101
|
Junyent S, Reeves JC, Szczerkowski JLA, Garcin CL, Trieu TJ, Wilson M, Lundie-Brown J, Habib SJ. Wnt- and glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division. eLife 2021; 10:59791. [PMID: 34028355 PMCID: PMC8177892 DOI: 10.7554/elife.59791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently, we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of mouse embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA and Kainate receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector β-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localised Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Joshua C Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - James LA Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Clare L Garcin
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Tung-Jui Trieu
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Matthew Wilson
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Jethro Lundie-Brown
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
102
|
Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021; 28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
103
|
CloneSeq: A highly sensitive analysis platform for the characterization of 3D-cultured single-cell-derived clones. Dev Cell 2021; 56:1804-1817.e7. [PMID: 34010629 DOI: 10.1016/j.devcel.2021.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/07/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Single-cell assays have revealed the importance of heterogeneity in many biological systems. However, limited sensitivity is a major hurdle for uncovering cellular variation. To overcome it, we developed CloneSeq, combining clonal expansion inside 3D hydrogel spheres and droplet-based RNA sequencing (RNA-seq). We show that clonal cells maintain similar transcriptional profiles and cell states. CloneSeq of lung cancer cells revealed cancer-specific subpopulations, including cancer stem-like cells, that were not revealed by scRNA-seq. Clonal expansion within 3D soft microenvironments supported cellular stemness of embryonic stem cells (ESCs) even without pluripotent media, and it improved epigenetic reprogramming efficiency of mouse embryonic fibroblasts. CloneSeq of ESCs revealed that the differentiation decision is made early during Oct4 downregulation and is maintained during early clonal expansion. Together, we show CloneSeq can be adapted to different biological systems to discover rare subpopulations by leveraging the enhanced sensitivity within clones.
Collapse
|
104
|
Mhamdi-Ghodbani M, Starzonek C, Degenhardt S, Bender M, Said M, Greinert R, Volkmer B. UVB damage response of dermal stem cells as melanocyte precursors compared to keratinocytes, melanocytes, and fibroblasts from human foreskin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112216. [PMID: 34023595 DOI: 10.1016/j.jphotobiol.2021.112216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 02/09/2023]
Abstract
Ultraviolet B (UVB) radiation induces mutagenic DNA photolesions in skin cells especially in form of cyclobutane pyrimidine dimers (CPDs). Protection mechanisms as DNA repair and apoptosis are of great importance in order to prevent skin carcinogenesis. In human skin, neural crest-derived precursors of melanocytes, the dermal stem cells (DSCs), are discussed to be at the origin of melanoma. Although they are constantly exposed to solar UV radiation, it is still not investigated how DSCs cope with UV-induced DNA damage. Here, we report a comparative study of the DNA damage response after irradiation with a physiological relevant UVB dose in DSCs in comparison to fibroblasts, melanocytes and keratinocytes isolated from human foreskin. Within our experimental settings, DSCs were able to repair DNA photolesions as efficient as the other skin cell types with solely keratinocytes repairing significantly faster. Interestingly, only fibroblasts showed significant alterations in cell cycle distribution in terms of a transient S phase arrest following irradiation. Moreover, with the applied UVB dose none of the examined cell types was prone to UVB-induced apoptosis. This may cause persistent genomic alterations and in case of DSCs it may have severe consequences for their daughter cells, the differentiated melanocytes. Altogether, this is the first study demonstrating a similar UV response in dermal stem cells compared to differentiated skin cells.
Collapse
Affiliation(s)
- Mouna Mhamdi-Ghodbani
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, 21614 Buxtehude, Germany
| | - Christin Starzonek
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, 21614 Buxtehude, Germany
| | - Sarah Degenhardt
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, 21614 Buxtehude, Germany
| | - Marc Bender
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, 21614 Buxtehude, Germany
| | | | - Rüdiger Greinert
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, 21614 Buxtehude, Germany
| | - Beate Volkmer
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, 21614 Buxtehude, Germany.
| |
Collapse
|
105
|
Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nat Commun 2021; 12:2498. [PMID: 33941777 PMCID: PMC8093243 DOI: 10.1038/s41467-021-22643-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cancers of unknown primary (CUPs), featuring metastatic dissemination in the absence of a primary tumor, are a biological enigma and a fatal disease. We propose that CUPs are a distinct, yet unrecognized, pathological entity originating from stem-like cells endowed with peculiar and shared properties. These cells can be isolated in vitro (agnospheres) and propagated in vivo by serial transplantation, displaying high tumorigenicity. After subcutaneous engraftment, agnospheres recapitulate the CUP phenotype, by spontaneously and quickly disseminating, and forming widespread established metastases. Regardless of different genetic backgrounds, agnospheres invariably display cell-autonomous proliferation and self-renewal, mostly relying on unrestrained activation of the MAP kinase/MYC axis, which confers sensitivity to MEK inhibitors in vitro and in vivo. Such sensitivity is associated with a transcriptomic signature predicting that more than 70% of CUP patients could be eligible to MEK inhibition. These data shed light on CUP biology and unveil an opportunity for therapeutic intervention. Cancer of unknown primary (CUP) is a mysterious malignancy featuring metastatic dissemination in the absence of a recognizable primary tumor. By characterizing CUP cancer stem cells we show that self-sustained long-term propagation and sensitivity to MEK inhibition are CUP common features.
Collapse
|
106
|
Ahamad N, Singh BB. Calcium channels and their role in regenerative medicine. World J Stem Cells 2021; 13:260-280. [PMID: 33959218 PMCID: PMC8080543 DOI: 10.4252/wjsc.v13.i4.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types. Based on their plasticity potential, they are divided into totipotent (morula stage cells), pluripotent (embryonic stem cells), multipotent (hematopoietic stem cells, multipotent adult progenitor stem cells, and mesenchymal stem cells [MSCs]), and unipotent (progenitor cells that differentiate into a single lineage) cells. Though bone marrow is the primary source of multipotent stem cells in adults, other tissues such as adipose tissues, placenta, amniotic fluid, umbilical cord blood, periodontal ligament, and dental pulp also harbor stem cells that can be used for regenerative therapy. In addition, induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells, and thus could be another source for regenerative medicine. Several diseases including neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, virus infection (also coronavirus disease 2019) have limited success with conventional medicine, and stem cell transplantation is assumed to be the best therapy to treat these disorders. Importantly, MSCs, are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair. Moreover, MSCs have the potential to migrate towards the damaged area, which is regulated by various factors and signaling processes. Recent studies have shown that extracellular calcium (Ca2+) promotes the proliferation of MSCs, and thus can assist in transplantation therapy. Ca2+ signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors, Ca2+ channels/pumps/exchangers, Ca2+ buffers, and Ca2+ sensors, which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity, which will be discussed in this review.
Collapse
Affiliation(s)
- Nassem Ahamad
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| |
Collapse
|
107
|
Lackner A, Sehlke R, Garmhausen M, Giuseppe Stirparo G, Huth M, Titz-Teixeira F, van der Lelij P, Ramesmayer J, Thomas HF, Ralser M, Santini L, Galimberti E, Sarov M, Stewart AF, Smith A, Beyer A, Leeb M. Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency. EMBO J 2021; 40:e105776. [PMID: 33687089 PMCID: PMC8047444 DOI: 10.15252/embj.2020105776] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large‐scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre‐ to post‐implantation epiblast in utero. We identified 496 naïve state‐associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
Collapse
Affiliation(s)
- Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Robert Sehlke
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius Garmhausen
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giuliano Giuseppe Stirparo
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Fabian Titz-Teixeira
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Petra van der Lelij
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Henry F Thomas
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Meryem Ralser
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - A Francis Stewart
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Austin Smith
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Andreas Beyer
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
108
|
Abstract
CRISPR-mediated genome editing has undoubtedly revolutionized genetic engineering of animals. With the ability for virtually unlimited modification of almost any genome it is easy to forget which amazing discoveries paved the way for this ground-breaking technology. Here, we summarize the history of genome editing platforms, starting from enhanced integration of foreign DNA by meganuclease-mediated double-strand breaks to CRISPR/Cas9, the leading technology to date, and its re-engineered variants.
Collapse
Affiliation(s)
- Simon E Tröder
- in vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Branko Zevnik
- in vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
109
|
Wang X, Ping C, Tan P, Sun C, Liu G, Liu T, Yang S, Si Y, Zhao L, Hu Y, Jia Y, Wang X, Zhang M, Wang F, Wang D, Yu J, Ma Y, Huang Y. hnRNPLL controls pluripotency exit of embryonic stem cells by modulating alternative splicing of Tbx3 and Bptf. EMBO J 2021; 40:e104729. [PMID: 33349972 PMCID: PMC7883296 DOI: 10.15252/embj.2020104729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
The regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells. We characterized hnRNPLL, which mainly functions as a global regulator of alternative splicing in ES cells. Specifically, hnRNPLL promotes multiple ES cell-preferred exon skipping events during the onset of ES cell differentiation. hnRNPLL depletion thus leads to sustained expression of ES cell-preferred isoforms, resulting in a differentiation deficiency that causes developmental defects and growth impairment in hnRNPLL-KO mice. In particular, hnRNPLL-mediated alternative splicing of two transcription factors, Bptf and Tbx3, is important for pluripotency exit. These data uncover the critical role of RBPs in pluripotency exit and suggest the application of targeting RBPs in controlling ES cell fate.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Changyun Ping
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of PathologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Puwen Tan
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chenguang Sun
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Guang Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Tao Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical University (General Hospital)ChongqingChina
| | - Shuchun Yang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanmin Si
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Lijun Zhao
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yongfei Hu
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Meili Zhang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fang Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Dong Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Dermatology HospitalSouthern Medical UniversityGuangzhouChina
- Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jia Yu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanni Ma
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
110
|
Wu Y, Zhang W. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1168. [PMID: 33503896 PMCID: PMC7865285 DOI: 10.3390/ijms22031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are derived from early embryos and can differentiate into any type of cells in living organisms. Induced pluripotent stem cells (iPSCs) resemble ESCs, both of which serve as excellent sources to study early embryonic development and realize cell replacement therapies for age-related degenerative diseases and other cell dysfunction-related illnesses. To achieve these valuable applications, comprehensively understanding of the mechanisms underlying pluripotency maintenance and acquisition is critical. Ubiquitination modifies proteins with Ubiquitin (Ub) at the post-translational level to monitor protein stability and activity. It is extensively involved in pluripotency-specific regulatory networks in ESCs and iPSCs. Ubiquitination is achieved by sequential actions of the Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. Compared with E1s and E2s, E3s are most abundant, responsible for substrate selectivity and functional diversity. In this review, we focus on E3 ligases to discuss recent progresses in understanding how they regulate pluripotency and somatic cell reprogramming through ubiquitinating core ESC regulators.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
111
|
Ye Y, Chen X, Zhang W. Mammalian SWI/SNF Chromatin Remodeling Complexes in Embryonic Stem Cells: Regulating the Balance Between Pluripotency and Differentiation. Front Cell Dev Biol 2021; 8:626383. [PMID: 33537314 PMCID: PMC7848206 DOI: 10.3389/fcell.2020.626383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
The unique capability of embryonic stem cells (ESCs) to maintain and adjust the equilibrium between self-renewal and multi-lineage cellular differentiation contributes indispensably to the integrity of all developmental processes, leading to the advent of an organism in its adult form. The ESC fate decision to favor self-renewal or differentiation into specific cellular lineages largely depends on transcriptome modulations through gene expression regulations. Chromatin remodeling complexes play instrumental roles to promote chromatin structural changes resulting in gene expression changes that are key to the ESC fate choices governing the equilibrium between pluripotency and differentiation. BAF (Brg/Brahma-associated factors) or mammalian SWI/SNF complexes employ energy generated by ATP hydrolysis to change chromatin states, thereby governing the accessibility of transcriptional regulators that ultimately affect transcriptome and cell fate. Interestingly, the requirement of BAF complex in self-renewal and differentiation of ESCs has been recently shown by genetic studies through gene expression modulations of various BAF components in ESCs, although the precise molecular mechanisms by which BAF complex influences ESC fate choice remain largely underexplored. This review surveys these recent progresses of BAF complex on ESC functions, with a focus on its role of conditioning the pluripotency and differentiation balance of ESCs. A discussion of the mechanistic bases underlying the genetic requirements for BAF in ESC biology as well as the outcomes of its interplays with key transcription factors or other chromatin remodelers in ESCs will be highlighted.
Collapse
Affiliation(s)
- Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
112
|
Xiao C, Grzonka M, Meyer-Gerards C, Mack M, Figge R, Bazzi H. Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development. EMBO Rep 2021; 22:e51127. [PMID: 33410253 PMCID: PMC7857428 DOI: 10.15252/embr.202051127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Centrosomes, composed of two centrioles and pericentriolar material, organize mitotic spindles during cell division and template cilia during interphase. The first few divisions during mouse development occur without centrioles, which form around embryonic day (E) 3. However, disruption of centriole biogenesis in Sas-4 null mice leads to embryonic arrest around E9. Centriole loss in Sas-4-/- embryos causes prolonged mitosis and p53-dependent cell death. Studies in vitro discovered a similar USP28-, 53BP1-, and p53-dependent mitotic surveillance pathway that leads to cell cycle arrest. In this study, we show that an analogous pathway is conserved in vivo where 53BP1 and USP28 are upstream of p53 in Sas-4-/- embryos. The data indicate that the pathway is established around E7 of development, four days after the centrioles appear. Our data suggest that the newly formed centrioles gradually mature to participate in mitosis and cilia formation around the beginning of gastrulation, coinciding with the activation of mitotic surveillance pathway upon centriole loss.
Collapse
Affiliation(s)
- Cally Xiao
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Graduate Program in Pharmacology and Experimental Therapeutics, University Hospital of Cologne, Cologne, Germany.,Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Marta Grzonka
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Charlotte Meyer-Gerards
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Miriam Mack
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Masters Program in Biological Sciences, University of Cologne, Cologne, Germany
| | - Rebecca Figge
- Graduate School for Biological Sciences, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Department of Dermatology and Venereology, University Hospital of Cologne, Cologne, Germany.,The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
113
|
Global Genome Conformational Programming during Neuronal Development Is Associated with CTCF and Nuclear FGFR1-The Genome Archipelago Model. Int J Mol Sci 2020; 22:ijms22010347. [PMID: 33396256 PMCID: PMC7795191 DOI: 10.3390/ijms22010347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023] Open
Abstract
During the development of mouse embryonic stem cells (ESC) to neuronal committed cells (NCC), coordinated changes in the expression of 2851 genes take place, mediated by the nuclear form of FGFR1. In this paper, widespread differences are demonstrated in the ESC and NCC inter- and intra-chromosomal interactions, chromatin looping, the formation of CTCF- and nFGFR1-linked Topologically Associating Domains (TADs) on a genome-wide scale and in exemplary HoxA-D loci. The analysis centered on HoxA cluster shows that blocking FGFR1 disrupts the loop formation. FGFR1 binding and genome locales are predictive of the genome interactions; likewise, chromatin interactions along with nFGFR1 binding are predictive of the genome function and correlate with genome regulatory attributes and gene expression. This study advances a topologically integrated genome archipelago model that undergoes structural transformations through the formation of nFGFR1-associated TADs. The makeover of the TAD islands serves to recruit distinct ontogenic programs during the development of the ESC to NCC.
Collapse
|
114
|
He L, Chen Z, Peng L, Tang B, Jiang H. Human stem cell models of polyglutamine diseases: Sources for disease models and cell therapy. Exp Neurol 2020; 337:113573. [PMID: 33347831 DOI: 10.1016/j.expneurol.2020.113573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Polyglutamine (polyQ) diseases are a group of neurodegenerative disorders involving expanded CAG repeats in pathogenic genes that are translated into extended polyQ tracts and lead to progressive neuronal degeneration in the affected brain. To date, there is no effective therapy for these diseases. Due to the complex pathologic mechanisms of these diseases, intensive research on the pathogenesis of their progression and potential treatment strategies is being conducted. However, animal models cannot recapitulate all aspects of neuronal degeneration. Pluripotent stem cells (PSCs), such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), can be used to study the pathological mechanisms of polyQ diseases, and the ability of autologous stem cell transplantation to treat these diseases. Differentiated PSCs, neuronal precursor cells/neural progenitor cells (NPCs) and mesenchymal stem cells (MSCs) are valuable resources for preclinical and clinical cell transplantation therapies. Here, we discuss diverse stem cell models and their ability to generate neurons involved in polyQ diseases, such as medium spiny neurons (MSNs), cortical neurons, cerebellar Purkinje cells (PCs) and motor neurons. In addition, we discuss potential therapeutic approaches, including stem cell replacement therapy and gene therapy.
Collapse
Affiliation(s)
- Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
115
|
Yu L, Wei Y, Sun HX, Mahdi AK, Pinzon Arteaga CA, Sakurai M, Schmitz DA, Zheng C, Ballard ED, Li J, Tanaka N, Kohara A, Okamura D, Mutto AA, Gu Y, Ross PJ, Wu J. Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification. Cell Stem Cell 2020; 28:550-567.e12. [PMID: 33271070 DOI: 10.1016/j.stem.2020.11.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. To date, however, no known PSCs have demonstrated dual competency for chimera formation and direct responsiveness to primordial germ cell (PGC) specification, a unique functional feature of formative pluripotency. Here, by modulating fibroblast growth factor (FGF), transforming growth factor β (TGF-β), and WNT pathways, we derived PSCs from mice, horses, and humans (designated as XPSCs) that are permissive for direct PGC-like cell induction in vitro and are capable of contributing to intra- or inter-species chimeras in vivo. XPSCs represent a pluripotency state between naive and primed pluripotency and harbor molecular, cellular, and phenotypic features characteristic of formative pluripotency. XPSCs open new avenues for studying mammalian pluripotency and dissecting the molecular mechanisms governing PGC specification. Our method may be broadly applicable for the derivation of analogous stem cells from other mammalian species.
Collapse
Affiliation(s)
- Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute, Jiangmen 529040, China
| | - Hai-Xi Sun
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Ahmed K Mahdi
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Carlos A Pinzon Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Emily D Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Li
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Noriko Tanaka
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Aoi Kohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Adrian A Mutto
- Instituto de Investigaciones Biotecnológicas IIB-INTECH Dr. Rodolfo Ugalde, UNSAM-CONICET, Buenos Aires 1650, Argentina
| | - Ying Gu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
116
|
Shi B, Gao D, Zhong L, Zhi M, Weng X, Xu J, Li J, Du X, Xin Y, Gao J, Zhu Q, Cao S, Liu Z, Han J. IRF-1 expressed in the inner cell mass of the porcine early blastocyst enhances the pluripotency of induced pluripotent stem cells. Stem Cell Res Ther 2020; 11:505. [PMID: 33246502 PMCID: PMC7694439 DOI: 10.1186/s13287-020-01983-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite years of research, porcine-induced pluripotent stem cells (piPSCs) with germline chimeric capacity have not been established. Furthermore, the key transcription factors (TFs) defining the naïve state in piPSCs also remain elusive, even though TFs in the inner cell mass (ICM) are believed to be key molecular determinants of naïve pluripotency. In this study, interferon regulatory factor 1 (IRF-1) was screened to express higher in ICM than trophectoderm (TE). But the impact of IRF-1 on maintenance of pluripotency in piPSCs was not determined. METHODS Transcriptome profiles of the early ICM were analyzed to determine highly interconnected TFs. Cells carrying these TFs' reporter were used to as donor cells for somatic cell nuclear transfer to detect expression patterns in blastocysts. Next, IRF1-Flag was overexpressed in DOX-hLIF-2i piPSCs and AP staining, qRT-PCR, and RNA-seq were conducted to examine the effect of IRF-1 on pluripotency. Then, the expression of IRF-1 in DOX-hLIF-2i piPSCs was labeled by GFP and qRT-PCR was conducted to determine the difference between GFP-positive and GFP-negative cells. Next, ChIP-Seq was conducted to identify genes target by IRF-1. Treatment with IL7 in wild-type piPSCs and STAT3 phosphorylation inhibitor in IRF-1 overexpressing piPSCs was conducted to confirm the roles of JAK-STAT3 signaling pathway in IRF-1's regulation of pluripotency. Moreover, during reprogramming, IRF-1 was overexpressed and knocked down to determine the change of reprogramming efficiency. RESULTS IRF-1 was screened to be expressed higher in porcine ICM than TE of d6~7 SCNT blastocysts. First, overexpression of IRF-1 in the piPSCs was observed to promote the morphology, AP staining, and expression profiles of pluripotency genes as would be expected when cells approach the naïve state. Genes, KEGG pathways, and GO terms related to the process of differentiation were also downregulated. Next, in the wild-type piPSCs, high-level fluorescence activated by the IRF-1 promoter was associated with higher expression of naïve related genes in piPSCs. Analysis by ChIP-Seq indicated that genes related to the JAK-STAT pathway, and expression of IL7 and STAT3 were activated by IRF-1. The inhibitor of STAT3 phosphorylation was observed could revert the expression of primed genes in IRF-1 overexpressing cells, but the addition of IL7 in culture medium had no apparent change in the cell morphology, AP staining results, or expression of pluripotency related genes. In addition, knockdown of IRF-1 during reprogramming appeared to reduce reprogramming efficiency, whereas overexpression exerted the converse effect. CONCLUSION The IRF-1 expressed in the ICM of pigs' early blastocyst enhances the pluripotency of piPSCs, in part through promoting the JAK-STAT pathway.
Collapse
Affiliation(s)
- Bingbo Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dengfeng Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Zhong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050051, Hebei, China
| | - Minglei Zhi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Junjun Xu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuguang Du
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanli Xin
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
117
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|
118
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
119
|
Han F, Lu P. Introduction for Stem Cell-Based Therapy for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:1-8. [PMID: 33105491 DOI: 10.1007/978-981-15-4370-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological diseases caused by the progressive degeneration of neurons and glial cells in the brain and spinal cords. Usually there is a selective loss of specific neuronal cells in a restricted brain area from any neurodegenerative diseases, such as dopamine (DA) neuron death in Parkinson disease (PD) and motor neuron loss in amyotrophic lateral sclerosis (ALS), or a widespread degeneration affecting many types of neurons in Alzheimer's disease (AD). As there is no effective treatment to stop the progression of these neurodegenerative diseases, stem cell-based therapies have provided great potentials for these disorders. Currently transplantation of different stem cells or their derivatives has improved neural function in animal models of neurodegenerative diseases by replacing the lost neural cells, releasing cytokines, modulation of inflammation, and mediating remyelination. With the advance in somatic cell reprogramming to generate induced pluripotent stem cells (iPS cells) and directly induced neural stem cells or neurons, pluripotent stem cell can be induced to differentiate to any kind of neural cells and overcome the immune rejection of the allogeneic transplantation. Recent studies have proved the effectiveness of transplanted stem cells in animal studies and some clinical trials on patients with NDs. However, some significant hurdles need to be resolved before these preclinical results can be translated to clinic. In particular, we need to better understand the molecular mechanisms of stem cell transplantation and develop new approaches to increase the directed neural differentiation, migration, survival, and functional connections of transplanted stem cells in the pathological environment of the patient's central nerve system.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Shandong University/Affiliated Second Hospital, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China.
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA.,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
120
|
Metabolic Coordination of Cell Fate by α-Ketoglutarate-Dependent Dioxygenases. Trends Cell Biol 2020; 31:24-36. [PMID: 33092942 DOI: 10.1016/j.tcb.2020.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Cell fate determination requires faithful execution of gene expression programs, which are increasingly recognized to respond to metabolic inputs. In particular, the family of α-ketoglutarate (αKG)-dependent dioxygenases, which include several chromatin-modifying enzymes, are emerging as key mediators of metabolic control of cell fate. αKG-dependent dioxygenases consume the metabolite αKG (also known as 2-oxoglutarate) as an obligate cosubstrate and are inhibited by succinate, fumarate, and 2-hydroxyglutarate. Here, we review the role of these metabolites in the control of dioxygenase activity and cell fate programs. We discuss the biochemical and transcriptional mechanisms enabling these metabolites to control cell fate and review evidence that nutrient availability shapes tissue-specific fate programs via αKG-dependent dioxygenases.
Collapse
|
121
|
Hao J, Yang X, Zhang C, Zhang XT, Shi M, Wang SH, Mi L, Zhao YT, Cao H, Wang Y. KLF3 promotes the 8-cell-like transcriptional state in pluripotent stem cells. Cell Prolif 2020; 53:e12914. [PMID: 32990380 PMCID: PMC7653263 DOI: 10.1111/cpr.12914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mouse embryonic stem cell (mESC) culture contains various heterogeneous populations, which serve as excellent models to study gene regulation in early embryo development. The heterogeneity is typically defined by transcriptional activities, for example, the expression of Nanog or Rex1 mRNA. Our objectives were to identify mESC heterogeneity that are caused by mechanisms other than transcriptional control. MATERIALS AND METHODS Klf3 mRNA and protein were analysed by RT-qPCR, Western blotting or immunofluorescence in mESCs, C2C12 cells, early mouse embryos and various mouse tissues. An ESC reporter line expressing KLF3-GFP fusion protein was made to study heterogeneity of KLF3 protein expression in ESCs. GFP-positive mESCs were sorted for further analysis including RT-qPCR and RNA-seq. RESULTS In the majority of mESCs, KLF3 protein is actively degraded due to its proline-rich sequence and highly disordered structure. Interestingly, KLF3 protein is stabilized in a small subset of mESCs. Transcriptome analysis indicates that KLF3-positive mESCs upregulate genes that are initially activated in 8-cell embryos. Consistently, KLF3 protein but not mRNA is dramatically increased in 8-cell embryos. Forced expression of KLF3 protein in mESCs promotes the expression of 8-cell-embryo activated genes. CONCLUSIONS Our study identifies previously unrecognized heterogeneity due to KLF3 protein expression in mESCs.
Collapse
Affiliation(s)
- Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xi Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xue-Tao Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ming Shi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shao-Hua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Li Mi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yu-Ting Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Huiqing Cao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
122
|
Wang L, Li J. 'Artificial spermatid'-mediated genome editing†. Biol Reprod 2020; 101:538-548. [PMID: 31077288 DOI: 10.1093/biolre/ioz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
For years, extensive efforts have been made to use mammalian sperm as the mediator to generate genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is unable to produce stable and diversified modifications in descendants. Recently, haploid embryonic stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In particular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection. Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly, DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by efficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs (referred to as 'artificial spermatids') combed with CRISPR-Cas technology can be used as the genetically tractable fertilization agent, to efficiently create genetically modified offspring, and is a versatile genetic tool for in vivo analyses of gene function.
Collapse
Affiliation(s)
- Lingbo Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
123
|
Chaigne A, Labouesse C, White IJ, Agnew M, Hannezo E, Chalut KJ, Paluch EK. Abscission Couples Cell Division to Embryonic Stem Cell Fate. Dev Cell 2020; 55:195-208.e5. [PMID: 32979313 PMCID: PMC7594744 DOI: 10.1016/j.devcel.2020.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022]
Abstract
Cell fate transitions are key to development and homeostasis. It is thus essential to understand the cellular mechanisms controlling fate transitions. Cell division has been implicated in fate decisions in many stem cell types, including neuronal and epithelial progenitors. In other stem cells, such as embryonic stem (ES) cells, the role of division remains unclear. Here, we show that exit from naive pluripotency in mouse ES cells generally occurs after a division. We further show that exit timing is strongly correlated between sister cells, which remain connected by cytoplasmic bridges long after division, and that bridge abscission progressively accelerates as cells exit naive pluripotency. Finally, interfering with abscission impairs naive pluripotency exit, and artificially inducing abscission accelerates it. Altogether, our data indicate that a switch in the division machinery leading to faster abscission regulates pluripotency exit. Our study identifies abscission as a key cellular process coupling cell division to fate transitions. Mouse embryonic stem cells exit naive pluripotency after mitosis Naive embryonic stem cells display slow abscission and remain connected by bridges Cells exiting naive pluripotency display faster abscission Accelerating abscission facilitates exit from naive pluripotency
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Céline Labouesse
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ian J White
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Meghan Agnew
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Kevin J Chalut
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
124
|
Yang L, Liu X, Song L, Su G, Di A, Bai C, Wei Z, Li G. Melatonin restores the pluripotency of long-term-cultured embryonic stem cells through melatonin receptor-dependent m6A RNA regulation. J Pineal Res 2020; 69:e12669. [PMID: 32415999 DOI: 10.1111/jpi.12669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
N6-methyladenosine (m6A) methylation is the most common and abundant modification on mammalian messenger RNA (mRNA) and regulates the pluripotency of embryonic stem cells (ESCs). Research has shown that melatonin plays a fundamental role in DNA and histone modifications. However, the effect of melatonin on RNA modification is unknown. Here, for the first time, we investigated the effect of melatonin on m6A modifications in long-term-cultured ESCs. Pluripotency studies indicated that 10 μmol/L melatonin sufficiently maintained ESCs with stemness features over 45 passages (more than 90 days). Notably, treatment of ESCs with melatonin led to a significant decrease in the nuclear presence of m6A methyltransferase complex and decreased global m6A modification. Depletion of melatonin receptor 1 (MT1) by CRISPR/Cas9 significantly reduced the effects of melatonin on ESC pluripotency and m6A modification. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that melatonin promotes stabilization of core pluripotency factors, such as Nanog, Sox2, Klf4, and c-Myc, by preventing m6A-dependent mRNA decay. Using cell signaling pathway profiling systems, melatonin was shown to regulate m6A modification predominantly through the MT1-JAK2/STAT3-Zfp217 signal axis. This study reveals a new dimension regarding melatonin regulation of gene expression at the RNA level.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
125
|
Ličytė J, Gibas P, Skardžiūtė K, Stankevičius V, Rukšėnaitė A, Kriukienė E. A Bisulfite-free Approach for Base-Resolution Analysis of Genomic 5-Carboxylcytosine. Cell Rep 2020; 32:108155. [DOI: 10.1016/j.celrep.2020.108155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
|
126
|
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12:787-802. [PMID: 32952859 PMCID: PMC7477654 DOI: 10.4252/wjsc.v12.i8.787] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell-derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.
Collapse
Affiliation(s)
- Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
127
|
Xia S, Lim YB, Zhang Z, Wang Y, Zhang S, Lim CT, Yim EKF, Kanchanawong P. Nanoscale Architecture of the Cortical Actin Cytoskeleton in Embryonic Stem Cells. Cell Rep 2020; 28:1251-1267.e7. [PMID: 31365868 DOI: 10.1016/j.celrep.2019.06.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical cues influence pluripotent stem cell differentiation, but the underlying mechanisms are not well understood. Mouse embryonic stem cells (mESCs) exhibit unusual cytomechanical properties, including low cell stiffness and attenuated responses to substrate rigidity, but the underlying structural basis remains obscure. Using super-resolution microscopy to investigate the actin cytoskeleton in mESCs, we observed that the actin cortex consists of a distinctively sparse and isotropic network. Surprisingly, the architecture and mechanics of the mESC actin cortex appear to be largely myosin II-independent. The network density can be modulated by perturbing Arp2/3 and formin, whereas capping protein (CP) negatively regulates cell stiffness. Transient Arp2/3-containing aster-like structures are implicated in the organization and mechanical homeostasis of the cortical network. By generating a low-density network that physically excludes myosin II, the interplay between Arp2/3, formin, and CP governs the nanoscale architecture of the actin cortex and prescribes the cytomechanical properties of mESCs.
Collapse
Affiliation(s)
- Shumin Xia
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Ying Bena Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yilin Wang
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Shan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| |
Collapse
|
128
|
Xu Y, Zhang Y, García-Cañaveras JC, Guo L, Kan M, Yu S, Blair IA, Rabinowitz JD, Yang X. Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science 2020; 369:397-403. [PMID: 32703873 PMCID: PMC7939502 DOI: 10.1126/science.abb4467] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Embryonic stem cells can propagate indefinitely in a pluripotent state, able to differentiate into all types of specialized cells when restored to the embryo. What sustains their pluripotency during propagation remains unclear. Here, we show that core pluripotency factors OCT4 and SOX2 suppress chaperone-mediated autophagy (CMA), a selective form of autophagy, until the initiation of differentiation. Low CMA activity promotes embryonic stem cell self-renewal, whereas its up-regulation enhances differentiation. CMA degrades isocitrate dehydrogenases IDH1 and IDH2 and reduces levels of intracellular α-ketoglutarate, an obligatory cofactor for various histone and DNA demethylases involved in pluripotency. These findings suggest that CMA mediates the effect of core pluripotency factors on metabolism, shaping the epigenetic landscape of stem cells and governing the balance between self-renewal and differentiation.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan C García-Cañaveras
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Lili Guo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixiang Yu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
129
|
Liu K, Cao J, Shi X, Wang L, Zhao T. Cellular metabolism and homeostasis in pluripotency regulation. Protein Cell 2020; 11:630-640. [PMID: 32643102 PMCID: PMC7452966 DOI: 10.1007/s13238-020-00755-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) can immortally self-renew in culture with a high proliferation rate, and they possess unique metabolic characteristics that facilitate pluripotency regulation. Here, we review recent progress in understanding the mechanisms that link cellular metabolism and homeostasis to pluripotency regulation, with particular emphasis on pathways involving amino acid metabolism, lipid metabolism, the ubiquitin-proteasome system and autophagy. Metabolism of amino acids and lipids is tightly coupled to epigenetic modification, organelle remodeling and cell signaling pathways for pluripotency regulation. PSCs harness enhanced proteasome and autophagy activity to meet the material and energy requirements for cellular homeostasis. These regulatory events reflect a fine balance between the intrinsic cellular requirements and the extrinsic environment. A more complete understanding of this balance will pave new ways to manipulate PSC fate.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingxing Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
130
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
131
|
Shanak S, Helms V. DNA methylation and the core pluripotency network. Dev Biol 2020; 464:145-160. [PMID: 32562758 DOI: 10.1016/j.ydbio.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
From the onset of fertilization, the genome undergoes cell division and differentiation. All of these developmental transitions and differentiation processes include cell-specific signatures and gradual changes of the epigenome. Understanding what keeps stem cells in the pluripotent state and what leads to differentiation are fascinating and biomedically highly important issues. Numerous studies have identified genes, proteins, microRNAs and small molecules that exert essential effects. Notably, there exists a core pluripotency network that consists of several transcription factors and accessory proteins. Three eminent transcription factors, OCT4, SOX2 and NANOG, serve as hubs in this core pluripotency network. They bind to the enhancer regions of their target genes and modulate, among others, the expression levels of genes that are associated with Gene Ontology terms related to differentiation and self-renewal. Also, much has been learned about the epigenetic rewiring processes during these changes of cell fate. For example, DNA methylation dynamics is pivotal during embryonic development. The main goal of this review is to highlight an intricate interplay of (a) DNA methyltransferases controlling the expression levels of core pluripotency factors by modulation of the DNA methylation levels in their enhancer regions, and of (b) the core pluripotency factors controlling the transcriptional regulation of DNA methyltransferases. We discuss these processes both at the global level and in atomistic detail based on information from structural studies and from computer simulations.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Science, Arab-American University, Jenin, Palestine; Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
132
|
Lynch-Sutherland CF, Chatterjee A, Stockwell PA, Eccles MR, Macaulay EC. Reawakening the Developmental Origins of Cancer Through Transposable Elements. Front Oncol 2020; 10:468. [PMID: 32432029 PMCID: PMC7214541 DOI: 10.3389/fonc.2020.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) have an established role as important regulators of early human development, functioning as tissue-specific genes and regulatory elements. Functional TEs are highly active during early development, and interact with important developmental genes, some of which also function as oncogenes. Dedifferentiation is a hallmark of cancer, and is characterized by genetic and epigenetic changes that enable proliferation, self-renewal and a metabolism reminiscent of embryonic stem cells. There is also compelling evidence suggesting that the path to dedifferentiation in cancer can contribute to invasion and metastasis. TEs are frequently expressed in cancer, and recent work has identified a newly proposed mechanism involving extensive recruitment of TE-derived promoters to drive expression of oncogenes and subsequently promote oncogenesis—a process termed onco-exaptation. However, the mechanism by which this phenomenon occurs, and the extent to which it contributes to oncogenesis remains unknown. Initial hypotheses have proposed that onco-exaptation events are cancer-specific and arise randomly due to the dysregulated and hypomethylated state of cancer cells and abundance of TEs across the genome. However, we suspect that exaptation-like events may not just arise due to chance activation of novel regulatory relationships as proposed previously, but as a result of the reestablishment of early developmental regulatory relationships. Dedifferentiation in cancer is well-documented, along with expression of TEs. The known interactions between TEs and pluripotency factors such as NANOG and OCTt4 during early development, along with the expression of some placental-specific TE-derived transcripts in cancer support a possible link between TEs and dedifferentiation of tumor cells. Thus, we hypothesize that onco-exaptation events can be associated with the epigenetic reawakening of early developmental TEs to regulate expression of oncogenes and promote oncogenesis. We also suspect that activation of these early developmental regulatory TEs may promote dedifferentiation, although at this stage it is hard to predict whether TE activation is one of the initial drivers of dedifferentiation. We expect that developmental TE activation occurs as a result of the establishment of an epigenetic landscape in cancer that resembles that of early development and that developmental TE activation may also enable cancers to exploit early developmental pathways, repurposing them to promote malignancy.
Collapse
Affiliation(s)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
133
|
Jing R, Guo X, Yang Y, Chen W, Kang J, Zhu S. Long noncoding RNA Q associates with Sox2 and is involved in the maintenance of pluripotency in mouse embryonic stem cells. Stem Cells 2020; 38:834-848. [PMID: 32277787 DOI: 10.1002/stem.3180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 11/11/2022]
Abstract
Large intergenic noncoding RNAs (lincRNAs) in ESCs may play an important role in the maintenance of pluripotency. The identification of stem cell-specific lincRNAs and their interacting partners will deepen our understanding of the maintenance of stem cell pluripotency. We identified a lincRNA, LincQ, which is specifically expressed in ESCs and is regulated by core pluripotent transcription factors. It was rapidly downregulated during the differentiation process. Knockdown of LincQ in ESCs led to differentiation, downregulation of pluripotency-related genes, and upregulation of differentiation-related genes. We found that exon 1 of LincQ can specifically bind to Sox2. The Soxp region in Sox2, rather than the high mobility group domain, is responsible for LincQ binding. Importantly, the interaction between LincQ and Sox2 is required for the maintenance of pluripotency in ESCs and the transcription of pluripotency genes. Esrrb and Tfcp2l1 are key downstream targets of LincQ and Sox2, since overexpression of Esrrb and Tfcp2l1 can restore the loss of ESC pluripotency that is induced by LincQ depletion. In summary, we found that LincQ specifically interacts with Sox2 and contributes to the maintenance of pluripotency, highlighting the critical role of lincRNA in the pluripotency regulatory network.
Collapse
Affiliation(s)
- Ruiqi Jing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.,Institute for Advanced Study, Tongji University, Shanghai, People's Republic of China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, People's Republic of China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
134
|
Hu Z, Li H, Jiang H, Ren Y, Yu X, Qiu J, Stablewski AB, Zhang B, Buck MJ, Feng J. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. SCIENCE ADVANCES 2020; 6:eaaz0298. [PMID: 32426495 PMCID: PMC7220352 DOI: 10.1126/sciadv.aaz0298] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
It has not been possible to generate naïve human pluripotent stem cells (hPSCs) that substantially contribute to mouse embryos. We found that a brief inhibition of mTOR with Torin1 converted hPSCs from primed to naïve pluripotency. The naïve hPSCs were maintained in the same condition as mouse embryonic stem cells and exhibited high clonogenicity, rapid proliferation, mitochondrial respiration, X chromosome reactivation, DNA hypomethylation, and transcriptomes sharing similarities to those of human blastocysts. When transferred to mouse blastocysts, naïve hPSCs generated 0.1 to 4% human cells, of all three germ layers, including large amounts of enucleated red blood cells, suggesting a marked acceleration of hPSC development in mouse embryos. Torin1 induced nuclear translocation of TFE3; TFE3 with mutated nuclear localization signal blocked the primed-to-naïve conversion. The generation of chimera-competent naïve hPSCs unifies some common features of naïve pluripotency in mammals and may enable applications such as human organ generation in animals.
Collapse
Affiliation(s)
- Zhixing Hu
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Hanqin Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Houbo Jiang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jingxin Qiu
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Aimee B. Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Boyang Zhang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael J. Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
135
|
Rochford AE, Carnicer-Lombarte A, Curto VF, Malliaras GG, Barone DG. When Bio Meets Technology: Biohybrid Neural Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903182. [PMID: 31517403 DOI: 10.1002/adma.201903182] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The development of electronics capable of interfacing with the nervous system is a rapidly advancing field with applications in basic science and clinical translation. Devices containing arrays of electrodes can be used in the study of cells grown in culture or can be implanted into damaged or dysfunctional tissue to restore normal function. While devices are typically designed and used exclusively for one of these two purposes, there have been increasing efforts in developing implantable electrode arrays capable of housing cultured cells, referred to as biohybrid implants. Once implanted, the cells within these implants integrate into the tissue, serving as a mediator of the electrode-tissue interface. This biological component offers unique advantages to these implant designs, providing better tissue integration and potentially long-term stability. Herein, an overview of current research into biohybrid devices, as well as the historical background that led to their development are provided, based on the host anatomical location for which they are designed (CNS, PNS, or special senses). Finally, a summary of the key challenges of this technology and potential future research directions are presented.
Collapse
Affiliation(s)
- Amy E Rochford
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | | | - Vincenzo F Curto
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Damiano G Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
136
|
O-GlcNAcylation regulates the methionine cycle to promote pluripotency of stem cells. Proc Natl Acad Sci U S A 2020; 117:7755-7763. [PMID: 32193337 DOI: 10.1073/pnas.1915582117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Methionine metabolism is critical for the maintenance of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) pluripotency. However, little is known about the regulation of the methionine cycle to sustain ESC pluripotency. Here, we show that adenosylhomocysteinase (AHCY), an important enzyme in the methionine cycle, is critical for the maintenance and differentiation of mouse embryonic stem cells (mESCs). We show that mESCs exhibit high levels of methionine metabolism, whereas decreasing methionine metabolism via depletion of AHCY promotes mESCs to differentiate into the three germ layers. AHCY is posttranslationally modified with an O-linked β-N-acetylglucosamine sugar (O-GlcNAcylation), which is rapidly removed upon differentiation. O-GlcNAcylation of threonine 136 on AHCY increases its activity and is important for the maintenance of trimethylation of histone H3 lysine 4 (H3K4me3) to sustain mESC pluripotency. Blocking glycosylation of AHCY decreases the ratio of S-adenosylmethionine versus S-adenosylhomocysteine (SAM/SAH), reduces the level of H3K4me3, and poises mESC for differentiation. In addition, blocking glycosylation of AHCY reduces somatic cell reprogramming. Thus, our findings reveal a critical role of AHCY and a mechanistic understanding of O-glycosylation in regulating ESC pluripotency and differentiation.
Collapse
|
137
|
Chen L, Pan X, Guo W, Gan Z, Zhang YH, Niu Z, Huang T, Cai YD. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Genomics 2020; 112:2524-2534. [PMID: 32045671 DOI: 10.1016/j.ygeno.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
The development of embryonic cells involves several continuous stages, and some genes are related to embryogenesis. To date, few studies have systematically investigated changes in gene expression profiles during mammalian embryogenesis. In this study, a computational analysis using machine learning algorithms was performed on the gene expression profiles of mouse embryonic cells at seven stages. First, the profiles were analyzed through a powerful Monte Carlo feature selection method for the generation of a feature list. Second, increment feature selection was applied on the list by incorporating two classification algorithms: support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER). Through SVM, we extracted several latent gene biomarkers, indicating the stages of embryonic cells, and constructed an optimal SVM classifier that produced a nearly perfect classification of embryonic cells. Furthermore, some interesting rules were accessed by the RIPPER algorithm, suggesting different expression patterns for different stages.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - XiaoYong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Wei Guo
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
138
|
Kainov YA, Makeyev EV. A transcriptome-wide antitermination mechanism sustaining identity of embryonic stem cells. Nat Commun 2020; 11:361. [PMID: 31953406 PMCID: PMC6969169 DOI: 10.1038/s41467-019-14204-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
Eukaryotic gene expression relies on extensive crosstalk between transcription and RNA processing. Changes in this composite regulation network may provide an important means for shaping cell type-specific transcriptomes. Here we show that the RNA-associated protein Srrt/Ars2 sustains embryonic stem cell (ESC) identity by preventing premature termination of numerous transcripts at cryptic cleavage/polyadenylation sites in first introns. Srrt interacts with the nuclear cap-binding complex and facilitates recruitment of the spliceosome component U1 snRNP to cognate intronic positions. At least in some cases, U1 recruited in this manner inhibits downstream cleavage/polyadenylation events through a splicing-independent mechanism called telescripting. We further provide evidence that the naturally high expression of Srrt in ESCs offsets deleterious effects of retrotransposable sequences accumulating in its targets. Our work identifies Srrt as a molecular guardian of the pluripotent cell state. Besides its role in splicing, U1 snRNP can suppress pre-mRNA cleavage and polyadenylation. The authors show that the nuclear cap-binding complex component Srrt/Ars2 maintains embryonic stem cell identity by promoting U1 recruitment to first introns and preventing premature termination of multiple transcripts.
Collapse
Affiliation(s)
- Yaroslav A Kainov
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
139
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
140
|
Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, Latif FA, West MP, Gurden R, Finlayson L, Svambaryte S, West AG, West KL. Maintenance of active chromatin states by HMGN2 is required for stem cell identity in a pluripotent stem cell model. Epigenetics Chromatin 2019; 12:73. [PMID: 31831052 PMCID: PMC6907237 DOI: 10.1186/s13072-019-0320-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
Background Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells. Results We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2. Conclusions We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.
Collapse
Affiliation(s)
- Sylvia Garza-Manero
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Abdulmajeed Abdulghani A Sindi
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.,Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha-Alaqiq, Saudi Arabia
| | - Gokula Mohan
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Ohoud Rehbini
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Valentine H M Jeantet
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Mariarca Bailo
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Faeezah Abdul Latif
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Maureen P West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ross Gurden
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Lauren Finlayson
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Silvija Svambaryte
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Adam G West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Katherine L West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK. .,School of Life Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
141
|
Bredenkamp N, Yang J, Clarke J, Stirparo GG, von Meyenn F, Dietmann S, Baker D, Drummond R, Ren Y, Li D, Wu C, Rostovskaya M, Eminli-Meissner S, Smith A, Guo G. Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency. Stem Cell Reports 2019; 13:1083-1098. [PMID: 31708477 PMCID: PMC6915845 DOI: 10.1016/j.stemcr.2019.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
In contrast to conventional human pluripotent stem cells (hPSCs) that are related to post-implantation embryo stages, naive hPSCs exhibit features of pre-implantation epiblast. Naive hPSCs are established by resetting conventional hPSCs, or are derived from dissociated embryo inner cell masses. Here we investigate conditions for transgene-free reprogramming of human somatic cells to naive pluripotency. We find that Wnt inhibition promotes RNA-mediated induction of naive pluripotency. We demonstrate application to independent human fibroblast cultures and endothelial progenitor cells. We show that induced naive hPSCs can be clonally expanded with a diploid karyotype and undergo somatic lineage differentiation following formative transition. Induced naive hPSC lines exhibit distinctive surface marker, transcriptome, and methylome properties of naive epiblast identity. This system for efficient, facile, and reliable induction of transgene-free naive hPSCs offers a robust platform, both for delineation of human reprogramming trajectories and for evaluating the attributes of isogenic naive versus conventional hPSCs.
Collapse
Affiliation(s)
- Nicholas Bredenkamp
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jian Yang
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou 510530, China; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - James Clarke
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Ferdinand von Meyenn
- Department of Medical & Molecular Genetics, King's College London, London SE1 9RT, UK; Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Duncan Baker
- Sheffield Diagnostic Genetic Service, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Rosalind Drummond
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yongming Ren
- REPROCELL USA, 9000 Virginia Manor Road #207, Beltsville, MD 20705, USA
| | - Dongwei Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuman Wu
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou 510530, China
| | - Maria Rostovskaya
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | - Ge Guo
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
142
|
Abstract
Regeneration is a remarkable phenomenon that has been the subject of awe and bafflement for hundreds of years. Although regeneration competence is found in highly divergent organisms throughout the animal kingdom, recent advances in tools used for molecular and genomic characterization have uncovered common genes, molecular mechanisms, and genomic features in regenerating animals. In this review we focus on what is known about how genome regulation modulates cellular potency during regeneration. We discuss this regulation in the context of complex tissue regeneration in animals, from Hydra to humans, with reference to ex vivo-cultured cell models of pluripotency when appropriate. We emphasize the importance of a detailed molecular understanding of both the mechanisms that regulate genomic output and the functional assays that assess the biological relevance of such molecular characterizations.
Collapse
Affiliation(s)
- Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
143
|
Pospisilova V, Esner M, Cervenkova I, Fedr R, Tinevez JY, Hampl A, Anger M. The frequency and consequences of multipolar mitoses in undifferentiated embryonic stem cells. J Appl Biomed 2019; 17:209-217. [PMID: 34907719 DOI: 10.32725/jab.2019.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 01/28/2023] Open
Abstract
Embryonic stem (ES) cells are pluripotent cells widely used in cell therapy and tissue engineering. However, the broader clinical applications of ES cells are limited by their genomic instability and karyotypic abnormalities. Thus, understanding the mechanisms underlying ES cell karyotypic abnormalities is critical to optimizing their clinical use. In this study, we focused on proliferating human and mouse ES cells undergoing multipolar divisions. Specifically, we analyzed the frequency and outcomes of such divisions using a combination of time-lapse microscopy and cell tracking. This revealed that cells resulting from multipolar divisions were not only viable, but they also frequently underwent subsequent cell divisions. Our novel data also showed that in human and mouse ES cells, multipolar spindles allowed more robust escape from chromosome segregation control mechanisms than bipolar spindles. Considering the frequency of multipolar divisions in proliferating ES cells, it is conceivable that cell division errors underlie ES cell karyotypic instability.
Collapse
Affiliation(s)
- Veronika Pospisilova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| | - Milan Esner
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic.,Masaryk University, CEITEC - Central European Institute of Technology, Cellular Imaging Core Facility, Brno, Czech Republic
| | - Iveta Cervenkova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Ales Hampl
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic.,St. Anne's University Hospital, International Clinical Research Center, Brno, Czech Republic
| | - Martin Anger
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic.,Masaryk University, CEITEC - Central European Institute of Technology, Cellular Imaging Core Facility, Brno, Czech Republic
| |
Collapse
|
144
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
145
|
Kong Q, Yang X, Zhang H, Liu S, Zhao J, Zhang J, Weng X, Jin J, Liu Z. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J 2019; 34:691-705. [DOI: 10.1096/fj.201901818rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Qingran Kong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Xu Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
- Institute of Biology Westlake University Hangzhou China
| | - Shichao Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Jianchao Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| |
Collapse
|
146
|
De Los Angeles A. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation. Exp Cell Res 2019; 387:111747. [PMID: 31778671 DOI: 10.1016/j.yexcr.2019.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Pluripotency refers to the potential of single cells to form all cells and tissues of an organism. The observation that pluripotent stem cells can chimerize the embryos of evolutionarily distant species, albeit at very low efficiencies, could with further modifications, facilitate the production of human-animal interspecies chimeras. The generation of human-animal interspecies chimeras, if achieved, will enable practitioners to recapitulate pathologic human tissue formation in vivo and produce patient-specific organs inside livestock species. However, little is known about the nature of chimera-competent cellular states in primates. Here, I discuss recent advances in our understanding of the pluripotency continuum in humans and non-human primates (NHPs). Although undefined differences between humans and NHPs still justify the utility of studying human cells, the complementary use of NHP PS cells could also allow one to conduct pilot studies testing interspecies chimera generation strategies with reduced ethical concerns associated with human interspecies neurological chimerism. However, the availability of standardized, high-quality and validated NHP PS cell lines covering the spectrum of primate pluripotent states is lacking. Therefore, a clearer understanding of the primate pluripotency continuum will facilitate the complementary use of both human and NHP PS cells for testing interspecies organogenesis strategies, with the hope of one day enabling human organ generation inside livestock species.
Collapse
|
147
|
Makar K, Sasaki K. Roadmap of germline development and in vitro gametogenesis from pluripotent stem cells. Andrology 2019; 8:842-851. [PMID: 31705609 DOI: 10.1111/andr.12726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The germ cell lineage is a fundamental component of the metazoan life cycle, ensuring the perpetuation and substantial diversification of genetic information across generations. Recent advances in the understanding of mouse germ cell development have culminated in the ability to reconstitute gametogenesis in vitro, thereby enabling the biochemical and molecular analyses of germ cell specification and subsequent development in mice. Similar advances in reconstituting human germ cells in vitro would provide critical insight into the etiology of various reproductive conditions and disorders, including infertility. OBJECTIVES This review presents the mechanisms leading to germ cell development in mammals, particularly in mice and non-human primates, as well as the applicability of these animal models to human germ cell development. The induction methods performed to recapitulate germ cell development in vitro are also discussed in this review, specifically focusing on in vitro gametogenesis from pluripotent stem cells. MATERIALS AND METHODS This review compiles the key methods and findings of various references relevant to the above-mentioned topic. RESULTS Murine models have provided essential mechanistic insight into the process of germ cell lineage development. However, there are several structural differences between mice and humans during early embryogenesis that hinder the extrapolation of findings made in murine models to what may occur in humans. Recent studies using human or non-human primate embryos and human-induced pluripotent stem cell (hiPSC)-derived germ cells shed light on key cellular and genetic mechanisms governing germ cell development in humans. DISCUSSION Utilizing the knowledge obtained from studying germ cell development in different animal models, induction methods established by various laboratories now permit partial reconstitution of human gametogenesis in vitro. CONCLUSION In vitro gametogenesis will constitute an emergent new field in human reproductive medicine in the near future, although legal and ethical considerations must be taken into account.
Collapse
Affiliation(s)
- Karen Makar
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kotaro Sasaki
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
148
|
LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel) 2019; 11:cancers11121821. [PMID: 31756917 PMCID: PMC6966601 DOI: 10.3390/cancers11121821] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1's role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
Collapse
|
149
|
Di Stefano B, Luo EC, Haggerty C, Aigner S, Charlton J, Brumbaugh J, Ji F, Rabano Jiménez I, Clowers KJ, Huebner AJ, Clement K, Lipchina I, de Kort MAC, Anselmo A, Pulice J, Gerli MFM, Gu H, Gygi SP, Sadreyev RI, Meissner A, Yeo GW, Hochedlinger K. The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. Cell Stem Cell 2019; 25:622-638.e13. [PMID: 31588046 DOI: 10.1016/j.stem.2019.08.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023]
Abstract
Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, "hyper-pluripotent" state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency.
Collapse
Affiliation(s)
- Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chuck Haggerty
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jocelyn Charlton
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Justin Brumbaugh
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Inés Rabano Jiménez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Kendell Clement
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Inna Lipchina
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Marit A C de Kort
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - John Pulice
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Mattia F M Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Hongcang Gu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
150
|
Sakakura M, Ohta S, Yagi M, Tanaka A, Norihide J, Woltjen K, Yamamoto T, Yamada Y. Smarcb1 maintains the cellular identity and the chromatin landscapes of mouse embryonic stem cells. Biochem Biophys Res Commun 2019; 519:705-713. [PMID: 31543342 DOI: 10.1016/j.bbrc.2019.09.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023]
Abstract
ES cell (ESC) identity is stably maintained through the coordinated regulation of transcription factors and chromatin structure. SMARCB1, also known as INI1, SNF5, BAF47, is one of the subunits of SWI/SNF (BAF) complexes that play a crucial role in regulating gene expression by controlling chromatin dynamics. Genetic ablation of Smarcb1 in mice leads to embryonic lethality at the peri-implantation stage, indicating that Smarcb1 is important for the early developmental stages. However, the role of SMARCB1 in the maintenance of the ESC identity remains unknown. Here we established mouse ESCs lacking Smarcb1 and investigated the effect of Smarcb1 ablation on the differentiation propensity of ESCs. We found an increased expression of trophectoderm-related genes including Cdx2 in Smarcb1-deficient ESCs. Consistently, they exhibited an extended differentiation propensity into the trophectoderm lineage cells in teratomas. However, although Smarcb1-deficient cells were infrequently incorporated into the trophectoderm cell layer of blastocysts, they failed to contribute to mature placental tissues in vivo. Furthermore, Smarcb1-deficient cells exhibited a premature differentiation in the neural tissue of E14.5 chimeric embryos. Notably, we found that binding motifs for CTCF, which is involved in the maintenance of genomic DNA architecture was significantly enriched in chromatin regions whose accessibility was augmented in Smarcb1-deficient cells, while those for pluripotency factors were overrepresented in regions which have more closed structure in those cells. Collectively, we propose that SMARCB1-mediated remodeling of chromatin landscapes is important for the maintenance and differentiation of ESCs.
Collapse
Affiliation(s)
- Megumi Sakakura
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Masaki Yagi
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Akito Tanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Jo Norihide
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan.
| |
Collapse
|