101
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
102
|
Schultz JE, Kanchan K, Ziegler M. Intraprotein signal transduction by HAMP domains: a balancing act. Int J Med Microbiol 2014; 305:243-51. [PMID: 25595022 DOI: 10.1016/j.ijmm.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HAMP domains are small protein modules that predominantly operate as signal transducers in bacterial sensor proteins most of which are membrane delimited. The domain organization of such sensors has the HAMPs localized at the intersection between the membrane-anchored input sensor and the cytosolic output machinery. The data summarized here indicate that HAMP modules use a universal signaling language in balancing the communication between diverse membrane-bound input domains and cytosolic output domains that are completely foreign to each other.
Collapse
Affiliation(s)
- Joachim E Schultz
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen H 4032, Hungary
| | - Miriam Ziegler
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
103
|
Botelho SC, Enquist K, von Heijne G, Draheim RR. Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:615-21. [PMID: 25445668 DOI: 10.1016/j.bbamem.2014.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/29/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Aromatic tuning, i.e. repositioning aromatic residues found at the cytoplasmic end of transmembrane (TM) domains within bacterial receptors, has been previously shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor EnvZ of Escherichia coli. In the case of Tar, changes in signal output consistent with the vertical position of the native Trp-Tyr aromatic tandem within TM2 were observed. In contrast, within EnvZ, where a Trp-Leu-Phe aromatic triplet was repositioned, the surface that the triplet resided upon was the major determinant governing signal output. However, these studies failed to determine whether moving the aromatic residues was sufficient to physically reposition the TM helix within a membrane. Recent coarse-grained molecular dynamics (CG-MD) simulations predicted displacement of Tar TM2 upon moving the aromatic residues at the cytoplasmic end of the helix. Here, we demonstrate that repositioning the Trp-Tyr tandem within Tar TM2 displaces the C-terminal boundary of the helix relative to the membrane. In a similar analysis of EnvZ, an abrupt initial displacement of TM2 was observed but no subsequent movement was seen, suggesting that the vertical position of TM2 is not governed by the location of the Trp-Leu-Phe triplet. Our results also provide another set of experimental data, i.e. the resistance of EnvZ TM2 to being displaced upon aromatic tuning, which could be useful for subsequent refinement of the initial CG-MD simulations. Finally, we discuss the limitations of these methodologies, how moving flanking aromatic residues might impact steady-state signal output and the potential to employ aromatic tuning in other bacterial membrane-spanning receptors.
Collapse
Affiliation(s)
- Salomé C Botelho
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Karl Enquist
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Roger R Draheim
- Division of Pharmacy, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, England, UK; Wolfson Research Institute for Health and Wellbeing, Durham University, Queen's Campus, Stockton-on-Tees, TS17 6BH, England, UK.
| |
Collapse
|
104
|
A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors. Nat Commun 2014; 4:2881. [PMID: 24335957 DOI: 10.1038/ncomms3881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022] Open
Abstract
Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396' pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.
Collapse
|
105
|
Light-induced switching of HAMP domain conformation and dynamics revealed by time-resolved EPR spectroscopy. FEBS Lett 2014; 588:3970-6. [PMID: 25240192 DOI: 10.1016/j.febslet.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
Abstract
HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain's dynamics into the current model.
Collapse
|
106
|
Affiliation(s)
- Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina;
| |
Collapse
|
107
|
Lai RZ, Parkinson JS. Functional suppression of HAMP domain signaling defects in the E. coli serine chemoreceptor. J Mol Biol 2014; 426:3642-55. [PMID: 25134756 DOI: 10.1016/j.jmb.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
HAMP domains play key signaling roles in many bacterial receptor proteins. The four-helix HAMP bundle of the homodimeric Escherichia coli serine chemoreceptor (Tsr) interacts with an adjoining four-helix sensory adaptation bundle to regulate the histidine autokinase CheA bound to the cytoplasmic tip of the Tsr molecule. The adaptation helices undergo reversible covalent modifications that tune the stimulus-responsive range of the receptor: unmodified E residues promote kinase-off output, and methylated E residues or Q replacements at modification sites promote kinase-on output. We used mutationally imposed adaptational modification states and cells with various combinations of the sensory adaptation enzymes, CheR and CheB, to characterize the signaling properties of mutant Tsr receptors that had amino acid replacements in packing layer 3 of the HAMP bundle and followed in vivo CheA activity with an assay based on Förster resonance energy transfer. We found that an alanine or a serine replacement at HAMP residue I229 effectively locked Tsr output in a kinase-on state, abrogating chemotactic responses. A second amino acid replacement in the same HAMP packing layer alleviated the I229A and I229S signaling defects. Receptors with the suppressor changes alone mediated chemotaxis in adaptation-proficient cells but exhibited altered sensitivity to serine stimuli. Two of the suppressors (S255E and S255A) shifted Tsr output toward the kinase-off state, but two others (S255G and L256F) shifted output toward a kinase-on state. The alleviation of locked-on defects by on-shifted suppressors implies that Tsr-HAMP has several conformationally distinct kinase-active output states and that HAMP signaling might involve dynamic shifts over a range of bundle conformations.
Collapse
Affiliation(s)
- Run-Zhi Lai
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
108
|
Natarajan J, Schultz A, Kurz U, Schultz JE. Biochemical characterization of the tandem HAMP domain fromNatronomonas pharaonisas an intraprotein signal transducer. FEBS J 2014; 281:3218-27. [DOI: 10.1111/febs.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 05/16/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Janani Natarajan
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
109
|
Mascher T. Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. Trends Microbiol 2014; 22:559-65. [PMID: 24947190 DOI: 10.1016/j.tim.2014.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 01/01/2023]
Abstract
Most membrane-anchored histidine kinases (HKs) of bacterial two-component systems (2CSs) contain an extracellular input domain that is thought to be responsible for sensing an environmental cue. By contrast, intramembrane-sensing HKs (IM-HKs) lack a sensory domain and cannot perceive their stimuli directly. Instead, an N-terminal signal transfer region, consisting solely of two transmembrane helices, presumably connects the IM-HKs with accessory membrane proteins that function as the true sensors. This intermolecular signal transfer, in combination with intramolecular signal conversion, provides HKs with versatile signaling relays to connect, integrate, and amplify external signals from different sensory inputs ultimately to modulate the activity of the corresponding kinase domain.
Collapse
Affiliation(s)
- Thorsten Mascher
- Ludwig-Maximilians-Universität München, Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
110
|
Yeo KJ, Park JW, Kim EH, Hwang E, Cheong HK. Mg2+-induced folding of the sensory domain of QseC histidine kinase from enterohemorrhagic Escherichia coli (EHEC) O157:H7. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
111
|
Stewart V. The HAMP signal-conversion domain: static two-state or dynamic three-state? Mol Microbiol 2014; 91:853-7. [PMID: 24417364 DOI: 10.1111/mmi.12516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 01/13/2023]
Abstract
The 50-residue HAMP domain converts input signal into output response in a variety of transmembrane signal transduction proteins, including methyl-accepting chemotaxis proteins and histidine kinases. HAMP domains are present in many other contexts as well. Despite focused study over the past decade, the question remains: How does this small domain play such a large role for so many different proteins? Analysis of structural models for the Afl1503 and Aer2 HAMP domains has generated hypotheses in which the HAMP domain assumes either of two discrete forms that generate opposing signal output. In contrast, genetic analysis of the HAMP domain from the Tsr methyl-accepting chemotaxis protein resulted in a distinct hypothesis, the biphasic dynamic bundle. In this hypothesis, signalling involves differential packing stabilities of the HAMP domain four-helix bundle, marked by at least three distinct states. Here I summarize and compare these hypotheses in the context of a deletion analysis that further explores the biphasic dynamic bundle hypothesis.
Collapse
Affiliation(s)
- Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, 95616-8665, USA
| |
Collapse
|
112
|
Mechaly AE, Sassoon N, Betton JM, Alzari PM. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol 2014; 12:e1001776. [PMID: 24492262 PMCID: PMC3904827 DOI: 10.1371/journal.pbio.1001776] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.
Collapse
Affiliation(s)
- Ariel E. Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Nathalie Sassoon
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Jean-Michel Betton
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Pedro M. Alzari
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| |
Collapse
|
113
|
An unorthodox sensory adaptation site in the Escherichia coli serine chemoreceptor. J Bacteriol 2013; 196:641-9. [PMID: 24272777 DOI: 10.1128/jb.01164-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The serine chemoreceptor of Escherichia coli contains four canonical methylation sites for sensory adaptation that lie near intersubunit helix interfaces of the Tsr homodimer. An unexplored fifth methylation site, E502, lies at an intrasubunit helix interface closest to the HAMP domain that controls input-output signaling in methyl-accepting chemotaxis proteins. We analyzed, with in vivo Förster resonance energy transfer (FRET) kinase assays, the serine thresholds and response cooperativities of Tsr receptors with different mutationally imposed modifications at sites 1 to 4 and/or at site 5. Tsr variants carrying E or Q at residue 502, in combination with unmodifiable D and N replacements at adaptation sites 1 to 4, underwent both methylation and demethylation/deamidation, although detection of the latter modifications required elevated intracellular levels of CheB. These Tsr variants could not mediate a chemotactic response to serine spatial gradients, demonstrating that adaptational modifications at E502 alone are not sufficient for Tsr function. Moreover, E502 is not critical for Tsr function, because only two amino acid replacements at this residue abrogated serine chemotaxis: Tsr-E502P had extreme kinase-off output and Tsr-E502I had extreme kinase-on output. These large threshold shifts are probably due to the unique HAMP-proximal location of methylation site 5. However, a methylation-mimicking glutamine at any Tsr modification site raised the serine response threshold, suggesting that all sites influence signaling by the same general mechanism, presumably through changes in packing stability of the methylation helix bundle. These findings are consistent with control of input-output signaling in Tsr through dynamic interplay of the structural stabilities of the HAMP and methylation bundles.
Collapse
|
114
|
Ames P, Zhou Q, Parkinson JS. HAMP domain structural determinants for signalling and sensory adaptation in Tsr, the Escherichia coli serine chemoreceptor. Mol Microbiol 2013; 91:875-86. [PMID: 24205875 DOI: 10.1111/mmi.12443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
Abstract
HAMP domains mediate input-output transactions in many bacterial signalling proteins. To clarify the mechanistic logic of HAMP signalling, we constructed Tsr-HAMP deletion derivatives and characterized their steady-state signal outputs and sensory adaptation properties with flagellar rotation and receptor methylation assays. Tsr molecules lacking the entire HAMP domain or just the HAMP-AS2 helix generated clockwise output signals, confirming that kinase activation is the default output state of the chemoreceptor signalling domain and that attractant stimuli shift HAMP to an overriding kinase-off signalling state to elicit counter-clockwise flagellar responses. Receptors with deletions of the AS1 helices, which free the AS2 helices from bundle-packing constraints, exhibited kinase-off signalling behaviour that depended on three C-terminal hydrophobic residues of AS2. We conclude that AS2/AS2' packing interactions alone can play an important role in controlling output kinase activity. Neither kinase-on nor kinase-off HAMP deletion outputs responded to sensory adaptation control, implying that out-of-range conformations or bundle-packing stabilities of their methylation helices prevent substrate recognition by the adaptation enzymes. These observations support the previously proposed biphasic, dynamic-bundle mechanism of HAMP signalling and additionally show that the structural interplay of helix-packing interactions between HAMP and the adjoining methylation helices is critical for sensory adaptation control of receptor output.
Collapse
Affiliation(s)
- Peter Ames
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | |
Collapse
|
115
|
Jin T. Gradient sensing during chemotaxis. Curr Opin Cell Biol 2013; 25:532-7. [PMID: 23880435 DOI: 10.1016/j.ceb.2013.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
Abstract
Eukaryotic cells have the ability to sense chemoattractant gradients and to migrate toward the sources of attractants. The chemical gradient-guided cell movement is referred to as chemotaxis. Chemoattractants are detected by members of G-protein-coupled receptors (GPCRs) that link to heterotrimeric G-proteins. The GPCR/G-protein sensing machinery is able to translate external chemoattractants fields into intercellular cues, which direct reorganization of the actin cytoskeleton that drives cell movement. Here, I review our current understanding of the formation of chemoattractant gradients in vivo, the GPCR-mediated gradient sensing, and the sophisticated signaling network that guides the function of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Twinbrook II Facility, 12441 Parklawn Drive, Rockville, MD 20852, United States.
| |
Collapse
|
116
|
Randhawa A, Mondal AK. The sixth HAMP domain negatively regulates the activity of the group III HHK containing seven HAMP domains. Biochem Biophys Res Commun 2013; 438:140-4. [PMID: 23876316 DOI: 10.1016/j.bbrc.2013.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/12/2013] [Indexed: 11/28/2022]
Abstract
In fungi, the group III hybrid histidine kinases (HHK) act as important sensors to regulate osmoadaptation, hyphal growth, morphogenesis, conidia formation and virulence. They are molecular targets for antifungal agent fludioxonil. They typically have HAMP domain repeats at the NH2-terminus that are important for their activity. Interestingly, the numbers of HAMP domain vary among the orthologs from different genera. The orthologs from basidiomycetes harbor seven HAMP domains whereas those from yeast contain five HAMP domains. In order to understand the functioning of a seven-HAMP module, we have constructed a yeast-like chimera DhNik1-Tco1 containing seven HAMP domains. The functional characterization of this chimera in yeast Saccharomyces cerevisiae showed that the sixth HAMP domain played important regulatory role. Our results indicated that the negative regulation of histidine kinase activity by the penultimate HAMP domain could possibly be an evolutionarily conserved theme in the group III HHK containing different lengths of poly HAMP module.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
117
|
Two distinct states of the HAMP domain from sensory rhodopsin transducer observed in unbiased molecular dynamics simulations. PLoS One 2013; 8:e66917. [PMID: 23843970 PMCID: PMC3699570 DOI: 10.1371/journal.pone.0066917] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/10/2013] [Indexed: 01/24/2023] Open
Abstract
HAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state.
Collapse
|
118
|
Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, Falke JJ, Zhulin IB, Crane BR. The 3.2 Å resolution structure of a receptor: CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. Biochemistry 2013; 52:3852-65. [PMID: 23668907 PMCID: PMC3694592 DOI: 10.1021/bi400383e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial chemosensory arrays are composed of extended networks of chemoreceptors (also known as methyl-accepting chemotaxis proteins, MCPs), the histidine kinase CheA, and the adaptor protein CheW. Models of these arrays have been developed from cryoelectron microscopy, crystal structures of binary and ternary complexes, NMR spectroscopy, mutational, data and biochemical studies. A new 3.2 Å resolution crystal structure of a Thermotoga maritima MCP protein interaction region in complex with the CheA kinase-regulatory module (P4-P5) and adaptor protein CheW provides sufficient detail to define residue contacts at the interfaces formed among the three proteins. As in a previous 4.5 Å resolution structure, CheA-P5 and CheW interact through conserved hydrophobic surfaces at the ends of their β-barrels to form pseudo 6-fold symmetric rings in which the two proteins alternate around the circumference. The interface between P5 subdomain 1 and CheW subdomain 2 was anticipated from previous studies, whereas the related interface between CheW subdomain 1 and P5 subdomain 2 has only been observed in these ring assemblies. The receptor forms an unexpected structure in that the helical hairpin tip of each subunit has "unzipped" into a continuous α-helix; four such helices associate into a bundle, and the tetramers bridge adjacent P5-CheW rings in the lattice through interactions with both P5 and CheW. P5 and CheW each bind a receptor helix with a groove of conserved hydrophobic residues between subdomains 1 and 2. P5 binds the receptor helix N-terminal to the tip region (lower site), whereas CheW binds the same helix with inverted polarity near the bundle end (upper site). Sequence comparisons among different evolutionary classes of chemotaxis proteins show that the binding partners undergo correlated changes at key residue positions that involve the lower site. Such evolutionary analyses argue that both CheW and P5 bind to the receptor tip at overlapping positions. Computational genomics further reveal that two distinct CheW proteins in Thermotogae utilize the analogous recognition motifs to couple different receptor classes to the same CheA kinase. Important residues for function previously identified by mutagenesis, chemical modification and biophysical approaches also map to these same interfaces. Thus, although the native CheW-receptor interaction is not observed in the present crystal structure, the bioinformatics and previous data predict key features of this interface. The companion study of the P5-receptor interface in native arrays (accompanying paper Piasta et al. (2013) Biochemistry, DOI: 10.1021/bi400385c) shows that, despite the non-native receptor fold in the present crystal structure, the local helix-in-groove contacts of the crystallographic P5-receptor interaction are present in native arrays and are essential for receptor regulation of kinase activity.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Aaron D. Fleetwood
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States
| | - Camille Bayas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Alexandrine M. Bilwes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States
| | | | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C); (I.B.Z), Tel (865) 201-1860
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C); (I.B.Z), Tel (865) 201-1860
| |
Collapse
|
119
|
Frank V, Vaknin A. Prolonged stimuli alter the bacterial chemosensory clusters. Mol Microbiol 2013; 88:634-44. [PMID: 23551504 DOI: 10.1111/mmi.12215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2013] [Indexed: 11/27/2022]
Abstract
The clustering of membrane-bound receptors plays an essential role in various biological systems. A notable model system for studying this phenomenon is the bacterial chemosensory cluster that allows motile bacteria to navigate along chemical gradients in their environment. While the basic structure of these chemosensory clusters is becoming clear, their dynamic nature and operation are not yet understood. By measuring the fluorescence polarization of tagged receptor clusters in live Escherichia coli cells, we provide evidence for stimulus-induced dynamics in these sensory clusters. We find that when a stimulus is applied, the packing of the receptors slowly decreases and that the process reverses when the stimulus is removed. Consistent with these physical changes we find that the effective cooperativity of the kinase response slowly evolves in the presence of a stimulus. Time-lapse fluorescence imaging indicates that, despite these changes, the receptor clusters do not generally dissociate upon ligand binding. These data reveal stimulus-dependent plasticity in chemoreceptor clusters.
Collapse
Affiliation(s)
- Vered Frank
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | | |
Collapse
|
120
|
Airola MV, Huh D, Sukomon N, Widom J, Sircar R, Borbat PP, Freed JH, Watts KJ, Crane BR. Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 2013; 425:886-901. [PMID: 23274111 PMCID: PMC3577987 DOI: 10.1016/j.jmb.2012.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/24/2023]
Abstract
Bacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per-Arnt-Sim) and poly-HAMP (histidine kinase-adenylyl cyclase-methyl-accepting chemotaxis protein-phosphatase) domain signaling. The crystal structure of the heme-binding PAS domain in the ferric, ligand-free form, in comparison to the previously determined cyanide-bound state, identifies conformational changes induced by ligand binding that are likely essential for the signaling mechanism. Heme-pocket alternations share some similarities with the heme-based PAS sensors FixL and EcDOS but propagate to the Iβ strand in a manner predicted to alter PAS-PAS associations and the downstream HAMP junction within full-length Aer2. Small-angle X-ray scattering of PAS and poly-HAMP domain fragments of increasing complexity allow unambiguous domain assignments and reveal a linear quaternary structure. The Aer2 PAS dimeric crystal structure fits well within ab initio small-angle X-ray scattering molecular envelopes, and pulsed dipolar ESR measurements of inter-PAS distances confirm the crystallographic PAS arrangement within Aer2. Spectroscopic and pull-down assays fail to detect direct interactions between the PAS and HAMP domains. Overall, the Aer2 signaling mechanism differs from the Escherichia coli Aer paradigm, where side-on PAS-HAMP contacts are key. We propose an in-line model for Aer2 signaling, where ligand binding induces alterations in PAS domain structure and subunit association that is relayed through the poly-HAMP junction to downstream domains.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Doowon Huh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
121
|
Zhu L, Bolhuis PG, Vreede J. The HAMP signal relay domain adopts multiple conformational states through collective piston and tilt motions. PLoS Comput Biol 2013; 9:e1002913. [PMID: 23468603 PMCID: PMC3585426 DOI: 10.1371/journal.pcbi.1002913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 01/25/2023] Open
Abstract
The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP. For survival, bacteria must constantly monitor their environmental conditions and adapt to these by generating a response. Protein sensors enable bacteria to perceive their surroundings and are typically built from modular compounds that are connected by linker regions. The HAMP domain is such a linker region that relays signals between different modules in a sensory cascade. HAMP is a dimer comprising four helices in a parallel coiled-coil interaction motif. One of the hypotheses explaining the mechanism of signal communication by HAMP is that the domain can adopt different stable conformations. In this work, we used a molecular simulation approach to investigate this hypothesis at high atomic resolution. We found that HAMP can adopt different conformations and that, in doing so, the helices shift and tilt with respect to each other. Furthermore, we found that if one helix moves upward, the helix at the other end in the other monomer moves down.
Collapse
Affiliation(s)
- Lizhe Zhu
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter G. Bolhuis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jocelyne Vreede
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
122
|
Wang C, Sang J, Wang J, Su M, Downey JS, Wu Q, Wang S, Cai Y, Xu X, Wu J, Senadheera DB, Cvitkovitch DG, Chen L, Goodman SD, Han A. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLoS Biol 2013; 11:e1001493. [PMID: 23468592 PMCID: PMC3582566 DOI: 10.1371/journal.pbio.1001493] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/14/2013] [Indexed: 02/02/2023] Open
Abstract
A crystal structure reveals an elegant mechanistic switch whereby helical bending and catalytic domain rotation allow self-activation of a histidine kinase during a bacterial stress response. Two-component systems (TCSs) are important for the adaptation and survival of bacteria and fungi under stress conditions. A TCS is often composed of a membrane-bound sensor histidine kinase (SK) and a response regulator (RR), which are relayed through sequential phosphorylation steps. However, the mechanism for how an SK is switched on in response to environmental stimuli remains obscure. Here, we report the crystal structure of a complete cytoplasmic portion of an SK, VicK from Streptococcus mutans. The overall structure of VicK is a long-rod dimer that anchors four connected domains: HAMP, Per-ARNT-SIM (PAS), DHp, and catalytic and ATP binding domain (CA). The HAMP, a signal transducer, and the PAS domain, major sensor, adopt canonical folds with dyad symmetry. In contrast, the dimer of the DHp and CA domains is asymmetric because of different helical bends in the DHp domain and spatial positions of the CA domains. Moreover, a conserved proline, which is adjacent to the phosphoryl acceptor histidine, contributes to helical bending, which is essential for the autokinase and phosphatase activities. Together, the elegant architecture of VicK with a signal transducer and sensor domain suggests a model where DHp helical bending and a CA swing movement are likely coordinated for autokinase activation. Two-component signal transduction systems (TCSs) are promising targets for new antimicrobial research because they help bacteria and fungi adapt and survive. One of the main components of TCSs is a sensor histidine kinase (SK), which relays extracellular signals to intracellular pathways. Despite intensive research, a full-length structure of an SK has yet to be solved. In this study, we report the first crystal structure of the complete cytoplasmic region of VicK, an important SK in the tooth decay pathogen S. mutans. VicK is composed of several domains (HAMP, PAS, DHp, and catalytic and ATP binding domain [CA]) in addition to a short transmembrane domain. We find that the dimeric VicK protein has an elegant rod-shaped structure with the domains linearly connected like beads on a string. The structure suggests that VicK kinase activates itself by helical bending of the DHp domain and coordinated swinging around of the catalytic CA domain to engage with the target histidine. Structure-based mutagenesis experiments also helped us to identify key residues that are required for VicK's opposing phosphatase activity. Our studies of the multi-modular VicK protein suggest a sequential kinase activation model that may involve helical bending of the DHp domain and repositioning of the CA domains.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Jiawei Wang
- Department of Biology and Technology, Tsinghua University, Beijing, China
| | - Mingyan Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Jennifer S. Downey
- Division of Biomedical Science, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Qinggan Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Shida Wang
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Xiaozheng Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Jun Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Dilani B. Senadheera
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G. Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Lin Chen
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Steven D. Goodman
- Division of Biomedical Science, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
- * E-mail:
| |
Collapse
|
123
|
Grice CM, Bertuzzi M, Bignell EM. Receptor-mediated signaling in Aspergillus fumigatus. Front Microbiol 2013; 4:26. [PMID: 23430083 PMCID: PMC3576715 DOI: 10.3389/fmicb.2013.00026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/01/2013] [Indexed: 11/15/2022] Open
Abstract
Aspergillus fumigatus is the most pathogenic species among the Aspergilli, and the major fungal agent of human pulmonary infection. To prosper in diverse ecological niches, Aspergilli have evolved numerous mechanisms for adaptive gene regulation, some of which are also crucial for mammalian infection. Among the molecules which govern such responses, integral membrane receptors are thought to be the most amenable to therapeutic modulation. This is due to the localization of these molecular sensors at the periphery of the fungal cell, and to the prevalence of small molecules and licensed drugs which target receptor-mediated signaling in higher eukaryotic cells. In this review we highlight the progress made in characterizing receptor-mediated environmental adaptation in A. fumigatus and its relevance for pathogenicity in mammals. By presenting a first genomic survey of integral membrane proteins in this organism, we highlight an abundance of putative seven transmembrane domain (7TMD) receptors, the majority of which remain uncharacterized. Given the dependency of A. fumigatus upon stress adaptation for colonization and infection of mammalian hosts, and the merits of targeting receptor-mediated signaling as an antifungal strategy, a closer scrutiny of sensory perception and signal transduction in this organism is warranted.
Collapse
Affiliation(s)
- C M Grice
- South Kensington Campus, Imperial College London London, UK
| | | | | |
Collapse
|
124
|
Airola MV, Sukomon N, Samanta D, Borbat PP, Freed JH, Watts KJ, Crane BR. HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 2013; 11:e1001479. [PMID: 23424282 PMCID: PMC3570549 DOI: 10.1371/journal.pbio.1001479] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/02/2013] [Indexed: 01/07/2023] Open
Abstract
HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between "on" and "off" conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Dipanjan Samanta
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York, United States of America
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York, United States of America
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York, United States of America
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California, United States of America
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
125
|
Lemmin T, Soto CS, Clinthorne G, DeGrado WF, Dal Peraro M. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations. PLoS Comput Biol 2013; 9:e1002878. [PMID: 23359663 PMCID: PMC3554529 DOI: 10.1371/journal.pcbi.1002878] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/17/2012] [Indexed: 01/26/2023] Open
Abstract
The PhoQP two-component system is a signaling complex essential for bacterial virulence and cationic antimicrobial peptide resistance. PhoQ is the histidine kinase chemoreceptor of this tandem machine and assembles in a homodimer conformation spanning the bacterial inner membrane. Currently, a full understanding of the PhoQ signal transduction is hindered by the lack of a complete atomistic structure. In this study, an atomistic model of the key transmembrane (TM) domain is assembled by using molecular simulations, guided by experimental cross-linking data. The formation of a polar pocket involving Asn202 in the lumen of the tetrameric TM bundle is crucial for the assembly and solvation of the domain. Moreover, a concerted displacement of the TM helices at the periplasmic side is found to modulate a rotation at the cytoplasmic end, supporting the transduction of the chemical signal through a combination of scissoring and rotational movement of the TM helices. Two-component systems (TCSs) are signaling complexes essential for bacterial survival and virulence. PhoQ is the histidine kinase chemoreceptor of the PhoQ-PhoP tandem machine that detects the concentration of cationic species at the inner membrane of Gram-negative bacteria. A full understanding of the PhoQ signal transduction mechanism is currently hindered by the lack of a complete atomistic structure. Here, by using molecular simulations integrated with cross-linking disulfide scanning data, we present the first structural model of the transmembrane (TM) portion of PhoQ from E. coli. Its structural and dynamic features induce a concerted displacement of the TM helices at the periplasmic side, which modulates a rotation at the cytoplasmic end. This supports the idea that signal transduction is promoted through a combination of scissoring and rotational movements of the TM helices. This complex mechanism is the key to understanding how the chemical stimuli sensed by the periplasmic sensor domain trigger, via the relay of the HAMP domain, the histidine auto-phosphorylation and kinase/phosphatase activity at the cytoplasmic end.
Collapse
Affiliation(s)
- Thomas Lemmin
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cinque S. Soto
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Graham Clinthorne
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, United States of America
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
126
|
Amin DN, Hazelbauer GL. Influence of membrane lipid composition on a transmembrane bacterial chemoreceptor. J Biol Chem 2012; 287:41697-705. [PMID: 23071117 DOI: 10.1074/jbc.m112.415588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of "membrane scaffold protein." Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.
Collapse
Affiliation(s)
- Divya N Amin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
127
|
Fillinger S, Ajouz S, Nicot PC, Leroux P, Bardin M. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS One 2012; 7:e42520. [PMID: 22912706 PMCID: PMC3418262 DOI: 10.1371/journal.pone.0042520] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 07/10/2012] [Indexed: 11/22/2022] Open
Abstract
Dicarboximides and phenylpyrroles are commonly used fungicides against plant pathogenic ascomycetes. Although their effect on fungal osmosensing systems has been shown in many studies, their modes-of-action still remain unclear. Laboratory- or field-mutants of fungi resistant to either or both fungicide categories generally harbour point mutations in the sensor histidine kinase of the osmotic signal transduction cascade.In the present study we compared the mechanisms of resistance to the dicarboximide iprodione and to pyrrolnitrin, a structural analogue of phenylpyrrole fungicides, in Botrytis cinerea. Pyrrolnitrin-induced mutants and iprodione-induced mutants of B. cinerea were produced in vitro. For the pyrrolnitrin-induced mutants, a high level of resistance to pyrrolnitrin was associated with a high level of resistance to iprodione. For the iprodione-induced mutants, the high level of resistance to iprodione generated variable levels of resistance to pyrrolnitrin and phenylpyrroles. All selected mutants showed hypersensitivity to high osmolarity and regardless of their resistance levels to phenylpyrroles, they showed strongly reduced fitness parameters (sporulation, mycelial growth, aggressiveness on plants) compared to the parental phenotypes. Most of the mutants presented modifications in the osmosensing class III histidine kinase affecting the HAMP domains. Site directed mutagenesis of the bos1 gene was applied to validate eight of the identified mutations. Structure modelling of the HAMP domains revealed that the replacements of hydrophobic residues within the HAMP domains generally affected their helical structure, probably abolishing signal transduction. Comparing mutant phenotypes to the HAMP structures, our study suggests that mutations perturbing helical structures of HAMP2-4 abolish signal-transduction leading to loss-of-function phenotype. The mutation of residues E529, M427, and T581, without consequences on HAMP structure, highlighted their involvement in signal transduction. E529 and M427 seem to be principally involved in osmotic signal transduction.
Collapse
Affiliation(s)
| | - Sakhr Ajouz
- INRA, UR407, Plant Pathology Unit, Montfavet, France
| | | | | | - Marc Bardin
- INRA, UR407, Plant Pathology Unit, Montfavet, France
| |
Collapse
|
128
|
Abstract
To exist in a wide range of environmental niches, bacteria must sense and respond to a variety of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically composed of a sensor histidine kinase that receives the input stimuli and then phosphorylates a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights.
Collapse
Affiliation(s)
- Emily J Capra
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
129
|
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012; 8:e1002760. [PMID: 22719254 PMCID: PMC3375315 DOI: 10.1371/journal.ppat.1002760] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational "scars" in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.
Collapse
|
130
|
McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F. The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS One 2012; 7:e38262. [PMID: 22675534 PMCID: PMC3366943 DOI: 10.1371/journal.pone.0038262] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
Two-component signaling systems are widespread in bacteria, but also found in fungi. In this study, we have characterized TcsC, the only Group III two-component sensor kinase of Aspergillus fumigatus. TcsC is required for growth under hyperosmotic stress, but dispensable for normal growth, sporulation and conidial viability. A characteristic feature of the ΔtcsC mutant is its resistance to certain fungicides, like fludioxonil. Both hyperosmotic stress and treatment with fludioxonil result in a TcsC-dependent phosphorylation of SakA, the final MAP kinase in the high osmolarity glycerol (HOG) pathway, confirming a role for TcsC in this signaling pathway. In wild type cells fludioxonil induces a TcsC-dependent swelling and a complete, but reversible block of growth and cytokinesis. Several types of stress, such as hypoxia, exposure to farnesol or elevated concentrations of certain divalent cations, trigger a differentiation in A. fumigatus toward a "fluffy" growth phenotype resulting in white, dome-shaped colonies. The ΔtcsC mutant is clearly more susceptible to these morphogenetic changes suggesting that TcsC normally antagonizes this process. Although TcsC plays a role in the adaptation of A. fumigatus to hypoxia, it seems to be dispensable for virulence.
Collapse
Affiliation(s)
- Allison McCormick
- Max-von-Pettenkofer-Institut, Ludwig-Maximilians-University, Munich, Germany
| | - Ilse D. Jacobsen
- Department for Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | - Julia Beck
- Max-von-Pettenkofer-Institut, Ludwig-Maximilians-University, Munich, Germany
| | - Jürgen Heesemann
- Max-von-Pettenkofer-Institut, Ludwig-Maximilians-University, Munich, Germany
- Center of Integrated Protein Science (Munich) at the Faculty of Medicine of the Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Max-von-Pettenkofer-Institut, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
131
|
Chen LC, Chen JC, Shu JC, Chen CY, Chen SC, Chen SH, Lin CY, Lu CY, Chen CC. Interplay of RsbM and RsbK controls the σ(B) activity of Bacillus cereus. Environ Microbiol 2012; 14:2788-99. [PMID: 22640257 DOI: 10.1111/j.1462-2920.2012.02788.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alternative transcription factor σ(B) of Bacillus cereus controls the expression of a number of genes that respond to environmental stress. Four proteins encoded in the sigB gene cluster, including RsbV, RsbW, RsbY (RsbU) and RsbK, are known to be essential in the σ(B)-mediated stress response. In the context of stress, the hybrid sensor kinase RsbK is thought to phosphorylate the response regulator RsbY, a PP2C serine phosphatase, leading to the dephosphorylation of the phosphorylated RsbV. The unphosphorylated RsbV then sequesters the σ(B) antagonist, RsbW, ultimately liberating σ(B). The gene arrangement reveals an open reading frame, bc1007, flanked immediately downstream by rsbK within the sigB gene cluster. However, little is known about the function of bc1007. In this study, the deletion of bc1007 resulted in high constitutive σ(B) expression independent of environmental stimuli, indicating that bc1007 plays a role in σ(B) regulation. A bacterial two-hybrid analysis demonstrated that BC1007 interacts directly with RsbK, and autoradiographic studies revealed a specific C(14)-methyl transfer from the radiolabelled S-adenosylmethionine to RsbK when RsbK was incubated with purified BC1007. Our data suggest that BC1007 (RsbM) negatively regulates σ(B) activity by methylating RsbK. Additionally, mutagenic substitution was employed to modify 12 predicted methylation residues in RsbK. Certain RsbK mutants were able to rescue σ(B) activation in a rsbK-deleted bacterial strain, but RsbK(E439A) failed to activate σ(B), and RsbK(E446A) only moderately induced σ(B). These results suggest that Glu439 is the preferred methylation site and that Glu446 is potentially a minor methylation site. Gene arrays of the rsbK orthologues and the neighbouring rsbM orthologues are found in a wide range of bacteria. The regulation of sigma factors through metylation of RsbK-like sensor kinases appears to be widespread in the microbial world.
Collapse
Affiliation(s)
- Lei-Chin Chen
- Department of Nutrition, I-Shou University, Jiaosu Village, Yanchao District, Kaohsiung 82445, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Two surfaces of a conserved interdomain linker differentially affect output from the RST sensing module of the Bacillus subtilis stressosome. J Bacteriol 2012; 194:3913-21. [PMID: 22609918 DOI: 10.1128/jb.00583-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The stressosome is a 1.8-MDa cytoplasmic complex that conveys environmental signals to the σ(B) stress factor of Bacillus subtilis. A functionally irreducible complex contains multiple copies of three proteins: the RsbRA coantagonist, RsbS antagonist, and RsbT serine-threonine kinase. Homologues of these proteins are coencoded in different genome contexts in diverse bacteria, forming a versatile sensing and transmission module called RST after its common constituents. However, the signaling pathway within the stressosome itself is not well defined. The N-terminal, nonheme globin domains of RsbRA project from the stressosome and are presumed to channel sensory input to the C-terminal STAS domains that form the complex core. A conserved, 13-residue α-helical linker connects these domains. We probed the in vivo role of the linker using alanine scanning mutagenesis, assaying stressosome output in B. subtilis via a σ(B)-dependent reporter fusion. Substitutions at four conserved residues increased output 4- to 30-fold in unstressed cells, whereas substitutions at four nonconserved residues significantly decreased output. The periodicity of these effects supports a model in which RsbRA functions as a dimer in vivo, with the linkers forming parallel paired helices via a conserved interface. The periodicity further suggests that the opposite, nonconserved faces make additional contacts important for efficient stressosome operation. These results establish that the linker influences stressosome output under steady-state conditions. However, the stress response phenotypes of representative linker substitutions provide less support for the notion that the N-terminal globin domain senses acute environmental challenge and transmits this information via the linker helix.
Collapse
|
133
|
Wang J, Sasaki J, Tsai AL, Spudich JL. HAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex. J Biol Chem 2012; 287:21316-25. [PMID: 22511775 DOI: 10.1074/jbc.m112.344622] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phototaxis receptor complex composed of sensory rhodopsin II (SRII) and the transducer subunit HtrII mediates photorepellent responses in haloarchaea. Light-activated SRII transmits a signal through two HAMP switch domains (HAMP1 and HAMP2) in HtrII that bridge the photoreceptive membrane domain of the complex and the cytoplasmic output kinase-modulating domain. HAMP domains, widespread signal relay modules in prokaryotic sensors, consist of four-helix bundles composed of two helices, AS1 and AS2, from each of two dimerized transducer subunits. To examine their molecular motion during signal transmission, we incorporated SRII-HtrII dimeric complexes in nanodiscs to allow unrestricted probe access to the cytoplasmic side HAMP domains. Spin-spin dipolar coupling measurements confirmed that in the nanodiscs, SRII photoactivation induces helix movement in the HtrII membrane domain diagnostic of transducer activation. Labeling kinetics of a fluorescein probe in monocysteine-substituted HAMP1 mutants revealed a light-induced shift of AS2 against AS1 by one-half α-helix turn with minimal other changes. An opposite shift of AS2 against AS1 in HAMP2 at the corresponding positions supports the proposal from x-ray crystal structures by Airola et al. (Airola, M. V., Watts, K. J., Bilwes, A. M., and Crane, B. R. (2010) Structure 18, 436-448) that poly-HAMP chains undergo alternating opposite interconversions to relay the signal. Moreover, we found that haloarchaeal cells expressing a HAMP2-deleted SRII-HtrII exhibit attractant phototaxis, opposite from the repellent phototaxis mediated by the wild-type di-HAMP SRII-HtrII complex. The opposite conformational changes and corresponding opposite output signals of HAMP1 and HAMP2 imply a signal transmission mechanism entailing small shifts in helical register between AS1 and AS2 alternately in opposite directions in adjacent HAMPs.
Collapse
Affiliation(s)
- Jihong Wang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
134
|
Park H, Im W, Seok C. Transmembrane signaling of chemotaxis receptor tar: insights from molecular dynamics simulation studies. Biophys J 2011; 100:2955-63. [PMID: 21689529 DOI: 10.1016/j.bpj.2011.05.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022] Open
Abstract
Transmembrane signaling of chemotaxis receptors has long been studied, but how the conformational change induced by ligand binding is transmitted across the bilayer membrane is still elusive at the molecular level. To tackle this problem, we carried out a total of 600-ns comparative molecular dynamics simulations (including model-building simulations) of the chemotaxis aspartate receptor Tar (a part of the periplasmic domain/transmembrane domain/HAMP domain) in explicit lipid bilayers. These simulations reveal valuable insights into the mechanistic picture of Tar transmembrane signaling. The piston-like movement of a transmembrane helix induced by ligand binding on the periplasmic side is transformed into a combination of both longitudinal and transversal movements of the helix on the cytoplasmic side as a result of different protein-lipid interactions in the ligand-off and ligand-on states of the receptor. This conformational change alters the dynamics and conformation of the HAMP domain, which is presumably a mechanism to deliver the signal from the transmembrane domain to the cytoplasmic domain. The current results are consistent with the previously suggested dynamic bundle model in which the HAMP dynamics change is a key to the signaling. The simulations provide further insights into the conformational changes relevant to the HAMP dynamics changes in atomic detail.
Collapse
Affiliation(s)
- Hahnbeom Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
135
|
Briegel A, Beeby M, Thanbichler M, Jensen GJ. Activated chemoreceptor arrays remain intact and hexagonally packed. Mol Microbiol 2011; 82:748-57. [PMID: 21992450 PMCID: PMC3641884 DOI: 10.1111/j.1365-2958.2011.07854.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes.
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
136
|
Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 2011; 193:6597-604. [PMID: 21965561 DOI: 10.1128/jb.05987-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.
Collapse
|
137
|
Abstract
The Na(+) -driven bacterial flagellar motor is a molecular machine powered by an electrochemical potential gradient of sodium ions across the cytoplasmic membrane. The marine bacterium Vibrio alginolyticus has a single polar flagellum that enables it to swim in liquid. The flagellar motor contains a basal body and a stator complexes, which are composed of several proteins. PomA, PomB, MotX, and MotY are thought to be essential components of the stator that are required to generate the torque of the rotation. Several mutations have been investigated to understand the characteristics and function of the ion channel in the stator and the mechanism of its assembly around the rotor to complete the motor. In this review, we summarize recent results of the Na(+) -driven motor in the polar flagellum of Vibrio.
Collapse
Affiliation(s)
- Na Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | |
Collapse
|
138
|
Mutational analysis of the control cable that mediates transmembrane signaling in the Escherichia coli serine chemoreceptor. J Bacteriol 2011; 193:5062-72. [PMID: 21803986 DOI: 10.1128/jb.05683-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cable joins TM2 to the HAMP AS1 helix and mediates conformational interactions between them. To explore control cable structural features important for signal transmission, we constructed and characterized all possible single amino acid replacements at the Tsr control cable residues. Only a few lesions abolished Tsr function, indicating that the chemical nature and size of the control cable side chains are not individually critical for signal control. Charged replacements at I214 mimicked the signaling consequences of attractant or repellent stimuli, most likely through aberrant structural interactions of the mutant side chains with the membrane interfacial environment. Prolines at residues 214 to 217 also caused signaling defects, suggesting that the control cable has helical character. However, proline did not disrupt function at G213, the first control cable residue, which might serve as a structural transition between the TM2 and AS1 helix registers. Hydrophobic amino acids at S217, the last control cable residue, produced attractant-mimic effects, most likely by contributing to packing interactions within the HAMP bundle. These results suggest a helix extension mechanism of Tsr transmembrane signaling in which TM2 piston motions influence HAMP stability by modulating the helicity of the control cable segment.
Collapse
|
139
|
Unnerståle S, Mäler L, Draheim RR. Structural characterization of AS1-membrane interactions from a subset of HAMP domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2403-12. [PMID: 21763270 DOI: 10.1016/j.bbamem.2011.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
Abstract
HAMP domains convert an extracellular sensory input into an intracellular signaling response in a wide variety of membrane-embedded bacterial proteins. These domains are almost invariably found adjacent to the inner leaflet of the cell membrane. We therefore examined the interaction of peptides corresponding to either AS1 or AS2 of four different, well-characterized HAMP domains with several membrane model systems. The proteins included an Archaeoglobus fulgidus protein (Af1503), the Escherichia coli osmosensor EnvZ(Ec), the E. coli nitrate/nitrite sensor NarX(Ec), and the aspartate chemoreceptor of E. coli (Tar(Ec)). Far-UV CD and NMR spectroscopy were used to monitor the induction of secondary structure upon association with neutral or acidic large unilamellar vesicles (LUVs) and bicelles. We observed significant increases in α-helicity within AS1 from NarX(Ec) and Tar(Ec) but not in AS1 from the other proteins. To characterize these interactions further, we determined the solution structure of AS1 from Tar(Ec) associated with acidic bicelles. The bulk of AS1 formed an amphipathic α-helix, whereas the N-terminal control cable, the region between TM2 and AS1, remained unstructured. We observed that the conserved prolyl residue found in AS1 of many membrane-adjacent HAMP domains defined the boundary between the unstructured and helical regions. In addition, two positively charged residues that flank the hydrophobic surface of AS1 are thought to facilitate electrostatic interactions with the membrane. We interpret these results within the context of the helix-interaction model for HAMP signaling and propose roles for AS1-membrane interactions during the membrane assembly and transmembrane communication of HAMP-containing receptors.
Collapse
Affiliation(s)
- Sofia Unnerståle
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
140
|
Alexandre G, Crosson S, Shimizu T, Msadek T. Bacterial moving and shaking: the 11th
blast
meeting. Mol Microbiol 2011; 81:8-22. [DOI: 10.1111/j.1365-2958.2011.07694.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gladys Alexandre
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1414 W. Cumberland Avenue, Knoxville, TN 37966, USA
| | - Sean Crosson
- University of Chicago, Department of Biochemistry and Molecular Biology, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Thomas Shimizu
- FOM Institute for Atomic and Molecular Physics, Science Park 104, Amsterdam, 1098 XG, The Netherlands
| | - Tarek Msadek
- Institut Pasteur, Biology of Gram‐Positive Pathogens, Department of Microbiology, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
- CNRS, URA 2172, F‐75015 Paris, France
| |
Collapse
|
141
|
Ferris HU, Dunin-Horkawicz S, Mondéjar LG, Hulko M, Hantke K, Martin J, Schultz JE, Zeth K, Lupas AN, Coles M. The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure 2011; 19:378-85. [PMID: 21397188 DOI: 10.1016/j.str.2011.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/06/2010] [Accepted: 01/06/2011] [Indexed: 11/29/2022]
Abstract
HAMP domains mediate signal transduction in over 7500 enzyme-coupled receptors represented in all kingdoms of life. The HAMP domain of the putative archaeal receptor Af1503 has a parallel, dimeric, four-helical coiled coil structure, but with unusual core packing, related to canonical packing by concerted axial rotation of the helices. This has led to the gearbox model for signal transduction, whereby the alternate packing modes correspond to signaling states. Here we present structures of a series of Af1503 HAMP variants. We show that substitution of a conserved small side chain within the domain core (A291) for larger residues induces a gradual transition in packing mode, involving both changes in helix rotation and bundle shape, which are most prominent at the C-terminal, output end of the domain. These are correlated with activity and ligand response in vitro and in vivo by incorporating Af1503 HAMP into mycobacterial adenylyl cyclase assay systems.
Collapse
Affiliation(s)
- Hedda U Ferris
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Frank V, Koler M, Furst S, Vaknin A. The physical and functional thermal sensitivity of bacterial chemoreceptors. J Mol Biol 2011; 411:554-66. [PMID: 21718703 DOI: 10.1016/j.jmb.2011.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/29/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures.
Collapse
Affiliation(s)
- Vered Frank
- The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
143
|
Different conformations of the kinase-on and kinase-off signaling states in the Aer HAMP domain. J Bacteriol 2011; 193:4095-103. [PMID: 21665965 DOI: 10.1128/jb.01069-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2' helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2' helices, which may be the signal that is transmitted to the kinase control region of Aer.
Collapse
|
144
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
145
|
Abstract
HAMP domains communicate between input and output signalling modules in a wide variety of bacterial sensor proteins. In the Tsr chemoreceptor, they convert a signal initiated by binding of serine to the periplasmic domain of the protein into regulation of receptor control of the CheA kinase, and ultimately of the direction of flagellar rotation. In this issue, Zhou et al. report an extensive mutational analysis of the Tsr HAMP domain that shows that it can assume a number of different signalling states, which presumably correspond to a variety of different conformations. The two conformational extremes of a tightly packed and a loosely packed HAMP four-helix bundle support only low levels of CheA activity. Thus, Tsr HAMP does not function as a simple on-off, two-state device but rather as a dynamic structure with biphasic control. The normal physiological operating range of Tsr is proposed to be at intermediate degrees of packing of the HAMP four-helix bundle, but HAMP domains in other proteins could occupy different portions of the conformational spectrum.
Collapse
Affiliation(s)
- Michael D Manson
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
146
|
Zhou Q, Ames P, Parkinson JS. Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor. Mol Microbiol 2011; 80:596-611. [PMID: 21306449 DOI: 10.1111/j.1365-2958.2011.07577.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HAMP domains mediate input-output communication in many bacterial signalling proteins. To explore the dynamic bundle model of HAMP signalling (Zhou et al., Mol. Microbiol. 73: 801, 2009), we characterized the signal outputs of 118 HAMP missense mutants of the serine chemoreceptor, Tsr, by flagellar rotation patterns. Receptors with proline or charged amino acid replacements at critical hydrophobic packing residues in the AS1 and AS2 HAMP helices had locked kinase-off outputs, indicating that drastic destabilization of the Tsr-HAMP bundle prevents kinase activation, both in the absence and presence of the sensory adaptation enzymes, CheB and CheR. Attractant-mimic lesions that enhance the structural stability of the HAMP bundle also suppressed kinase activity, demonstrating that Tsr-HAMP has two kinase-off output states at opposite extremes of its stability range. HAMP mutants with locked-on kinase outputs appeared to have intermediate bundle stabilities, implying a biphasic relationship between HAMP stability and kinase activity. Some Tsr-HAMP mutant receptors exhibited reversed output responses to CheB and CheR action that are readily explained by a biphasic control logic. The findings of this study provide strong support for a three-state dynamic bundle model of HAMP signalling in Tsr, and possibly in other bacterial transducers as well.
Collapse
Affiliation(s)
- Qin Zhou
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
147
|
|
148
|
Watts KJ, Taylor BL, Johnson MS. PAS/poly-HAMP signalling in Aer-2, a soluble haem-based sensor. Mol Microbiol 2010; 79:686-99. [PMID: 21255112 DOI: 10.1111/j.1365-2958.2010.07477.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS-sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signalling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-co-ordinated b-type haem and that reversible signalling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
149
|
Mutational analysis of the transmembrane helix 2-HAMP domain connection in the Escherichia coli aspartate chemoreceptor tar. J Bacteriol 2010; 193:82-90. [PMID: 20870768 DOI: 10.1128/jb.00953-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmembrane helix 2 (TM2) of the Tar chemoreceptor undergoes an inward piston-like displacement of 1 to 3 Å upon binding aspartate. This signal is transmitted to the kinase-control module via the HAMP domain. Within Tar, the HAMP domain forms a parallel four-helix bundle consisting of a dimer of two amphipathic helices connected by a flexible linker. In the nuclear magnetic resonance structure of an archaeal HAMP domain, residues corresponding to the MLLT sequence between Arg-214 at the end of TM2 and Pro-219 of Tar are an N-terminal helical extension of AS1. We modified this region to test whether it behaves as a continuous helical connection between TM2 and HAMP. First, one to four Gly residues were inserted between Thr-218 and Pro-219. Second, the MLLT sequence was replaced with one to nine Gly residues. Third, the sequence was shortened or extended with residues compatible with helix formation. Cells expressing receptors in which the MLLT sequence was shortened to MLL or in which the MLLT sequence was replaced by four Gly residues performed good aspartate chemotaxis. Other mutant receptors supported diminished aspartate taxis. Most mutant receptors had biased signal outputs and/or abnormal patterns of adaptive methylation. We interpret these results to indicate that a strong, permanent helical connection between TM2 and the HAMP domain is not necessary for normal transmembrane signaling.
Collapse
|