101
|
Duncan-Lowey B, Tal N, Johnson AG, Rawson S, Mayer ML, Doron S, Millman A, Melamed S, Fedorenko T, Kacen A, Brandis A, Mehlman T, Amitai G, Sorek R, Kranzusch PJ. Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell 2023; 186:987-998.e15. [PMID: 36764290 PMCID: PMC9994260 DOI: 10.1016/j.cell.2023.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alex G Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA 02115, USA
| | - Megan L Mayer
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA 02115, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
102
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|
103
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
104
|
Phage capsid recognition triggers activation of a bacterial toxin-antitoxin defense system. Mol Cell 2023; 83:165-166. [PMID: 36669478 DOI: 10.1016/j.molcel.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Zhang et al.1 reveal a previously unknown route to toxin activation whereby bacteriophage capsid proteins bind the antitoxin domain of the CapRel fused toxin-antitoxin system, triggering translational inhibition via pyrophosporylation of tRNAs and culminating in abortive infection-mediated phage resistance.
Collapse
|
105
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
106
|
Hou B, Wang CY, Li SW, Zhou LJ, Che YL, Chen QY. Effects of Toxin-Antitoxin System HicAB on Biofilm Formation by Extraintestinal Pathogenic E. coli. Curr Microbiol 2022; 80:50. [PMID: 36542185 DOI: 10.1007/s00284-022-03138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The type II toxin-antitoxin (T-A) HicAB system is abundant in several bacteria and archaea, such as Escherichia coli, Burkholderia Pseudomallei, Yersinia pestis, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This system engages in stress response, virulence, and bacterial persistence. This study showed that the biofilm-forming ability of the hicAB deletion mutant was significantly decreased to moderate ability compared to the extra-intestinal pathogenic Escherichia coli (ExPEC) parent strain and the complemented strain, which are strong biofilm producers. Congo red assay showed that the hicAB mutant maintained the ability to form curli fimbriae. Using RNA-seq and comparative real-time quantitative RT-PCR, we observed the difference in gene expression between the hicAB mutant and the parent strain, which was associated with biofilm formation. Our data indicate that the HicAB type II T-A system has a key role in biofilm formation by ExPEC, which may be associated with outer membrane protein (OMP) gene expression. Collectively, our results indicate that the hicAB type II T-A system is involved in ExPEC biofilm formation.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Chen-Yan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Shao-Wen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| |
Collapse
|
107
|
Toxin-Antitoxin Systems Alter Adaptation of Mycobacterium smegmatis to Environmental Stress. Microbiol Spectr 2022; 10:e0281522. [PMID: 36318013 PMCID: PMC9769933 DOI: 10.1128/spectrum.02815-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in prokaryotes, but their biological importance is poorly understood. Mycobacterium smegmatis contains eight putative TA systems. Previously, seven TAs have been studied, with five of them being verified as functional. Here, we show that Ms0251-0252 is a novel TA system in that expression of the toxin Ms0251 leads to growth inhibition that can be rescued by the antitoxin Ms0252. To investigate the functional roles of TA systems in M. smegmatis, we deleted the eight putative TA loci and assayed the mutants for resistance to various stresses. Deletion of all eight TA loci resulted in decreased survival under starvation conditions and altered fitness when exposed to environmental stresses. Furthermore, we showed that deletion of the eight TA loci decreased resistance to phage infection in Sauton medium compared with the results using 7H10 medium, suggesting that TA systems might have different contributions depending on the nutrient environment. Furthermore, we found that MazEF specifically played a dominant role in resistance to phage infection. Finally, transcriptome analysis revealed that MazEF overexpression led to differential expression of multiple genes, including those related to iron acquisition. Altogether, we demonstrate that TA systems coordinately function to allow M. smegmatis to adapt to changing environmental conditions. IMPORTANCE Toxin-antitoxin (TA) systems are mechanisms for rapid adaptation of bacteria to environmental changes. Mycobacterium smegmatis, a model bacterium for studying Mycobacterium tuberculosis, encodes eight putative TA systems. Here, we constructed an M. smegmatis mutant with deletions of all eight TA-encoding genes and evaluated the resistance of these mutants to environmental stresses. Our results showed that different TA systems have overlapping and, in some cases, opposing functions in adaptation to various stresses. We suggest that complementary TA modules may function together to regulate the bacterial stress response, enabling adaptation to changing environments. Together, this study provides key insights into the roles of TA systems in resistance to various environmental stresses, drug tolerance, and defense against phage infection.
Collapse
|
108
|
Cui Y, Su X, Wang C, Xu H, Hu D, Wang J, Pei K, Sun M, Zou T. Bacterial MazF/MazE toxin-antitoxin suppresses lytic propagation of arbitrium-containing phages. Cell Rep 2022; 41:111752. [PMID: 36476854 DOI: 10.1016/j.celrep.2022.111752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Temperate phages dynamically switch between lysis and lysogeny in their full life cycle. Some Bacillus-infecting phages utilize a quorum-sensing-like intercellular communication system, the "arbitrium," to mediate lysis-lysogeny decisions. However, whether additional factors participate in the arbitrium signaling pathway remains largely elusive. Here, we find that the arbitrium signal induces the expression of a functionally conserved operon downstream of the arbitrium module in SPbeta-like phages. SPbeta yopM and yopR (as well as phi3T phi3T_93 and phi3T_97) in the operon play roles in suppressing phage lytic propagation and promoting lysogeny, respectively. We further focus on phi3T_93 and demonstrate that it directly binds antitoxin MazE in the host MazF/MazE toxin-antitoxin (TA) module and facilitates the activation of MazF's toxicity, which is required for phage suppression. These findings show events regulated by the arbitrium system and shed light on how the interplay between phages and the host TA module affects phage-host co-survival.
Collapse
Affiliation(s)
- Yongqing Cui
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Su
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delei Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Pei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Zou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
109
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
110
|
Zhang T, Tamman H, Coppieters 't Wallant K, Kurata T, LeRoux M, Srikant S, Brodiazhenko T, Cepauskas A, Talavera A, Martens C, Atkinson GC, Hauryliuk V, Garcia-Pino A, Laub MT. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 2022; 612:132-140. [PMID: 36385533 PMCID: PMC9712102 DOI: 10.1038/s41586-022-05444-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria have evolved diverse immunity mechanisms to protect themselves against the constant onslaught of bacteriophages1-3. Similar to how eukaryotic innate immune systems sense foreign invaders through pathogen-associated molecular patterns4 (PAMPs), many bacterial immune systems that respond to bacteriophage infection require phage-specific triggers to be activated. However, the identities of such triggers and the sensing mechanisms remain largely unknown. Here we identify and investigate the anti-phage function of CapRelSJ46, a fused toxin-antitoxin system that protects Escherichia coli against diverse phages. Using genetic, biochemical and structural analyses, we demonstrate that the C-terminal domain of CapRelSJ46 regulates the toxic N-terminal region, serving as both antitoxin and phage infection sensor. Following infection by certain phages, newly synthesized major capsid protein binds directly to the C-terminal domain of CapRelSJ46 to relieve autoinhibition, enabling the toxin domain to pyrophosphorylate tRNAs, which blocks translation to restrict viral infection. Collectively, our results reveal the molecular mechanism by which a bacterial immune system directly senses a conserved, essential component of phages, suggesting a PAMP-like sensing model for toxin-antitoxin-mediated innate immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers are engaged in a 'Red Queen conflict'5, revealing a new front in the intense coevolutionary battle between phages and bacteria. Given that capsid proteins of some eukaryotic viruses are known to stimulate innate immune signalling in mammalian hosts6-10, our results reveal a deeply conserved facet of immunity.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium
| | - Kyo Coppieters 't Wallant
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
111
|
Millman A, Melamed S, Leavitt A, Doron S, Bernheim A, Hör J, Garb J, Bechon N, Brandis A, Lopatina A, Ofir G, Hochhauser D, Stokar-Avihail A, Tal N, Sharir S, Voichek M, Erez Z, Ferrer JLM, Dar D, Kacen A, Amitai G, Sorek R. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022; 30:1556-1569.e5. [DOI: 10.1016/j.chom.2022.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023]
|
112
|
Bobonis J, Mitosch K, Mateus A, Karcher N, Kritikos G, Selkrig J, Zietek M, Monzon V, Pfalz B, Garcia-Santamarina S, Galardini M, Sueki A, Kobayashi C, Stein F, Bateman A, Zeller G, Savitski MM, Elfenbein JR, Andrews-Polymenis HL, Typas A. Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems. Nature 2022; 609:144-150. [PMID: 35850148 PMCID: PMC11938430 DOI: 10.1038/s41586-022-05091-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.
Collapse
Affiliation(s)
- Jacob Bobonis
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Karin Mitosch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Nicolai Karcher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - George Kritikos
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joel Selkrig
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matylda Zietek
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vivian Monzon
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Birgit Pfalz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sarela Garcia-Santamarina
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Chemical and Biological Technology António Xavier, Oeiras, Portugal
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Anna Sueki
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Callie Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX, USA
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alex Bateman
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | | | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
113
|
Shaidullina A, Harms A. Antiviral death punch by ADP-ribosylating bacterial toxins. Trends Microbiol 2022; 30:920-921. [PMID: 35989163 DOI: 10.1016/j.tim.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Toxin-antitoxin systems can defend bacteria against phages by shutting down infected cells, but the links between their molecular mechanisms and biological functions have remained underexplored. LeRoux et al. now show how the DNA-targeting ADP-ribosylation activity of DarTG impairs phage replication but is overcome by dedicated viral inhibitors and evolved tolerance.
Collapse
|
114
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|