101
|
Nudel CB, Hellingwerf KJ. Photoreceptors in Chemotrophic Prokaryotes: The Case of Acinetobacter spp. Revisited. Photochem Photobiol 2015; 91:1012-20. [PMID: 26147719 DOI: 10.1111/php.12491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
A comprehensive description of blue light using flavin (BLUF) photosensory proteins, including preferred domain architectures and the molecular mechanism of their light activation and signal generation, among chemotrophic prokaryotes is presented. Light-regulated physiological responses in Acinetobacter spp. from environmental and clinically relevant strains are discussed. The twitching motility response in A. baylyi sp. ADP1 and the joint involvement of three of the four putative BLUF-domain-containing proteins in this response, in this species, is presented as an example of remarkable photoreceptor redundancy.
Collapse
Affiliation(s)
- Clara B Nudel
- Nanobiotec Institute, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
102
|
Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM. LOV-based reporters for fluorescence imaging. Curr Opin Chem Biol 2015; 27:39-45. [DOI: 10.1016/j.cbpa.2015.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
|
103
|
Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB. Bacterial photosensory proteins: Regulatory functions and optogenetic applications. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
104
|
Fudim R, Mehlhorn J, Berthold T, Weber S, Schleicher E, Kennis JTM, Mathes T. Photoinduced formation of flavin radicals in BLUF domains lacking the central glutamine. FEBS J 2015; 282:3161-74. [DOI: 10.1111/febs.13297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Roman Fudim
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
| | - Jennifer Mehlhorn
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
| | - Thomas Berthold
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
| | - Stefan Weber
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS); Albert-Ludwigs-Universität Freiburg; Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
- Inorganic Chemistry Laboratory; University of Oxford; UK
| | - John T. M. Kennis
- Biophysics Section; Department of Physics and Astronomy; Faculty of Sciences; VU University; Amsterdam The Netherlands
| | - Tilo Mathes
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
- Biophysics Section; Department of Physics and Astronomy; Faculty of Sciences; VU University; Amsterdam The Netherlands
| |
Collapse
|
105
|
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states. FEBS J 2015; 282:3175-89. [PMID: 25879256 DOI: 10.1111/febs.13299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster cryptochrome is one of the model proteins for animal blue-light photoreceptors. Using time-resolved and steady-state optical spectroscopy, we studied the mechanism of light-induced radical-pair formation and decay, and the photoreduction of the FAD cofactor. Exact kinetics on a microsecond to minutes timescale could be extracted for the wild-type protein using global analysis. The wild-type exhibits a fast photoreduction reaction from the oxidized FAD to the FAD(•-) state with a very positive midpoint potential of ~ +125 mV, although no further reduction could be observed. We could also demonstrate that the terminal tryptophan of the conserved triad, W342, is directly involved in electron transfer; however, photoreduction could not be completely inhibited in a W342F mutant. The investigation of another mutation close to the FAD cofactor, C416N, rather unexpectedly reveals accumulation of a protonated flavin radical on a timescale of several seconds. The obtained data are critically discussed with the ones obtained from another protein, Escherichia coli photolyase, and we conclude that the amino acid opposite N(5) of the isoalloxazine moiety of FAD is able to (de)stabilize the protonated FAD radical but not to significantly modulate the kinetics of any light-inducted reactions.
Collapse
Affiliation(s)
- Bernd Paulus
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Csaba Bajzath
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie Université de Strasbourg, France
| | - Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Viktoria Kromm
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | - Ulrike Benz
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Lisa Mann
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Patricia Stehle
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie Université de Strasbourg, France
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
106
|
Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 2015; 84:519-50. [PMID: 25706899 DOI: 10.1146/annurev-biochem-060614-034411] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein-like probes, including near-infrared fluorescence, independence of oxygen, small size, and photosensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461;
| | | | | | | |
Collapse
|
107
|
Björnberg O, Viennet T, Skjoldager N, Ćurović A, Nielsen KF, Svensson B, Hägglund P. Lactococcus lactis thioredoxin reductase is sensitive to light inactivation. Biochemistry 2015; 54:1628-37. [PMID: 25675241 DOI: 10.1021/bi5013639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thioredoxin, involved in numerous redox pathways, is maintained in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent flavoprotein thioredoxin reductase (TrxR). Here, TrxR from Lactococcus lactis is compared with the well-characterized TrxR from Escherichia coli. The two enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s(-1)) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli TrxR. The rate of light inactivation under standardized conditions (λmax=460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass of the isoalloxazine ring, and the extracted modified cofactor reacted with dinitrophenyl hydrazine, indicating the presence of an aldehyde. We hypothesize that a methyl group of FAD is oxidized to a formyl group. The significance of this not previously reported oxidation and the exceptionally high rate of oxygen reduction are discussed in relation to other flavin modifications and the possible occurrence of enzymes with similar properties.
Collapse
Affiliation(s)
- Olof Björnberg
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark , Building 224, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
108
|
Endres S, Granzin J, Circolone F, Stadler A, Krauss U, Drepper T, Svensson V, Knieps-Grünhagen E, Wirtz A, Cousin A, Tielen P, Willbold D, Jaeger KE, Batra-Safferling R. Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiol 2015; 15:30. [PMID: 25887755 PMCID: PMC4335406 DOI: 10.1186/s12866-015-0365-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Light, oxygen, voltage (LOV) domains are widely distributed in plants, algae, fungi, bacteria, and represent the photo-responsive domains of various blue-light photoreceptor proteins. Their photocycle involves the blue-light triggered adduct formation between the C(4a) atom of a non-covalently bound flavin chromophore and the sulfur atom of a conserved cysteine in the LOV sensor domain. LOV proteins show considerable variation in the structure of N- and C-terminal elements which flank the LOV core domain, as well as in the lifetime of the adduct state. Results Here, we report the photochemical, structural and functional characterization of DsLOV, a LOV protein from the photoheterotrophic marine α-proteobacterium Dinoroseobacter shibae which exhibits an average adduct state lifetime of 9.6 s at 20°C, and thus represents the fastest reverting bacterial LOV protein reported so far. Mutational analysis in D. shibae revealed a unique role of DsLOV in controlling the induction of photopigment synthesis in the absence of blue-light. The dark state crystal structure of DsLOV determined at 1.5 Å resolution reveals a conserved core domain with an extended N-terminal cap. The dimer interface in the crystal structure forms a unique network of hydrogen bonds involving residues of the N-terminus and the β-scaffold of the core domain. The structure of photoexcited DsLOV suggests increased flexibility in the N-cap region and a significant shift in the Cα backbone of β strands in the N- and C-terminal ends of the LOV core domain. Conclusions The results presented here cover the characterization of the unusual short LOV protein DsLOV from Dinoroseobacter shibae including its regulatory function, extremely fast dark recovery and an N-terminus mediated dimer interface. Due to its unique photophysical, structural and regulatory properties, DsLOV might thus serve as an alternative model system for studying light perception by LOV proteins and physiological responses in bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0365-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephan Endres
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Joachim Granzin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Franco Circolone
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Andreas Stadler
- Juelich Centre for Neutron Science JCNS (JCNS-1) & Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Esther Knieps-Grünhagen
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Astrid Wirtz
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Anneliese Cousin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Petra Tielen
- Institute for Microbiology, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany. .,Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany. .,Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Renu Batra-Safferling
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
109
|
Feng J, Han T, Zhang MQ, Zhou Y, Wu QQ. Application of 2D fluorescence correlation method to investigate the dilution-induced heterogeneous distribution of the bound FMN in azoreductase. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
110
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
111
|
Abstract
Measured values of the redox midpoint potential of flavin-containing photoreceptor proteins range from physiologically very negative values, i.e., < -300 mV (compared to the calomel electrode) for some LOV domains, to slightly positive values for some cryptochromes. The actual intracellular redox potential of several key physiological electron-transfer intermediates, like the nicotinamide dinucleotides, particularly in chemoheterotrophic bacteria, may be varying beyond these two values, and are subject to physiological- and environmental regulation. The photochemical activity of photoreceptor proteins containing their flavin chromophore in the reduced, and in the fully oxidized form, is very different. We therefore have addressed the question whether or not the functioning of these flavin-containing photosensory receptors in vivo is subject to redox regulation. Here we (1) provide further evidence for the overlap of the ranges of the redox midpoint potential of the flavin in a specific photoreceptor protein and the redox potential of key intracellular redox-active metabolites, and (2) demonstrate that the redox state and photochemical activity of LOV domains can be recorded in vivo in Escherichia coli. Significantly, so far in vivo reduction of LOV domains under physiological conditions could not be detected. The implications of these observations are discussed.
Collapse
|
112
|
Paulus B, Illarionov B, Nohr D, Roellinger G, Kacprzak S, Fischer M, Weber S, Bacher A, Schleicher E. One Protein, Two Chromophores: Comparative Spectroscopic Characterization of 6,7-Dimethyl-8-ribityllumazine and Riboflavin Bound to Lumazine Protein. J Phys Chem B 2014; 118:13092-105. [DOI: 10.1021/jp507618f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bernd Paulus
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Boris Illarionov
- Institute for Biochemistry & Food Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Daniel Nohr
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Guillaume Roellinger
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Sylwia Kacprzak
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Markus Fischer
- Institute for Biochemistry & Food Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Stefan Weber
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Adelbert Bacher
- Institute for Biochemistry & Food Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
- Chemistry
Department, Technical University Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Erik Schleicher
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| |
Collapse
|
113
|
Conrad KS, Manahan CC, Crane BR. Photochemistry of flavoprotein light sensors. Nat Chem Biol 2014; 10:801-9. [PMID: 25229449 PMCID: PMC4258882 DOI: 10.1038/nchembio.1633] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
Three major classes of flavin photosensors, light oxygen voltage (LOV) domains, blue light sensor using FAD (BLUF) proteins and cryptochromes (CRYs), regulate diverse biological activities in response to blue light. Recent studies of structure, spectroscopy and chemical mechanism have provided unprecedented insight into how each family operates at the molecular level. In general, the photoexcitation of the flavin cofactor leads to changes in redox and protonation states that ultimately remodel protein conformation and molecular interactions. For LOV domains, issues remain regarding early photochemical events, but common themes in conformational propagation have emerged across a diverse family of proteins. For BLUF proteins, photoinduced electron transfer reactions critical to light conversion are defined, but the subsequent rearrangement of hydrogen bonding networks key for signaling remains highly controversial. For CRYs, the relevant photocycles are actively debated, but mechanistic and functional studies are converging. Despite these challenges, our current understanding has enabled the engineering of flavoprotein photosensors for control of signaling processes within cells.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Craig C Manahan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
114
|
Abstract
Knowledge of the dynamical behavior of proteins, and in particular their conformational fluctuations, is essential to understanding the mechanisms underlying their reactions. Here, transient enhancement of the isothermal partial molar compressibility, which is directly related to the conformational fluctuation, during a chemical reaction of a blue light sensor protein from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TePixD, Tll0078) was investigated in a time-resolved manner. The UV-Vis absorption spectrum of TePixD did not change with the application of high pressure. Conversely, the transient grating signal intensities representing the volume change depended significantly on the pressure. This result implies that the compressibility changes during the reaction. From the pressure dependence of the amplitude, the compressibility change of two short-lived intermediate (I1 and I2) states were determined to be +(5.6 ± 0.6) × 10(-2) cm(3) ⋅ mol(-1) ⋅ MPa(-1) for I1 and +(6.6 ± 0.7) × 10(-2) cm(3) ⋅ mol(-1) ⋅ MPa(-1) for I2. This result showed that the structural fluctuation of intermediates was enhanced during the reaction. To clarify the relationship between the fluctuation and the reaction, the compressibility of multiply excited TePixD was investigated. The isothermal compressibility of I1 and I2 intermediates of TePixD showed a monotonic decrease with increasing excitation laser power, and this tendency correlated with the reactivity of the protein. This result indicates that the TePixD decamer cannot react when its structural fluctuation is small. We concluded that the enhanced compressibility is an important factor for triggering the reaction of TePixD. To our knowledge, this is the first report showing enhanced fluctuations of intermediate species during a protein reaction, supporting the importance of fluctuations.
Collapse
|
115
|
Weitzman M, Hahn KM. Optogenetic approaches to cell migration and beyond. Curr Opin Cell Biol 2014; 30:112-20. [PMID: 25216352 DOI: 10.1016/j.ceb.2014.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 07/29/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
Abstract
Optogenetics, the use of genetically encoded tools to control protein function with light, can generate localized changes in signaling within living cells and animals. For years it has been focused on channel proteins for neurobiology, but has recently expanded to cover many different types of proteins, using a broad array of different protein engineering approaches. These methods have largely been directed at proteins involved in motility, cytoskeletal regulation and gene expression. This review provides a survey of non-channel proteins that have been engineered for optogenetics. Existing molecules are used to illustrate the advantages and disadvantages of the many imaginative new approaches that the reader can use to create light-controlled proteins.
Collapse
Affiliation(s)
- Matthew Weitzman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA; Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
116
|
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles). Protist 2014; 165:662-75. [PMID: 25150613 DOI: 10.1016/j.protis.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served as crucial structures in algal studies especially from a viewpoint of phylogeny. However, the protein compositions of the flagella are still largely unknown. Here we report a LC-MS/MS based proteomics analysis of brown algal flagella. In total, 495 flagellar proteins were identified. Functional annotation of the proteome data revealed that brown algal flagellar proteins were associated with cell motility, signal transduction and various metabolic activities. We separately isolated AF and PF and analyzed their protein compositions. This analysis led to the identification of several AF- and PF-specific proteins. Among the PF-specific proteins, we found a candidate novel blue light receptor protein involved in phototaxis, and named it HELMCHROME because of the steering function of PF. Immunological analysis revealed that this protein was localized along the whole length of the PF and concentrated in the paraflagellar body.
Collapse
Affiliation(s)
- Gang Fu
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Seiko Oka
- Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - J Mark Cock
- University Pierre et Marie Curie and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, 29682 Roscoff Cedex, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan.
| |
Collapse
|
117
|
Abstract
Most biological photoreceptors are protein/cofactor complexes that induce a physiological reaction upon absorption of a photon. Therefore, these proteins represent signal converters that translate light into biological information. Researchers use this property to stimulate and study various biochemical processes conveniently and non-invasively by the application of light, an approach known as optogenetics. Here, we summarize the recent experimental progress on the family of blue light receptors using FAD (BLUF) receptors. Several BLUF photoreceptors modulate second messenger levels and thus represent highly interesting tools for optogenetic application. In order to activate a coupled effector protein, the flavin-binding pocket of the BLUF domain undergoes a subtle rearrangement of the hydrogen network upon blue light absorption. The hydrogen bond switch is facilitated by the ultrafast light-induced proton-coupled electron transfer (PCET) between a tyrosine and the flavin in less than a nanosecond and remains stable on a long enough timescale for biochemical reactions to take place. The cyclic nature of the photoinduced reaction makes BLUF domains powerful model systems to study protein/cofactor interaction, protein-modulated PCET and novel mechanisms of biological signalling. The ultrafast nature of the photoconversion as well as the subtle structural rearrangement requires sophisticated spectroscopic and molecular biological methods to study and understand this highly intriguing signalling process.
Collapse
Affiliation(s)
- John T M Kennis
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences , Vrije Universiteit , De Boelelaan 1081, 1081 HV Amsterdam , The Netherlands
| | - Tilo Mathes
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences , Vrije Universiteit , De Boelelaan 1081, 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
118
|
Deng Z, Oses-Prieto JA, Kutschera U, Tseng TS, Hao L, Burlingame AL, Wang ZY, Briggs WR. Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 2014; 13:2524-33. [PMID: 24712693 PMCID: PMC4015686 DOI: 10.1021/pr500010z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Plants adapt to environmental light conditions by photoreceptor-mediated
physiological responses, but the mechanism by which photoreceptors
perceive and transduce the signals is still unresolved. Here, we used
2D difference gel electrophoresis (2D DIGE) and mass spectrometry
to characterize early molecular events induced by short blue light
exposures in etiolated Arabidopsis seedlings.
We observed the phosphorylation of phototropin 1 (phot1) and accumulation
of weak chloroplast movement under blue light 1 (WEB1) in the membrane
fraction after blue light irradiation. Over 50 spots could be observed
for the two rows of phot1 spots in the 2-DE gels, and eight novel
phosphorylated Ser/Thr sites were identified in the N-terminus and
Hinge 1 regions of phot1 in vivo. Blue light caused ubiquitination
of phot1, and K526 of phot1 was identified as a putative ubiquitination
site. Our study indicates that post-translational modification of
phot1 is more complex than previously reported.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Oliveri P, Fortunato AE, Petrone L, Ishikawa-Fujiwara T, Kobayashi Y, Todo T, Antonova O, Arboleda E, Zantke J, Tessmar-Raible K, Falciatore A. The Cryptochrome/Photolyase Family in aquatic organisms. Mar Genomics 2014; 14:23-37. [DOI: 10.1016/j.margen.2014.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
|
120
|
Raffelberg S, Gutt A, Gärtner W, Mandalari C, Abbruzzetti S, Viappiani C, Losi A. The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein. Biol Chem 2014; 394:1517-28. [PMID: 23828427 DOI: 10.1515/hsz-2013-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/01/2013] [Indexed: 11/15/2022]
Abstract
Flavin-binding light, oxygen, and voltage (LOV) domains are UVA/blue-light-sensing protein units that form a reversible flavin mononucleotide-cysteine adduct upon light induction. In their dark-adapted state, LOV domains exhibit the typical spectral features of fully oxidized riboflavin derivatives. A survey on the absorption spectra of various LOV domains revealed that the UVA spectral range is the most variable region (whereas the absorption band at 450 nm is virtually unchanged), showing essentially two distinct patterns found in plant phototropin LOV1 and LOV2 domains, respectively. In this work, we have identified a residue directly interacting with the isoalloxazine methyl group at C(7a) as the major UVA spectral tuner. In YtvA from Bacillus subtilis, this amino acid is threonine 30, and its mutation into apolar residues converts the LOV2-like spectrum of native YtvA into a LOV1-like pattern. Mutation T30A also accelerates the photocycle ca. 4-fold. Together with control mutations at different positions, our results experimentally confirm the previously calculated direction of the transition dipole moment for the UVA ππ* state and identify the mechanisms underlying spectral tuning in the LOV domains.
Collapse
|
121
|
From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World. PLANTS 2014; 3:70-94. [PMID: 27135492 PMCID: PMC4844311 DOI: 10.3390/plants3010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/15/2023]
Abstract
Flavin-based photoreceptor proteins of the LOV (Light, Oxygen, and Voltage) and BLUF (Blue Light sensing Using Flavins) superfamilies are ubiquitous among the three life domains and are essential blue-light sensing systems, not only in plants and algae, but also in prokaryotes. Here we review their biological roles in the prokaryotic world and their evolution pathways. An unexpected large number of bacterial species possess flavin-based photosensors, amongst which are important human and plant pathogens. Still, few cases are reported where the activity of blue-light sensors could be correlated to infectivity and/or has been shown to be involved in the activation of specific genes, resulting in selective growth patterns. Metagenomics and bio-informatic analysis have only recently been initiated, but signatures are beginning to emerge that allow definition of a bona fide LOV or BLUF domain, aiming at better selection criteria for novel blue-light sensors. We also present here, for the first time, the phylogenetic tree for archaeal LOV domains that have reached a statistically significant number but have not at all been investigated thus far.
Collapse
|
122
|
A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420. Biochem J 2014; 455:359-65. [PMID: 24112109 DOI: 10.1042/bj20130637] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genome screening of the cyanobacterium Microcoleus chthonoplastes PCC 7420 identified a gene encoding a protein (483 amino acids, 54.2 kDa in size) characteristic of a BL (blue light)-regulated adenylate (adenylyl) cyclase function. The photoreceptive part showed signatures of a LOV (light, oxygen, voltage) domain. The gene product, mPAC (Microcoleus photoactivated adenylate cyclase), exhibited the LOV-specific three-peaked absorption band (λmax=450 nm) and underwent conversion into the photoadduct form (λmax=390 nm) upon BL-irradiation. The lifetime for thermal recovery into the parent state was determined as 16 s at 20°C (25 s at 11°C). The adenylate cyclase function showed a constitutive activity (in the dark) that was in-vitro-amplified by a factor of 30 under BL-irradiation. Turnover of the purified protein at saturating light and pH 8 is estimated to 1 cAMP/mPAC per s at 25°C (2 cAMP/mPAC per s at 35°C). The lifetime of light-activated cAMP production after a BL flash was ~14 s at 20°C. The temperature optimum was determined to 35°C and the pH optimum to 8.0. The value for half-maximal activating light intensity is 6 W/m2 (at 35°C). A comparison of mPAC and the BLUF (BL using FAD) protein bPAC (Beggiatoa PAC), as purified proteins and expressed in Xenopus laevis oocytes, yielded higher constitutive activity for mPAC in the dark, but also when illuminated with BL.
Collapse
|
123
|
Drepper T, Gensch T, Pohl M. Advanced in vivo applications of blue light photoreceptors as alternative fluorescent proteins. Photochem Photobiol Sci 2014; 12:1125-34. [PMID: 23660639 DOI: 10.1039/c3pp50040c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultimate ambition in cell biology, microbiology and biomedicine is to unravel complex physiological and pathophysiological processes within living organisms. To conquer this challenge, fluorescent proteins (FPs) are used as versatile in vivo reporters and biosensors to study gene regulation as well as the synthesis, localization and function of proteins in living cells. The most widely used FPs are the green fluorescent protein (GFP) and its derivatives and relatives. Their use as in vivo reporter proteins, however, is sometimes restricted by different environmental and cellular factors. Consequently, a whole range of alternative, cofactor-dependent reporter proteins have been developed recently. In this perspective, we summarize the advantages and limitations of the novel class of cyan-green fluorescent flavoproteins in comparison to members of the GFP family and discuss some correlated consequences for the use of FPs as in vivo reporters.
Collapse
Affiliation(s)
- Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Jülich, 52425 Juelich, Germany.
| | | | | |
Collapse
|
124
|
Wu SH. Gene expression regulation in photomorphogenesis from the perspective of the central dogma. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:311-33. [PMID: 24779996 DOI: 10.1146/annurev-arplant-050213-040337] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Depending on the environment a young seedling encounters, the developmental program following seed germination could be skotomorphogenesis in the dark or photomorphogenesis in the light. Light signals are interpreted by a repertoire of photoreceptors followed by sophisticated gene expression networks, eventually resulting in developmental changes. The expression and functions of photoreceptors and key signaling molecules are highly coordinated and regulated at multiple levels of the central dogma in molecular biology. Light activates gene expression through the actions of positive transcriptional regulators and the relaxation of chromatin by histone acetylation. Small regulatory RNAs help attenuate the expression of light-responsive genes. Alternative splicing, protein phosphorylation/dephosphorylation, the formation of diverse transcriptional complexes, and selective protein degradation all contribute to proteome diversity and change the functions of individual proteins.
Collapse
Affiliation(s)
- Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
125
|
Malapeira J, Benlloch R, Henriques R, Mas P. Plant Circadian Network. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
126
|
Ozturk N, Selby CP, Zhong D, Sancar A. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore. J Biol Chem 2013; 289:4634-42. [PMID: 24379403 DOI: 10.1074/jbc.m113.542498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptochrome (CRY) is the primary circadian photoreceptor in Drosophila. Upon light absorption, dCRY undergoes a conformational change that enables it to bind to Timeless (dTIM), as well as to two different E3 ligases that ubiquitylate dTIM and dCRY, respectively, resulting in their proteolysis and resetting the phase of the circadian rhythm. Purified dCRY contains oxidized flavin (FADox), which is readily photoreduced to the anionic semiquinone through a set of 3 highly conserved Trp residues (Trp triad). The crystal structure of dCRY has revealed a fourth Trp (Trp-536) as a potential electron donor. Previously, we reported that the Trp triad played no role in photoinduced proteolysis of dCRY in Drosophila cells. Here we investigated the role of the Trp triad and Trp-536, and the redox status of the flavin on light-induced proteolysis of both dCRY and dTIM and resetting of the clock. We found that both oxidized (FADox) and reduced (FAD) forms of dCRY undergo light-induced conformational change in vitro that enable dCRY to bind JET and that Trp triad and Trp-536 mutations that block known or presumed intraprotein electron transfer reactions do not affect dCRY phototransduction under bright or dim light in vivo as measured by light-induced proteolysis of dCRY and dTIM in Drosophila S2R+ cells. We conclude that both oxidized and reduced forms of dCRY are capable of photosignaling.
Collapse
Affiliation(s)
- Nuri Ozturk
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | | | | | | |
Collapse
|
127
|
Dorn M, Jurk M, Wartenberg A, Hahn A, Schmieder P. LOV takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis. PLoS One 2013; 8:e81268. [PMID: 24278408 PMCID: PMC3836802 DOI: 10.1371/journal.pone.0081268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022] Open
Abstract
LOV domains act as versatile photochromic switches servicing multiple effector domains in a variety of blue light sensing photoreceptors abundant in a multitude of organisms from all kingdoms of life. The perception of light is realized by a flavin chromophore that upon illumination reversibly switches from the non-covalently bound dark-state to a covalently linked flavin-LOV adduct. It is usually assumed that most LOV domains preferably bind FMN, but heterologous expression frequently results in the incorporation of all natural occurring flavins, i.e. riboflavin, FMN and FAD. Over recent years, the structures, photochemical properties, activation mechanisms and physiological functions of a multitude of LOV proteins have been studied intensively, but little is known about its affinities to physiologically relevant flavins or the thermodynamics of the flavin-LOV interaction. We have investigated the interaction of the LOV domain of the well characterized bacterial photoreceptor YtvA with riboflavin, FMN and FAD by ITC experiments providing binding constants and thermodynamic profiles of these interactions. For this purpose, we have developed a protocol for the production of the apo forms of YtvA and its isolated LOV domain and we demonstrate that the latter can be used as a molecular probe for free flavins in cell lysates. Furthermore, we show here using NMR spectroscopic techniques and Analytical Ultracentrifugation that the flavin moiety stabilizes the conformation of the LOV domain and that dimerization of YtvA is caused not only by intermolecular LOV-LOV but also by STAS-STAS contacts.
Collapse
Affiliation(s)
- Matthias Dorn
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcel Jurk
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Anne Wartenberg
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Aaron Hahn
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter Schmieder
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- * E-mail:
| |
Collapse
|
128
|
Fraikin GY, Strakhovskaya MG, Rubin AB. Biological photoreceptors of light-dependent regulatory processes. BIOCHEMISTRY (MOSCOW) 2013; 78:1238-53. [DOI: 10.1134/s0006297913110047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
129
|
Wang W, Geiger JH, Borhan B. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength. Bioessays 2013; 36:65-74. [PMID: 24323922 DOI: 10.1002/bies.201300094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
130
|
Bitrian M, González RH, Paris G, Hellingwerf KJ, Nudel CB. Blue-light-dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: additive involvement of three BLUF-domain-containing proteins. Microbiology (Reading) 2013; 159:1828-1841. [DOI: 10.1099/mic.0.069153-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Mariana Bitrian
- Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodrigo H. González
- Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gaston Paris
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Clara B. Nudel
- Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
131
|
Abstract
The DNA binding activity of the photosystem-specific repressor PpsR is known to be repressed by the antirepressor AppA. AppA contains a blue-light-absorbing BLUF domain and a heme-binding SCHIC domain that controls the interaction of AppA with PpsR in response to light and heme availability. In this study, we have solved the structure of the SCHIC domain and identified the histidine residue that is critical for heme binding. We also demonstrate that dark-adapted AppA binds heme better than light-excited AppA does and that heme bound to the SCHIC domain significantly reduces the length of the BLUF photocycle. We further show that heme binding to the SCHIC domain is affected by the redox state of a disulfide bridge located in the Cys-rich carboxyl-terminal region. These results demonstrate that light, redox, and heme are integrated inputs that control AppA’s ability to disrupt the DNA binding activity of PpsR. Photosynthetic bacteria must coordinate synthesis of the tetrapyrroles cobalamin, heme, and bacteriochlorophyll, as overproduction of the latter two is toxic to cells. A key regulator controlling tetrapyrrole biosynthesis is PpsR, and the activity of PpsR is controlled by the heme-binding and light-regulated antirepressor AppA. We show that AppA binds heme only under dark conditions and that heme binding significantly affects the length of the AppA photocycle. Since AppA interacts with PpsR only in the dark, bound heme thus stimulates the antirepressor activity of PpsR. This causes the redirection of tetrapyrrole biosynthesis away from heme into the bacteriochlorophyll branch.
Collapse
|
132
|
Hemphill J, Chou C, Chin JW, Deiters A. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433-9. [PMID: 23931657 DOI: 10.1021/ja4051026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
133
|
Silva MR, Mansurova M, Gärtner W, Thiel W. Photophysics of structurally modified flavin derivatives in the blue-light photoreceptor YtvA: a combined experimental and theoretical study. Chembiochem 2013; 14:1648-61. [PMID: 23940057 DOI: 10.1002/cbic.201300217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/10/2022]
Abstract
The light-induced processes of two flavin mononucleotide derivatives (1- and 5-deaza flavin mononucleotide, 1DFMN and 5DFMN), incorporated into the LOV domain of YtvA protein from Bacillus subtilis, were studied by a combination of experimental and computational methods. Quantum mechanics/molecular mechanics (QM/MM) calculations were carried out in which the QM part was treated by density functional theory (DFT) using the B3LYP functional for geometry optimizations and the DFT/MRCI method for spectroscopic properties, whereas the MM part was described by the CHARMM force field. 1DFMN is incorporated into the protein binding site, yielding a red-shifted absorption band (λ(max) =530 nm compared to YtvA wild-type λ(max) =445 nm), but does not undergo any LOV-typical photoreactions such as triplet and photoadduct formation. QM/MM computations confirmed the absence of a channel for triplet formation and located a radiation-free channel (through an S₁/S₀ conical intersection) along a hydrogen transfer path that might allow for fast deactivation. By contrast, 5DFMN-YtvA-LOV shows a blue-shifted absorption (λ(max) =410 nm) and undergoes similar photochemical processes to FMN in the wild-type protein, both with regard to the photophysics and the formation of a photoadduct with a flavin-cysteinyl covalent bond. The QM/MM calculations predict a mechanism that involves hydrogen transfer in the T₁ state, followed by intersystem crossing and adduct formation in the S₀ state for the forward reaction. Experimentally, in contrast to wild-type YtvA, dark-state recovery in 5DFMN-YtvA-LOV is not thermally driven but can only be accomplished after absorption of a second photon by the photoadduct, again via the triplet state. The QM/MM calculations suggest a photochemical mechanism for dark-state recovery that is accessible only for the adduct with a C4a--S bond but not for alternative adducts with a C5--S bond.
Collapse
Affiliation(s)
- Mario R Silva
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | | | | | | |
Collapse
|
134
|
Correa F, Ko WH, Ocasio V, Bogomolni RA, Gardner KH. Blue light regulated two-component systems: enzymatic and functional analyses of light-oxygen-voltage (LOV)-histidine kinases and downstream response regulators. Biochemistry 2013; 52:4656-66. [PMID: 23806044 DOI: 10.1021/bi400617y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Light is an essential environmental cue for diverse organisms. Many prokaryotic blue light photoreceptors use light, oxygen, voltage (LOV) sensory domains to control the activities of diverse output domains, including histidine kinases (HK). Upon activation, these proteins autophosphorylate a histidine residue before subsequently transferring the phosphate to an aspartate residue in the receiver domain of a cognate response regulator (RR). Such phosphorylation activates the output domain of the RR, leading to changes in gene expression, protein-protein interactions, or enzymatic activities. Here, we focus on one such light sensing LOV-HK from the marine bacterium Erythrobacter litoralis HTCC2594 (EL368), seeking to understand how kinase activity and subsequent downstream effects are regulated by light. We found that photoactivation of EL368 led to a significant enhancement in the incorporation of phosphate within the HK domain. Further enzymatic studies showed that the LOV domain affected both the LOV-HK turnover rate (kcat) and Km in a light-dependent manner. Using in vitro phosphotransfer profiling, we identified two target RRs for EL368 and two additional LOV-HKs (EL346 and EL362) encoded within the host genome. The two RRs include a PhyR-type transcriptional regulator (EL_PhyR) and a receiver-only protein (EL_LovR), reminiscent of stress-triggered systems in other bacteria. Taken together, our data provide a biochemical foundation for this light-regulated signaling module of sensors, effectors, and regulators that control bacterial responses to environmental conditions.
Collapse
Affiliation(s)
- Fernando Correa
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | | | |
Collapse
|
135
|
Sudo Y, Okazaki A, Ono H, Yagasaki J, Sugo S, Kamiya M, Reissig L, Inoue K, Ihara K, Kandori H, Takagi S, Hayashi S. A blue-shifted light-driven proton pump for neural silencing. J Biol Chem 2013; 288:20624-32. [PMID: 23720753 DOI: 10.1074/jbc.m113.475533] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion-transporting rhodopsins are widely utilized as optogenetic tools both for light-induced neural activation and silencing. The most studied representative is Bacteriorhodopsin (BR), which absorbs green/red light (∼570 nm) and functions as a proton pump. Upon photoexcitation, BR induces a hyperpolarization across the membrane, which, if incorporated into a nerve cell, results in its neural silencing. In this study, we show that several residues around the retinal chromophore, which are completely conserved among BR homologs from the archaea, are involved in the spectral tuning in a BR homolog (HwBR) and that the combination mutation causes a large spectral blue shift (λmax = 498 nm) while preserving the robust pumping activity. Quantum mechanics/molecular mechanics calculations revealed that, compared with the wild type, the β-ionone ring of the chromophore in the mutant is rotated ∼130° because of the lack of steric hindrance between the methyl groups of the retinal and the mutated residues, resulting in the breakage of the π conjugation system on the polyene chain of the retinal. By the same mutations, similar spectral blue shifts are also observed in another BR homolog, archearhodopsin-3 (also called Arch). The color variant of archearhodopsin-3 could be successfully expressed in the neural cells of Caenorhabditis elegans, and illumination with blue light (500 nm) led to the effective locomotory paralysis of the worms. Thus, we successfully produced a blue-shifted proton pump for neural silencing.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Telegina TA, Kolesnikov MP, Vechtomova YL, Buglak AA, Kritsky MS. Abiotic photophosphorylation model based on abiogenic flavin and pteridine pigments. J Mol Evol 2013; 76:332-42. [PMID: 23689512 DOI: 10.1007/s00239-013-9562-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
A model for abiotic photophosphorylation of adenosine diphosphate by orthophosphate with the formation of adenosine triphosphate was studied. The model was based on the photochemical activity of the abiogenic conjugates of pigments with the polymeric material formed after thermolysis of amino acid mixtures. The pigments formed showed different fluorescence parameters depending on the composition of the mixture of amino acid precursors. Thermolysis of the mixture of glutamic acid, glycine, and lysine (8:3:1) resulted in a predominant formation of a pigment fraction which had the fluorescence maximum at 525 nm and the excitation band maxima at 260, 375, and 450 nm and was identified as flavin. When glycine in the initial mixture was replaced with alanine, a product formed whose fluorescence parameters were typical to pteridines (excitation maximum at 350 nm, emission maximum at 440 nm). When irradiated with the quasi-monochromatic light (over the range 325-525 nm), microspheres in which flavin pigments were prevailing showed a maximum photophosphorylating activity at 375 and 450 nm, and pteridine-containing chromoproteinoid microspheres were most active at 350 nm. The positions and the relative height of maxima in the action spectra correlate with those in the excitation spectra of the pigments, which point to the involvement of abiogenic flavins and pteridines in photophosphorylation.
Collapse
Affiliation(s)
- Taisiya A Telegina
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, 33-2, Leninsky Prospekt, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
137
|
Mansurova M, Simon J, Salzmann S, Marian CM, Gärtner W. Spectroscopic and Theoretical Study on Electronically Modified Chromophores in LOV Domains: 8-Bromo- and 8-Trifluoromethyl-Substituted Flavins. Chembiochem 2013; 14:645-54. [DOI: 10.1002/cbic.201200670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Indexed: 11/11/2022]
|
138
|
Relationship between rate of photoinduced electron transfer and hydrogen bonding chain of tyrosine-glutamine-flavin in flavin photoreceptors: Global analyses among four TePixDs and three AppAs. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
139
|
Plant Circadian Network: An Integrative View. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_6-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
140
|
Mandalari C, Losi A, Gärtner W. Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochem Photobiol Sci 2013; 12:1144-57. [DOI: 10.1039/c3pp25404f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
141
|
Walter J, Hausmann S, Drepper T, Puls M, Eggert T, Dihné M. Flavin mononucleotide-based fluorescent proteins function in mammalian cells without oxygen requirement. PLoS One 2012; 7:e43921. [PMID: 22984451 PMCID: PMC3439463 DOI: 10.1371/journal.pone.0043921] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/27/2012] [Indexed: 11/23/2022] Open
Abstract
Usage of the enhanced green fluorescent protein (eGFP) in living mammalian cells is limited to aerobic conditions due to requirement of oxygen during chromophore formation. Since many diseases or disease models are associated with acute or chronic hypoxia, eGFP-labeling of structures of interest in experimental studies might be unreliable leading to biased results. Thus, a chromophore yielding a stable fluorescence under hypoxic conditions is desirable. The fluorescence of flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) does not require molecular oxygen. Recently, the advantages of FbFPs for several bacterial strains and yeasts were described, specifically, their usage as a real time fluorescence marker in bacterial expression studies and their ability of chromophore formation under anaerobic conditions. Our objective was to verify if FbFPs also function in mammalian cells in order to potentially broaden the repertoire of chromophores with ones that can reliably be used in mammalian studies under hypoxic conditions. In the present study, we demonstrate for the first time, that FbFPs can be expressed in different mammalian cells, among them murine neural stem cells during proliferative and differentiated stages. Fluorescence intensities were comparable to eGFP. In contrast to eGFP, the FbFP fluorescence did not decrease when cells were exposed to defined hypoxic conditions neither in proliferating nor in differentiated cells. Thus, FbFPs can be regarded as an alternative to eGFP in studies that target cellular structures which are exposed to hypoxic conditions.
Collapse
Affiliation(s)
- Janine Walter
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Baden-Württemberg, Germany.
| | | | | | | | | | | |
Collapse
|
142
|
Ren S, Sawada M, Hasegawa K, Hayakawa Y, Ohta H, Masuda S. A PixD--PapB chimeric protein reveals the function of the BLUF domain C-terminal α-helices for light signal transduction. PLANT & CELL PHYSIOLOGY 2012; 53:1638-1647. [PMID: 22848124 DOI: 10.1093/pcp/pcs108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Blue light-using flavin (BLUF) proteins form a subfamily of blue light photoreceptors, are found in many bacteria and algae, and are further classified according to their structures. For one type of BLUF-containing protein, e.g. PixD, the central axes of its two C-terminal α-helices are perpendicular to the β-sheet of its N-terminal BLUF domain. For another type, e.g. PapB, the central axes of its two C-terminal α-helices are parallel to its BLUF domain β-sheet. However, the functional significance of the different orientations with respect to phototransduction is not clear. For the study reported herein, we constructed a chimeric protein, Pix0522, containing the core of the PixD BLUF domain and the C-terminal region of PapB, including the two α-helices, and characterized its biochemical and spectroscopic properties. Fourier transform infrared spectroscopy detected similar light-induced conformational changes in the C-terminal α-helices of Pix0522 and PapB. Pix0522 interacts with and activates the PapB-interacting enzyme, PapA, demonstrating the functionality of Pix0522. These results provide direct evidence that the BLUF C-terminal α-helices function as an intermediary that accepts the flavin-sensed blue light signal and transmits it downstream during phototransduction.
Collapse
Affiliation(s)
- Shukun Ren
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | | | | | | | | | | |
Collapse
|
143
|
del Olmo-Aguado S, Manso AG, Osborne NN. Light Might Directly Affect Retinal Ganglion Cell Mitochondria to Potentially Influence Function†. Photochem Photobiol 2012; 88:1346-55. [DOI: 10.1111/j.1751-1097.2012.01120.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
144
|
Dugué GP, Akemann W, Knöpfel T. A comprehensive concept of optogenetics. PROGRESS IN BRAIN RESEARCH 2012; 196:1-28. [PMID: 22341318 DOI: 10.1016/b978-0-444-59426-6.00001-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fundamental questions that neuroscientists have previously approached with classical biochemical and electrophysiological techniques can now be addressed using optogenetics. The term optogenetics reflects the key program of this emerging field, namely, combining optical and genetic techniques. With the already impressively successful application of light-driven actuator proteins such as microbial opsins to interact with intact neural circuits, optogenetics rose to a key technology over the past few years. While spearheaded by tools to control membrane voltage, the more general concept of optogenetics includes the use of a variety of genetically encoded probes for physiological parameters ranging from membrane voltage and calcium concentration to metabolism. Here, we provide a comprehensive overview of the state of the art in this rapidly growing discipline and attempt to sketch some of its future prospects and challenges.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|