gene product of dhp1-1 was unstable at high temperatures, but that reduced levels of Dhp1-1p could be suppressed by overexpressing Din1p at the restrictive temperature. Thus, Din1p may physically interact with Dhp1p and stabilize Dhp1p and/or restore its activity.
Collapse
Affiliation(s)
- T Shobuike
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
104
|
Geerlings TH, Vos JC, Raué HA. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases. RNA (NEW YORK, N.Y.) 2000; 6:1698-703. [PMID: 11142370 PMCID: PMC1370040 DOI: 10.1017/s1355838200001540] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The final stage in the formation of the two large subunit rRNA species in Saccharomyces cerevisiae is the removal of internal transcribed spacer 2 (ITS2) from the 27SB precursors. This removal is initiated by endonucleolytic cleavage approximately midway in ITS2. The resulting 7S pre-rRNA, which is easily detectable, is then converted into 5.8S rRNA by the concerted action of a number of 3'-->5' exonucleases, many of which are part of the exosome. So far the complementary precursor to 25S rRNA resulting from the initial cleavage in ITS2 has not been detected and the manner of its conversion into the mature species is unknown. Using various yeast strains that carry different combinations of wild-type and mutant alleles of the major 5'-->3' exonucleases Rat1p and Xrn1p, we now demonstrate the existence of a short-lived 25.5S pre-rRNA whose 5' end is located closely downstream of the previously mapped 3' end of 7S pre-rRNA. The 25.5S pre-rRNA is converted into mature 25S rRNA by rapid exonucleolytic trimming, predominantly carried out by Rat1p. In the absence of Rat1p, however, the removal of the ITS2 sequences from 25.5S pre-rRNA can also be performed by Xrn1p, albeit somewhat less efficiently.
Collapse
Affiliation(s)
- T H Geerlings
- Department of Biochemistry and Molecular Biology, Instituut Moleculair Biologische Wetenschappen, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | | | |
Collapse
|
105
|
Wu H, Xu H, Miraglia LJ, Crooke ST. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000; 275:36957-65. [PMID: 10948199 DOI: 10.1074/jbc.m005494200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human RNase III gene encodes a protein of 160 kDa with multiple domains, a proline-rich, a serine- and arginine-rich, and an RNase III domain. The expressed purified RNase III domain cleaves double-strand RNA and does not cleave single-strand RNA. The gene is ubiquitously expressed in human tissues and cell lines, and the protein is localized in the nucleus of the cell. The levels of transcription and translation of the protein do not change during different phases of the cell cycle. However, a significant fraction of the protein in the nucleus is translocated to the nucleolus during the S phase of the cell cycle. That this human RNase III is involved in processing of pre-rRNA, but might cleave at sites different from those described for yeast RNase III, is shown by antisense inhibition of RNase III expression. Inhibition of human RNase III expression causes cell death, suggesting an essential role for human RNase III in the cell. The antisense inhibition technique used in this study provides an effective method for functional analysis of newly identified human genes.
Collapse
Affiliation(s)
- H Wu
- Department of Structural Biology, Isis Pharmaceuticals, Carlsbad, California 92008, USA
| | | | | | | |
Collapse
|
106
|
Dunbar DA, Dragon F, Lee SJ, Baserga SJ. A nucleolar protein related to ribosomal protein L7 is required for an early step in large ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 2000; 97:13027-32. [PMID: 11087857 PMCID: PMC27172 DOI: 10.1073/pnas.97.24.13027] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 09/21/2000] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae Rlp7 protein has extensive identity and similarity to the large ribosomal subunit L7 proteins and shares an RNA-binding domain with them. Rlp7p is not a ribosomal protein; however, it is encoded by an essential gene and therefore must perform a function essential for cell growth. In this report, we show that Rlp7p is a nucleolar protein that plays a critical role in processing of precursors to the large ribosomal subunit RNAs. Pulse-chase labeling experiments with Rlp7p-depleted cells reveal that neither 5.8S(S), 5.8S(L), nor 25S is produced, indicating that both the major and minor processing pathways are affected. Analysis of processing intermediates by primer extension indicates that Rlp7p-depleted cells accumulate the 27SA(3) precursor RNA, which is normally the major substrate (85%) used to produce the 5.8S and 25S rRNAs, and the ratio of 27SB(L) to 27SB(S) precursors changes from approximately 1:8 to 8:1 (depleted cells). Because 27SA(3) is the direct precursor to 27SB(S), we conclude that Rlp7p is specifically required for the 5' to 3' exonucleolytic trimming of the 27SA(3) into the 27SB(S) precursor. As it is essential for processing in both the major and minor pathways, we propose that Rlp7p may act as a specificity factor that binds precursor rRNAs and tethers the enzymes that carry out the early 5' to 3' exonucleolytic reactions that generate the mature rRNAs. Rlp7p may also be required for the endonucleolytic cleavage in internal transcribed spacer 2 that separates the 5.8S rRNA from the 25S rRNA.
Collapse
Affiliation(s)
- D A Dunbar
- Departments of Therapeutic Radiology and Genetics, P. O. Box 208040, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
107
|
Fatica A, Morlando M, Bozzoni I. Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3'-processing apparatus. EMBO J 2000; 19:6218-29. [PMID: 11080167 PMCID: PMC305823 DOI: 10.1093/emboj/19.22.6218] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In Saccharomyces cerevisiae, snoRNAs are encoded by independent genes and within introns. Despite this heterogenous organization, snoRNA biosynthesis relies on a common theme: entry sites for 5'-3' and 3'-5' exonucleases are created on precursor molecules allowing the release of mature snoRNAs. In independently transcribed snoRNAs, such entry sites are often produced by the Rnt1p endonuclease. In many cases, cleavage sites are absent in the 3' portion of the pre-snoRNAs, suggesting that processing starts from the 3' end of the primary transcript. Here we show that cleavage/polyadenylation sites driving efficient polyadenylation, such as CYC1, prevent production of mature and functional snoRNPs. With these sites, snoRNA accumulation is restored only if polyadenylation activity is inhibited. Analysis of sequences downstream of snoRNA-coding units and the use of strains carrying mutations in RNA polymerase II (polII) cleavage/polyadenylation activities allowed us to establish that formation of snoRNA mature 3' ends requires only the cleavage activity of the polII 3'-processing machinery. These data indicate that, in vivo, uncoupling of cleavage and polyadenylation is necessary for an essential cellular biosynthesis.
Collapse
Affiliation(s)
- A Fatica
- Istituto Pasteur Fondazione Cenci-Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università 'La Sapienza' and Centro Acidi Nucleici of CNR, Piazzale A.Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
108
|
Barneche F, Steinmetz F, Echeverrı́a M. Fibrillarin Genes Encode Both a Conserved Nucleolar Protein and a Novel Small Nucleolar RNA Involved in Ribosomal RNA Methylation inArabidopsis thaliana. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61499-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
109
|
Nagel R, Ares M. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop. RNA (NEW YORK, N.Y.) 2000; 6:1142-56. [PMID: 10943893 PMCID: PMC1369988 DOI: 10.1017/s1355838200000431] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rnt1p is an RNase III homolog from budding yeast, required for processing snRNAs, snoRNAs, and rRNA. Numerous Rnt1p RNA substrates share potential to form a duplex structure with a terminal four-base loop with the sequence AGNN. Using a synthetic RNA modeled after the 25S rRNA 3' ETS cleavage site we find that the AGNN loop is an important determinant of substrate selectivity. When this loop sequence is altered, the rate of Rnt1p cleavage is reduced. The reduction in cleavage rate can be attributed to reduced binding of the mutant substrate as measured by a gel-shift assay. Deletion of the nonconserved N-terminal domain of Rnt1p does not affect cleavage site choice or the ability of the enzyme to distinguish substrates that contain the AGNN loop, indicating that this region is not required for selective cleavage. Strikingly, a recombinant fragment of Rnt1p containing little more than the dsRBD is able to discriminate between wild-type and mutant loop sequences in a binding assay. We propose that a major determinant of AGNN loop recognition by Rnt1p is present in its dsRBD.
Collapse
Affiliation(s)
- R Nagel
- Center for the Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
110
|
Dunbar DA, Chen AA, Wormsley S, Baserga SJ. The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. Nucleic Acids Res 2000; 28:2855-61. [PMID: 10908346 PMCID: PMC102681 DOI: 10.1093/nar/28.15.2855] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 06/13/2000] [Indexed: 11/14/2022] Open
Abstract
Because the organization of snoRNA genes in vertebrates, plants and yeast is diverse, we investigated the organization of snoRNA genes in a distantly related organism, Trypanosoma brucei. We have characterized the second example of a snoRNA gene cluster that is tandemly repeated in the T.BRUCEI: genome. The genes encoding the box C/D snoRNAs TBR12, TBR6, TBR4 and TBR2 make up the cluster. In a genomic organization unique to trypanosomes, there are at least four clusters of these four snoRNA genes tandemly repeated in the T. BRUCEI: genome. We show for the first time that the genes encoding snoRNAs in both this cluster and the SLA cluster are transcribed in an unusual way as a polycistronic RNA.
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology and Department of Genetics, Yale School of Medicine, 333 Cedar Street, PO Box 208040, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
111
|
Identification of a novel methylated nucleoside inSchizosac-charomyces pombe U6 snRNA. CHINESE SCIENCE BULLETIN-CHINESE 2000. [DOI: 10.1007/bf03182908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
112
|
Darzacq X, Kiss T. Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5',3'-terminal stem structure. Mol Cell Biol 2000; 20:4522-31. [PMID: 10848579 PMCID: PMC85834 DOI: 10.1128/mcb.20.13.4522-4531.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C and D box-containing (box C/D) small nucleolar RNAs (snoRNAs) function in the nucleolytic processing and 2'-O-methylation of precursor rRNA. In vertebrates, most box C/D snoRNAs are processed from debranched pre-mRNA introns by exonucleolytic activities. Elements directing accurate snoRNA excision are located within the snoRNA itself; they comprise the conserved C and D boxes and an adjoining 5',3'-terminal stem. Although the terminal stem has been demonstrated to be essential for snoRNA accumulation, many snoRNAs lack a terminal helix. To identify the cis-acting elements supporting the accumulation of intron-encoded box C/D snoRNAs devoid of a terminal stem, we have investigated the in vivo processing of the human U46 snoRNA and an artificial snoRNA from the human beta-globin pre-mRNA. We demonstrate that internal and/or external stem structures located within the snoRNA or in the intronic flanking sequences support the accumulation of mammalian box C/D snoRNAs lacking a canonical terminal stem. In the intronic precursor RNA, transiently formed external and/or stable internal base-pairing interactions fold the C and D boxes together and therefore facilitate the binding of snoRNP proteins. Since the external intronic stems are degraded during snoRNA processing, we propose that the C and D boxes alone can provide metabolic stability for the mature snoRNA.
Collapse
Affiliation(s)
- X Darzacq
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 31062 Toulouse, France
| | | |
Collapse
|
113
|
Xue Y, Bai X, Lee I, Kallstrom G, Ho J, Brown J, Stevens A, Johnson AW. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol Cell Biol 2000; 20:4006-15. [PMID: 10805743 PMCID: PMC85771 DOI: 10.1128/mcb.20.11.4006-4015.2000] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAT1 gene of Saccharomyces cerevisiae encodes a 5'-->3' exoribonuclease which plays an essential role in yeast RNA degradation and/or processing in the nucleus. We have cloned a previously uncharacterized gene (YGL246c) that we refer to as RAI1 (Rat1p interacting protein 1). RAI1 is homologous to Caenorhabditis elegans DOM-3 and human DOM3Z. Deletion of RAI1 confers a growth defect which can be complemented by an additional copy of RAT1 on a centromeric vector or by directing Xrn1p, the cytoplasmic homolog of Rat1p, to the nucleus through the addition of a nuclear targeting sequence. Deletion of RAI1 is synthetically lethal with the rat1-1(ts) mutation and shows genetic interaction with a deletion of SKI2 but not XRN1. Polysome analysis of an rai1 deletion mutant indicated a defect in 60S biogenesis which was nearly fully reversed by high-copy RAT1. Northern blot analysis of rRNAs revealed that rai1 is required for normal 5.8S processing. In the absence of RAI1, 5.8S(L) was the predominant form of 5.8S and there was an accumulation of 3'-extended forms but not 5'-extended species of 5. 8S. In addition, a 27S pre-rRNA species accumulated in the rai1 mutant. Thus, deletion of RAI1 affects both 5' and 3' processing reactions of 5.8S rRNA. Consistent with the in vivo data suggesting that RAI1 enhances RAT1 function, purified Rai1p stabilized the in vitro exoribonuclease activity of Rat1p.
Collapse
Affiliation(s)
- Y Xue
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Dunbar DA, Wormsley S, Lowe TM, Baserga SJ. Fibrillarin-associated box C/D small nucleolar RNAs in Trypanosoma brucei. Sequence conservation and implications for 2'-O-ribose methylation of rRNA. J Biol Chem 2000; 275:14767-76. [PMID: 10747997 DOI: 10.1074/jbc.m001180200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification of 17 box C/D fibrillarin-associated small nucleolar RNAs (snoRNAs) from the ancient eukaryote, Trypanosoma brucei. To systematically isolate and characterize these snoRNAs, the T. brucei cDNA for the box C/D snoRNA common protein, fibrillarin, was cloned and polyclonal antibodies to the recombinant fibrillarin protein were generated in rabbits. Immunoprecipitations from T. brucei extracts with the anti-fibrillarin antibodies indicated that this trypanosomatid has at least 30 fibrillarin-associated snoRNAs. We have sequenced seventeen of them and designated them TBR for T. brucei RNA 1-17. All of them bear conserved box C, D, C', and D' elements, a hallmark of fibrillarin-associated snoRNAs in eukaryotes. Fourteen of them are novel T. brucei snoRNAs. Fifteen bear potential guide regions to mature rRNAs suggesting that they are involved in 2'-O-ribose methylation. Indeed, eight ribose methylations have been mapped in the rRNA at sites predicted by the snoRNA sequences. Comparative genomics indicates that six of the seventeen are the first trypanosome homologs of known yeast and vertebrate methylation guide snoRNAs. Our results indicate that T. brucei has many fibrillarin-associated box C/D snoRNAs with roles in 2'-O-ribose methylation of rRNA and that the mechanism for targeting the nucleotide to be methylated at the fifth nucleotide upstream of box D or D' originated in early eukaryotes.
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
115
|
Gaspin C, Cavaillé J, Erauso G, Bachellerie JP. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 2000; 297:895-906. [PMID: 10736225 DOI: 10.1006/jmbi.2000.3593] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into the origin and functions of methylation guide small nucleolar RNAs and illuminate the still elusive role of rRNA ribose methylations.
Collapse
MESH Headings
- Base Sequence
- Consensus Sequence/genetics
- Databases, Factual
- Eukaryotic Cells/metabolism
- Genes, Archaeal/genetics
- Genome, Archaeal
- Methylation
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Physical Chromosome Mapping
- Pyrococcus/genetics
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribose/metabolism
- Sequence Homology, Nucleic Acid
- Software
Collapse
Affiliation(s)
- C Gaspin
- Laboratoire de Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, 31326, France
| | | | | | | |
Collapse
|
116
|
Abstract
Two core small nucleolar RNP (snoRNP) proteins, Nop1p (fibrillarin in vertebrates) and Nop58p (also known as Nop5p) have previously been reported to be specifically associated with the box C+D class of small nucleolar RNAs (snoRNAs). Here we report that Nop56p, a protein related in sequence to Nop58p, is a bona fide box C+D snoRNP component; all tested box C+D snoRNAs were coprecipitated with protein A-tagged Nop56p. Analysis of in vivo snoRNP assembly indicated that Nop56p was stably associated with the snoRNAs only in the presence of Nop1p. In contrast, Nop58p and Nop1p associate independently with the snoRNAs. Genetic depletion of Nop56p resulted in inhibition of early pre-rRNA processing events at sites A(0), A(1), and A(2) and mild depletion of 18S rRNA. However, Nop56p depletion did not lead to codepletion of the box C+D snoRNAs. This is in contrast to Nop58p, which was required for the accumulation of all tested box C+D snoRNAs. Unexpectedly, we found that Nop1p was specifically required for the synthesis and accumulation of box C+D snoRNAs processed from pre-mRNA introns and polycistronic transcripts.
Collapse
Affiliation(s)
- D L Lafontaine
- ICMB, The University of Edinburgh, Edinburgh EH9 3JR, Scotland.
| | | |
Collapse
|
117
|
Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc Natl Acad Sci U S A 2000. [PMID: 10716739 PMCID: PMC16206 DOI: 10.1073/pnas.070043997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleases III are double-stranded RNA (dsRNA) endonucleases required for the processing of a large number of prokaryotic and eukaryotic transcripts. Although the specificity of bacterial RNase III cleavage relies on antideterminants in the dsRNA, the molecular basis of eukaryotic RNase III specificity is unknown. All substrates of yeast RNase III (Rnt1p) are capped by terminal tetraloops showing the consensus AGNN and located within 13-16 bp to Rnt1p cleavage sites. We show that these tetraloops are essential for Rnt1p cleavage and that the distance to the tetraloop is the primary determinant of cleavage site selection. The presence of AGNN tetraloops also enhances Rnt1p binding, as shown by surface plasmon resonance monitoring and modification interference studies. These results define a paradigm of RNA loops and show that yeast RNase III behaves as a helical RNA ruler that recognizes these tetraloops and cleaves the dsRNA at a fixed distance to this RNA structure. These results also indicate that proteins belonging to the same class of RNA endonucleases require different structural elements for RNA cleavage.
Collapse
|
118
|
Chanfreau G, Buckle M, Jacquier A. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc Natl Acad Sci U S A 2000; 97:3142-7. [PMID: 10716739 PMCID: PMC16206 DOI: 10.1073/pnas.97.7.3142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleases III are double-stranded RNA (dsRNA) endonucleases required for the processing of a large number of prokaryotic and eukaryotic transcripts. Although the specificity of bacterial RNase III cleavage relies on antideterminants in the dsRNA, the molecular basis of eukaryotic RNase III specificity is unknown. All substrates of yeast RNase III (Rnt1p) are capped by terminal tetraloops showing the consensus AGNN and located within 13-16 bp to Rnt1p cleavage sites. We show that these tetraloops are essential for Rnt1p cleavage and that the distance to the tetraloop is the primary determinant of cleavage site selection. The presence of AGNN tetraloops also enhances Rnt1p binding, as shown by surface plasmon resonance monitoring and modification interference studies. These results define a paradigm of RNA loops and show that yeast RNase III behaves as a helical RNA ruler that recognizes these tetraloops and cleaves the dsRNA at a fixed distance to this RNA structure. These results also indicate that proteins belonging to the same class of RNA endonucleases require different structural elements for RNA cleavage.
Collapse
Affiliation(s)
- G Chanfreau
- Unité de Génétique des Interactions Macromoléculaires, URA1300 Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
119
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
120
|
Duga S, Asselta R, Malcovati M, Tenchini ML, Ronchi S, Simonic T. The intron-containing L3 ribosomal protein gene (RPL3): sequence analysis and identification of U43 and of two novel intronic small nucleolar RNAs. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:225-36. [PMID: 10684968 DOI: 10.1016/s0167-4781(99)00237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Isolation and sequencing of bovine and human intron-containing L3 ribosomal protein genes are here reported. They exhibit very similar organisation, both comprising 10 exons and nine introns. A polymorphic locus, involving a 19-bp deletion, was found in intron 6 of the human gene. The frequency of the two alleles has been estimated in 200 haploid genomes. In bovine and human genes intron sequences are rather different, except for limited regions, located in corresponding positions, which show a surprisingly high degree of identity. All these regions contain conserved features defining the box C/D class of small nucleolar RNAs. Demonstration is given that U43 small nucleolar RNA is encoded within the first intron of both bovine and human genes. Single nucleotide sequences, encoding two novel species of small nucleolar RNAs (U82, U83a and U83b), are located in introns 3, 5 and 7. Their expression has been investigated and a possible role of these molecules in 2'-O-ribose methylation of rRNAs is discussed.
Collapse
Affiliation(s)
- S Duga
- Istituto di Fisiologia Veterinaria e Biochimica, Università di Milano, Via Celoria 10, 20133, Milan, Italy
| | | | | | | | | | | |
Collapse
|
121
|
Lamontagne B, Tremblay A, Abou Elela S. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 2000; 20:1104-15. [PMID: 10648595 PMCID: PMC85228 DOI: 10.1128/mcb.20.4.1104-1115.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 11/17/1999] [Indexed: 11/20/2022] Open
Abstract
Yeast Rnt1 is a member of the double-stranded RNA (dsRNA)-specific RNase III family identified by conserved dsRNA binding (dsRBD) and nuclease domains. Comparative sequence analyses have revealed an additional N-terminal domain unique to the eukaryotic homologues of RNase III. The deletion of this domain from Rnt1 slowed growth and led to mild accumulation of unprocessed 25S pre-rRNA. In vitro, deletion of the N-terminal domain reduced the rate of RNA cleavage under physiological salt concentration. Size exclusion chromatography and cross-linking assays indicated that the N-terminal domain and the dsRBD self-interact to stabilize the Rnt1 homodimer. In addition, an interaction between the N-terminal domain and the dsRBD was identified by a two-hybrid assay. The results suggest that the eukaryotic N-terminal domain of Rnt1 ensures efficient dsRNA cleavage by mediating the assembly of optimum Rnt1-RNA ribonucleoprotein complex.
Collapse
Affiliation(s)
- B Lamontagne
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | |
Collapse
|
122
|
Villa T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:1311-20. [PMID: 10648617 PMCID: PMC85272 DOI: 10.1128/mcb.20.4.1311-1320.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of intron-encoded box C/D small nucleolar RNAs (snoRNAs) in metazoans through both the splicing-dependent and -independent pathways requires the conserved core motif formed by boxes C and D and the adjoining 5'-3'-terminal stem. By comparative analysis, we found that five out of six intron-encoded box C/D snoRNAs in yeast do not possess a canonical terminal stem. Instead, complementary regions within the flanking host intron sequences have been identified in all these cases. Here we show that these sequences are essential for processing of U18 and snR38 snoRNAs and that they compensate for the lack of a canonical terminal stem. We also show that the Rnt1p endonuclease, previously shown to be required for the processing of many snoRNAs encoded by monocistronic or polycistronic transcriptional units, is not required for U18 processing. Our results suggest a role of the complementary sequences in the early recognition of intronic snoRNA substrates and point out the importance of base pairing in favoring the communication between boxes C and D at the level of pre-snoRNA molecules for efficient assembly with snoRNP-specific factors.
Collapse
Affiliation(s)
- T Villa
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma "La Sapienza," 00185 Rome, Italy
| | | | | |
Collapse
|
123
|
van Hoof A, Lennertz P, Parker R. Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 2000; 20:441-52. [PMID: 10611222 PMCID: PMC85098 DOI: 10.1128/mcb.20.2.441-452.2000] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exosome is a protein complex consisting of a variety of 3'-to-5' exonucleases that functions both in 3'-to-5' trimming of rRNA precursors and in 3'-to-5' degradation of mRNA. To determine additional exosome functions, we examined the processing of a variety of RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), RNase P, RNase MRP, and SRP RNAs, and 5S rRNAs in mutants defective in either the core components of the exosome or in other proteins required for exosome function. These experiments led to three important conclusions. First, exosome mutants accumulate 3'-extended forms of the U4 snRNA and a wide variety of snoRNAs, including snoRNAs that are independently transcribed or intron derived. This finding suggests that the exosome functions in the 3' end processing of these species. Second, in exosome mutants, transcripts for U4 snRNA and independently transcribed snoRNAs accumulate as 3'-extended polyadenylated species, suggesting that the exosome is required to process these 3'-extended transcripts. Third, processing of 5.8S rRNA, snRNA, and snoRNA by the exosome is affected by mutations of the nuclear proteins Rrp6p and Mtr4p, whereas mRNA degradation by the exosome required Ski2p and was not affected by mutations in RRP6 or MTR4. This finding suggests that the cytoplasmic and nuclear forms of the exosome represent two functionally different complexes involved in distinct 3'-to-5' processing and degradation reactions.
Collapse
MESH Headings
- DEAD-box RNA Helicases
- Endoribonucleases/metabolism
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes/genetics
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Introns/genetics
- Kinetics
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Mutation/genetics
- Phenotype
- Poly A/genetics
- Poly A/metabolism
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonuclease III
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- A van Hoof
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
124
|
Kressler D, Linder P, de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7897-912. [PMID: 10567516 PMCID: PMC84875 DOI: 10.1128/mcb.19.12.7897] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Kressler
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
125
|
Kufel J, Dichtl B, Tollervey D. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS. RNA (NEW YORK, N.Y.) 1999; 5:909-17. [PMID: 10411134 PMCID: PMC1369815 DOI: 10.1017/s135583829999026x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.
Collapse
Affiliation(s)
- J Kufel
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | | | |
Collapse
|
126
|
Abstract
Small nucleolar RNAs (snoRNAs) are required for ribose 2'-O-methylation of eukaryotic ribosomal RNA. Many of the genes for this snoRNA family have remained unidentified in Saccharomyces cerevisiae, despite the availability of a complete genome sequence. Probabilistic modeling methods akin to those used in speech recognition and computational linguistics were used to computationally screen the yeast genome and identify 22 methylation guide snoRNAs, snR50 to snR71. Gene disruptions and other experimental characterization confirmed their methylation guide function. In total, 51 of the 55 ribose methylated sites in yeast ribosomal RNA were assigned to 41 different guide snoRNAs.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- Cell Nucleolus/metabolism
- Methylation
- Models, Genetic
- Models, Statistical
- RNA, Fungal/analysis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/analysis
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- Ribose/metabolism
- Saccharomyces cerevisiae/genetics
- Software
Collapse
Affiliation(s)
- T M Lowe
- Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|