101
|
Boerma RS, Braun KP, van den Broek MPH, van de Broek MPH, van Berkestijn FMC, Swinkels ME, Hagebeuk EO, Lindhout D, van Kempen M, Boon M, Nicolai J, de Kovel CG, Brilstra EH, Koeleman BPC. Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach. Neurotherapeutics 2016; 13:192-7. [PMID: 26252990 PMCID: PMC4720675 DOI: 10.1007/s13311-015-0372-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mutations in SCN8A are associated with epilepsy and intellectual disability. SCN8A encodes for sodium channel Nav1.6, which is located in the brain. Gain-of-function missense mutations in SCN8A are thought to lead to increased firing of excitatory neurons containing Nav1.6, and therefore to lead to increased seizure susceptibility. We hypothesized that sodium channel blockers could have a beneficial effect in patients with SCN8A-related epilepsy by blocking the overactive Nav1.6 and thereby counteracting the effect of the mutation. Herein, we describe 4 patients with a missense SCN8A mutation and epilepsy who all show a remarkably good response on high doses of phenytoin and loss of seizure control when phenytoin medication was reduced, while side effects were relatively mild. In 2 patients, repeated withdrawal of phenytoin led to the reoccurrence of seizures. Based on the findings in these patients and the underlying molecular mechanism we consider treatment with (high-dose) phenytoin as a possible treatment option in patients with difficult-to-control seizures due to an SCN8A mutation.
Collapse
Affiliation(s)
- Ragna S Boerma
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees P Braun
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Marielle E Swinkels
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eveline O Hagebeuk
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dick Lindhout
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjan van Kempen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maartje Boon
- Department of Pediatric Neurology, Stichting Epilepsie Instellingen Nederland, Zwolle, The Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Carolien G de Kovel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eva H Brilstra
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
102
|
Møller RS, Johannesen KM. Precision Medicine: SCN8A Encephalopathy Treated with Sodium Channel Blockers. Neurotherapeutics 2016; 13:190-1. [PMID: 26553437 PMCID: PMC4720666 DOI: 10.1007/s13311-015-0403-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.
- Institute for Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Katrine M Johannesen
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
- Institute for Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
103
|
Wagnon JL, Barker BS, Hounshell JA, Haaxma CA, Shealy A, Moss T, Parikh S, Messer RD, Patel MK, Meisler MH. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol 2015; 3:114-23. [PMID: 26900580 PMCID: PMC4748308 DOI: 10.1002/acn3.276] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
Objective The early infantile epileptic encephalopathy type 13 (EIEE13, OMIM #614558) results from de novo missense mutations of SCN8A encoding the voltage‐gated sodium channel Nav1.6. More than 20% of patients have recurrent mutations in residues Arg1617 or Arg1872. Our goal was to determine the functional effects of these mutations on channel properties. Methods Clinical exome sequencing was carried out on patients with early‐onset seizures, developmental delay, and cognitive impairment. Two mutations identified here, p.Arg1872Leu and p.Arg1872Gln, and two previously identified mutations, p.Arg1872Trp and p.Arg1617Gln, were introduced into Nav1.6 cDNA, and effects on electrophysiological properties were characterized in transfected ND7/23 cells. Interactions with FGF14, G‐protein subunit Gβγ, and sodium channel subunit β1 were assessed by coimmunoprecipitation. Results We identified two patients with the novel mutation p.Arg1872Leu and one patient with the recurrent mutation p.Arg1872Gln. The three mutations of Arg1872 and the mutation of Arg1617 all impaired the sodium channel transition from open state to inactivated state, resulting in channel hyperactivity. Other observed abnormalities contributing to elevated channel activity were increased persistent current, increased peak current density, hyperpolarizing shift in voltage dependence of activation, and depolarizing shift in steady‐state inactivation. Protein interactions were not affected. Interpretation Recurrent mutations at Arg1617 and Arg1872 lead to elevated Nav1.6 channel activity by impairing channel inactivation. Channel hyperactivity is the major pathogenic mechanism for gain‐of‐function mutations of SCN8A. EIEE13 differs mechanistically from Dravet syndrome, which is caused by loss‐of‐function mutations of SCN1A. This distinction has important consequences for selection of antiepileptic drugs and the development of gene‐ and mutation‐specific treatments.
Collapse
Affiliation(s)
- Jacy L Wagnon
- Department of Human Genetics University of Michigan Ann Arbor Michigan
| | - Bryan S Barker
- Department of Anesthesiology and Neuroscience Graduate Program University of Virginia Health System Charlottesville Virginia
| | - James A Hounshell
- Department of Anesthesiology and Neuroscience Graduate Program University of Virginia Health System Charlottesville Virginia
| | - Charlotte A Haaxma
- Department of Pediatric Neurology Radboud University Nijmegen The Netherlands
| | - Amy Shealy
- Cleveland Clinic Genomic Medicine Institute Cleveland Ohio
| | - Timothy Moss
- Cleveland Clinic Genomic Medicine Institute Cleveland Ohio
| | - Sumit Parikh
- Department of Pediatric Neurology Cleveland Clinic Cleveland Ohio
| | - Ricka D Messer
- Department of Pediatric Neurology Johns Hopkins Medical Institute Baltimore Maryland
| | - Manoj K Patel
- Department of Anesthesiology and Neuroscience Graduate Program University of Virginia Health System Charlottesville Virginia
| | - Miriam H Meisler
- Department of Human Genetics University of Michigan Ann Arbor Michigan
| |
Collapse
|
104
|
Frolov RV, Weckström M. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:25-95. [PMID: 26920687 DOI: 10.1016/bs.apcsb.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted.
Collapse
Affiliation(s)
- Roman V Frolov
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland.
| | - Matti Weckström
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
105
|
Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Manocchio L, Medoro A, Taglialatela M. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 2015; 9:259. [PMID: 26236192 PMCID: PMC4502356 DOI: 10.3389/fncel.2015.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | | - Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Michela De Maria
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II Naples, Italy ; Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| |
Collapse
|
106
|
Wagnon JL, Meisler MH. Recurrent and Non-Recurrent Mutations of SCN8A in Epileptic Encephalopathy. Front Neurol 2015; 6:104. [PMID: 26029160 PMCID: PMC4432670 DOI: 10.3389/fneur.2015.00104] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023] Open
Abstract
Mutations of the voltage-gated sodium channel SCN8A have been identified in approximately 1% of nearly 1,500 children with early-infantile epileptic encephalopathies (EIEE) who have been tested by DNA sequencing. EIEE caused by mutation of SCN8A is designated EIEE13 (OMIM #614558). Affected children have seizure onset before 18 months of age as well as developmental and cognitive disabilities, movement disorders, and a high incidence of sudden death (SUDEP). EIEE13 is caused by de novo missense mutations of evolutionarily conserved residues in the Nav1.6 channel protein. One-third of the mutations are recurrent, and many occur at CpG dinucleotides. In this review, we discuss the effect of pathogenic mutations on the structure of the channel protein, the rate of recurrent mutation, and changes in channel function underlying this devastating disorder.
Collapse
Affiliation(s)
- Jacy L Wagnon
- Department of Human Genetics, University of Michigan , Ann Arbor, MI , USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
107
|
Galanopoulou AS, Moshé SL. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiol Dis 2015; 79:135-49. [PMID: 25968935 DOI: 10.1016/j.nbd.2015.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022] Open
Abstract
Early onset and infantile epileptic encephalopathies (EIEEs) are usually associated with medically intractable or difficult to treat epileptic seizures and prominent cognitive, neurodevelopmental and behavioral consequences. EIEEs have numerous etiologies that contribute to the inter- and intra-syndromic phenotypic variability. Etiologies include structural and metabolic or genetic etiologies although a significant percentage is of unknown cause. The need to better understand their pathogenic mechanisms and identify better therapies has driven the development of animal models of EIEEs. Several rodent models of infantile spasms have emerged that recapitulate various aspects of the disease. The acute models manifest epileptic spasms after induction and include the NMDA rat model, the NMDA model with prior prenatal betamethasone or perinatal stress exposure, and the γ-butyrolactone induced spasms in a mouse model of Down syndrome. The chronic models include the tetrodotoxin rat model, the aristaless related homeobox X-linked (Arx) mouse models and the multiple-hit rat model of infantile spasms. We will discuss the main features and findings from these models on target mechanisms and emerging therapies. Genetic models have also provided interesting data on the pathogenesis of Dravet syndrome and proposed new therapies for testing. The genetic associations of many of the EIEEs have also been tested in rodent models as to their pathogenicity. Finally, several models have tested the impact of subclinical epileptiform discharges on brain function. The impact of these advances in animal modeling for therapy development will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|