101
|
Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Sci Rep 2018; 8:7790. [PMID: 29773844 PMCID: PMC5958118 DOI: 10.1038/s41598-018-25959-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd2+) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.
Collapse
|
102
|
Effects of Partial Root-Zone Irrigation on the Water Use Efficiency and Root Water and Nitrate Uptake of Corn. WATER 2018. [DOI: 10.3390/w10040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
103
|
Sreeman SM, Vijayaraghavareddy P, Sreevathsa R, Rajendrareddy S, Arakesh S, Bharti P, Dharmappa P, Soolanayakanahally R. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants. Front Chem 2018; 6:92. [PMID: 29692985 PMCID: PMC5903164 DOI: 10.3389/fchem.2018.00092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/14/2018] [Indexed: 11/23/2022] Open
Abstract
Burgeoning population growth, industrial demand, and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favor the adoption of a "trait based" crop improvement approach for increasing water productivity. Traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation are regarded as most relevant to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological, and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the "traits" to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration are crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarize the available information in literature on classifying various drought adaptive traits. We provide evidences that Water-Use Efficiency when introgressed with moderately higher transpiration, would significantly enhance growth rates and water productivity in rice through an improved photosynthetic capacity.
Collapse
Affiliation(s)
| | | | - Rohini Sreevathsa
- ICAR-National Research Centre for Plant Biotechnology, New Delhi, India
| | - Sowmya Rajendrareddy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Smitharani Arakesh
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Pooja Bharti
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Prathibha Dharmappa
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
104
|
Marcos FCC, Silveira NM, Mokochinski JB, Sawaya ACHF, Marchiori PER, Machado EC, Souza GM, Landell MGA, Ribeiro RV. Drought tolerance of sugarcane is improved by previous exposure to water deficit. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:9-18. [PMID: 29433084 DOI: 10.1016/j.jplph.2018.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 05/03/2023]
Abstract
Under field conditions, plants are exposed to cycles of dehydration and rehydration during their lifespan. In this study, we hypothesized that sugarcane plants previously exposed to cycles of water deficits will perform better than plants that have never faced water deficits when both are subjected to low water availability. Sugarcane plants were grown in a nutrient solution and exposed to one (1WD), two (2WD) or three (3WD) water deficit cycles. As the reference, plants were grown in a nutrient solution without adding polyethylene glycol. Under water deficits, leaf gas exchange was significantly reduced in 1WD and 2WD plants. However, 3WD plants showed similar CO2 assimilation and lower stomatal conductance compared to the reference plants, with increases in intrinsic water-use efficiency. Abscisic acid concentrations were lower in 3WD plants than in 1WD plants. Our data revealed root H2O2 concentration as an important chemical signal, with the highest root H2O2 concentrations found in 3WD plants. These plants presented higher root dry matter and root:shoot ratios compared to the reference plants, as well as higher biomass production when water was available. Our data suggest that sugarcane plants were able to store information from previous stressful events, with plant performance improving under water deficits. In addition, our findings provide a new perspective for increasing drought tolerance in sugarcane plants under nursery conditions.
Collapse
Affiliation(s)
- Fernanda C C Marcos
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Neidiquele M Silveira
- Laboratory of Plant Physiology "Coaracy M. Franco", Centre for Research and Development in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - João B Mokochinski
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Alexandra C H F Sawaya
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo E R Marchiori
- Department of Biology, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Centre for Research and Development in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Gustavo M Souza
- Department of Botany, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Marcos G A Landell
- Advanced Center for Technological Research of Sugarcane, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
105
|
Zhang G, Sun Y, Sheng H, Li H, Liu X. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:178-184. [PMID: 29459286 DOI: 10.1016/j.plaphy.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Crop growth and productivity are often impacted by the increased ethylene content induced by adverse environmental conditions such drought. Inoculations with bacteria producing ACC deaminase is considered as a potential biological approach to improve the growth and tolerance of stressed plants by lowering endogenous ethylene level. In this study, germinated wheat seeds were inoculated using three species of the rhizobacteria, which were isolated from the rhizosphere of wheat growing in dryland, and sown in pots. After three weeks, wheat seedlings were exposed to non-limiting water condition, medium drought and severe drought, respectively, for six weeks. The results showed that, irrespective of rhizobacterial inoculations, decreased soil water contents stimulated wheat ethylene metabolism, which was reflected by the significantly increased activity of ACC synthetase and ACC oxidase, besides an increased content of ACC both in the roots and leaves, and an enhanced capacity of leaves to release ethylene, concomitant with a significant decline in shoot and roots biomass. The inoculations of all three rhizobacterial species under each water condition reduced ACC content in wheat leaves, but effects of the inoculations on ACC synthase and ACC oxidase activity in the leaves and roots, ACC content in the roots, the capacity of leaves to release ethylene, and wheat growth varied with water conditions and bacterial species. Hence, both soil water conditions and rhizobacterial inoculations acted on all the processes of ethylene metabolism, with the former being dominant. The inoculations under non-limiting water condition and medium drought promoted shoot and root growth of wheat plants.
Collapse
Affiliation(s)
- Guozhuang Zhang
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yonglin Sun
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hao Sheng
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Haichao Li
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Xiping Liu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
106
|
Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. PLANTA 2018; 247:587-611. [PMID: 29138971 PMCID: PMC5809531 DOI: 10.1007/s00425-017-2807-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION The regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters. In Arabidopsis thaliana plants, two families of transporters are involved in sucrose transport: AtSUCs and AtSWEETs. This study is focused on the comparison of sucrose transporter gene expression, soluble sugar and starch levels and long distance sucrose transport, in leaves and sink organs (mainly roots) in different physiological conditions (along the plant life cycle, during a diel cycle, and during an osmotic stress) in plants grown hydroponically. In leaves, the AtSUC2, AtSWEET11, and 12 genes known to be involved in phloem loading were highly expressed when sucrose export was high and reduced during osmotic stress. In roots, AtSUC1 was highly expressed and its expression profile in the different conditions tested suggests that it may play a role in sucrose unloading in roots and in root growth. The SWEET transporter genes AtSWEET12, 13, and 15 were found expressed in all organs at all stages studied, while differential expression was noticed for AtSWEET14 in roots, stems, and siliques and AtSWEET9, 10 expressions were only detected in stems and siliques. A role for these transporters in carbohydrate partitioning in different source-sink status is proposed, with a specific attention on carbon demand in roots. During development, despite trophic competition with others sinks, roots remained a significant sink, but during osmotic stress, the amount of translocated [U-14C]-sucrose decreased for rosettes and roots. Altogether, these results suggest that source-sink relationship may be linked with the regulation of sucrose transporter gene expression.
Collapse
Affiliation(s)
- Mickaël Durand
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Dany Mainson
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Benoît Porcheron
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
107
|
Zhang FP, Sussmilch F, Nichols DS, Cardoso AA, Brodribb TJ, McAdam SAM. Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1261-1267. [PMID: 29340606 PMCID: PMC6018962 DOI: 10.1093/jxb/erx480] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 05/21/2023]
Abstract
Rapid biosynthesis of abscisic acid (ABA) in the leaf, triggered by a decrease in cell volume, is essential for a functional stomatal response. However, it is not known whether rapid biosynthesis of ABA is also triggered in other plant tissues. Through the application of external pressure to flower, root, and leaf tissues, we test whether a reduction in cell volume can trigger rapid increases in ABA levels across the plant body in two species, Solanum lycopersicum and Passiflora tarminiana. Our results show that, in contrast to rapid ABA synthesis in the leaf, flower and root tissue did not show a significant, increase in ABA level in response to a drop in cell volume over a short time frame, suggesting that rapid ABA biosynthesis occurs only in leaf, not in flower or root tissues. A gene encoding the key, rate-limiting carotenoid cleavage enzyme (9-cis-epoxycarotenoid dioxygenase, NCED) in the ABA biosynthetic pathway in S. lycopersicum, NCED1, was upregulated to a lesser degree in flowers and roots compared with leaves in response to applied pressure. In both species, floral tissues contained substantially lower levels of the NCED substrate 9'-cis-neoxanthin than leaves, and this ABA precursor could not be detected in roots. Slow and minimal ABA biosynthesis was detected after 2 h in petals, indicating that floral tissue is capable of synthesizing ABA in response to sustained water deficit. Our results indicate that rapid ABA biosynthesis predominantly occurs in the leaves, and not in other tissues.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Frances Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
- School of Biological Sciences, University of Tasmania, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Australia
| | - Amanda A Cardoso
- School of Biological Sciences, University of Tasmania, Australia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Brasil
| | | | - Scott A M McAdam
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, USA
- Correspondence:
| |
Collapse
|
108
|
Olds CL, Glennon EKK, Luckhart S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect 2018; 20:484-492. [PMID: 29408537 DOI: 10.1016/j.micinf.2018.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Few biological molecules have as far reaching and dynamic effects as abscisic acid (ABA). In this review, we draw together the often segregated fields of plant, animal, and human biology to highlight ABA biosynthesis, signaling and physiological effects with examples of host-pathogen interactions to emphasize the cross-kingdom biology of this ancient signaling molecule.
Collapse
Affiliation(s)
- Cassandra L Olds
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID, 83844-2329, USA; Center for Health in the Human Ecosystem, University of Idaho, 875 Perimeter Drive MS 1122, Moscow, ID, 83844-1122, USA.
| | - Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N, Suite 500, Seattle, WA, 98109, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID, 83844-2329, USA; Center for Health in the Human Ecosystem, University of Idaho, 875 Perimeter Drive MS 1122, Moscow, ID, 83844-1122, USA; Department of Biological Sciences, University of Idaho 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
109
|
Li X, Wilkinson S, Shen J, Forde BG, Davies WJ. Stomatal and growth responses to hydraulic and chemical changes induced by progressive soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5883-5894. [PMID: 29126265 PMCID: PMC5854116 DOI: 10.1093/jxb/erx381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
A better understanding of physiological responses of crops to drought stress is important for ensuring sustained crop productivity under climate change. Here, we studied the effect on 15-day-old maize (Zea mays L.) plants of a 6 d non-lethal period of soil drying [soil water potential (SWP) decreased from -0.20 MPa to -0.81 MPa]. Root growth was initially stimulated during drying (when SWP decreased from -0.31 MPa to -0.38 MPa, compared with -0.29 MPa in well-watered pots), followed by inhibition during Days 5-6 (SWP from -0.63 MPa to -0.81 MPa). Abscisic acid (ABA) in the root began to accumulate as the root water potential declined during Days 2-3. Leaf elongation was inhibited from Day 4 (SWP less than -0.51 MPa), just after leaf ABA content began to increase, but coinciding with a decline in leaf water potential. The stomatal conductance was restricted earlier in the younger leaf (fourth) (on Day 3) than in the older leaf (third). The ethylene content of leaves and roots decreased during drying, but after the respective increase in ABA contents. This work identified critical timing of hydraulic and chemical changes at the onset of soil drying, which can be important in initiating early stomatal and growth responses to drought.
Collapse
Affiliation(s)
- Xiaoqing Li
- Lancaster Environment Centre, Lancaster University, UK
| | | | - Jianbo Shen
- Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, Ministry of Education, China Agricultural University, China
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, UK
| | | |
Collapse
|
110
|
Marino G, Brunetti C, Tattini M, Romano A, Biasioli F, Tognetti R, Loreto F, Ferrini F, Centritto M. Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress. TREE PHYSIOLOGY 2017; 37:1637-1647. [PMID: 28981861 DOI: 10.1093/treephys/tpx083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought.
Collapse
Affiliation(s)
- Giovanni Marino
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Cecilia Brunetti
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Romano
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Franco Biasioli
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
111
|
|
112
|
Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics. Sci Rep 2017; 7:12875. [PMID: 28993661 PMCID: PMC5634414 DOI: 10.1038/s41598-017-13166-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/19/2017] [Indexed: 11/08/2022] Open
Abstract
Drought can severely damage crops, resulting in major yield losses. During drought, vascular land plants conserve water via stomatal closure. Each stomate is bordered by a pair of guard cells that shrink in response to drought and the associated hormone abscisic acid (ABA). The activation of complex intracellular signaling networks underlies these responses. Therefore, analysis of guard cell metabolites is fundamental for elucidation of guard cell signaling pathways. Brassica napus is an important oilseed crop for human consumption and biodiesel production. Here, non-targeted metabolomics utilizing gas chromatography mass spectrometry (GC-MS/MS) and liquid chromatography mass spectrometry (LC-MS/MS) were employed for the first time to identify metabolic signatures in response to ABA in B. napus guard cell protoplasts. Metabolome profiling identified 390 distinct metabolites in B. napus guard cells, falling into diverse classes. Of these, 77 metabolites, comprising both primary and secondary metabolites were found to be significantly ABA responsive, including carbohydrates, fatty acids, glucosinolates, and flavonoids. Selected secondary metabolites, sinigrin, quercetin, campesterol, and sitosterol, were confirmed to regulate stomatal closure in Arabidopsis thaliana, B. napus or both species. Information derived from metabolite datasets can provide a blueprint for improvement of water use efficiency and drought tolerance in crops.
Collapse
|
113
|
Shiono K, Hashizaki R, Nakanishi T, Sakai T, Yamamoto T, Ogata K, Harada KI, Ohtani H, Katano H, Taira S. Multi-imaging of Cytokinin and Abscisic Acid on the Roots of Rice (Oryza sativa) Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7624-7628. [PMID: 28718648 DOI: 10.1021/acs.jafc.7b02255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant hormones act as important signaling molecules that regulate responses to abiotic stress as well as plant growth and development. Because their concentrations of hormones control the physiological responses in the target tissue, it is important to know the distributions and concentrations in the tissues. However, it is difficult to determine the hormone concentration on the plant tissue as a result of the limitations of conventional methods. Here, we report the first multi-imaging of two plant hormones, one of cytokinin [i.e., trans-zeatin (tZ)] and abscisic acid (ABA) using a new technology, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging. Protonated signals of tZ (m/z 220.1) and ABA (m/z 265.3) were chosen on longitudinal sections of rice roots for MS imaging. tZ was broadly distributed about 40 mm behind the root apex but was barely detectable at the apex, whereas ABA was mainly detected at the root apex. Multi-imaging using MALDI-TOF-MS enabled the visualization of the localization and quantification of plant hormones. Thus, this tool is applicable to a wide range of plant species growing under various environmental conditions.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University , 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Riho Hashizaki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology , Nagoya, Aichi 466-8555, Japan
| | - Toyofumi Nakanishi
- Clinical Pathology, Osaka Medical College , 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Tatsuko Sakai
- Graduate School of Environmental and Human Sciences, Faculty of Pharmacy, Meijo University , Tempaku, Nagoya, Aichi 468-8503, Japan
| | - Takushi Yamamoto
- Analytical and Measuring Instruments Division, Shimadzu Corporation , 1 Kuwabara, Kyoto 604-8511, Japan
| | - Koretsugu Ogata
- Analytical and Measuring Instruments Division, Shimadzu Corporation , 1 Kuwabara, Kyoto 604-8511, Japan
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Sciences, Faculty of Pharmacy, Meijo University , Tempaku, Nagoya, Aichi 468-8503, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology , Nagoya, Aichi 466-8555, Japan
| | - Hajime Katano
- Department of Bioscience and Biotechnology, Fukui Prefectural University , 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Shu Taira
- Department of Bioscience and Biotechnology, Fukui Prefectural University , 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| |
Collapse
|
114
|
Martin J, Looker N, Hoylman Z, Jencso K, Hu J. Hydrometeorology organizes intra-annual patterns of tree growth across time, space and species in a montane watershed. THE NEW PHYTOLOGIST 2017; 215:1387-1398. [PMID: 28654180 DOI: 10.1111/nph.14668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Tree radial growth is often systematically limited by water availability, as is evident in tree ring records. However, the physiological nature of observed tree growth limitation is often uncertain outside of the laboratory. To further explore the physiology of water limitation, we observed intra-annual growth rates of four conifer species using point dendrometers and microcores, and coupled these data to observations of water potential, soil moisture, and vapor pressure deficit over 2 yr in the Northern Rocky Mountains, USA. The onset of growth limitation in four species was well explained by a critical balance between soil moisture supply and atmospheric demand representing relatively mesic conditions, despite the timing of this threshold response varying by up to 2 months across topographic and elevation gradients, growing locations, and study years. Our findings suggest that critical water deficits impeding tissue growth occurred at relatively high water potential values, often occurring when hydrometeorological conditions were relatively wet during the growing season (e.g. in early spring in some cases). This suggests that species-specific differences in water use strategies may not necessarily affect tree growth, and that tissue growth may be more directly linked to environmental moisture conditions than might otherwise be expected.
Collapse
Affiliation(s)
- Justin Martin
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, MT, 59717, USA
| | - Nathaniel Looker
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Zachary Hoylman
- Department of Forest Management, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Kelsey Jencso
- Department of Forest Management, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Jia Hu
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, MT, 59717, USA
| |
Collapse
|
115
|
González-Villagra J, Kurepin LV, Reyes-Díaz MM. Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. PLANTA 2017; 246:299-312. [PMID: 28534253 DOI: 10.1007/s00425-017-2711-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/13/2017] [Indexed: 05/11/2023]
Abstract
ABA is involved in anthocyanin synthesis through the regulation of microRNA156, augmenting the level of expression of anthocyanin synthesis-related genes and, therefore, increasing anthocyanin level. Drought stress is the main cause of agricultural crop loss in the world. However, plants have developed mechanisms that allow them to tolerate drought stress conditions. At cellular level, drought stress induces changes in metabolite accumulation, including increases in anthocyanin levels due to upregulation of the anthocyanin biosynthetic pathway. Recent studies suggest that the higher anthocyanin content observed under drought stress conditions could be a consequence of a rise in the abscisic acid (ABA) concentration. This plant hormone crosses the plasma membrane by specific transporters, and it is recognized at the cytosolic level by receptors known as pyrabactin resistance (PYR)/regulatory component of ABA receptors (PYR/RCARs) that regulate downstream components. In this review, we discuss the hypothesis regarding the involvement of ABA in the regulation of microRNA156 (miRNA156), which is upregulated as part of dehydration stress responsiveness in different species. The miRNA156 upregulation produces a greater level of anthocyanin gene expression, forming the multienzyme complex that will synthesize an increased level of anthocyanins at the cytosolic face of the rough endoplasmic reticulum (RER). After synthesis, anthocyanins are transported from the RER to the vacuole by two possible models of transport: (1) membrane vesicle-mediated transport, or (2) membrane transporter-mediated transport. Thus, the aim was to analyze the recent findings on synthesis, transport and the possible mechanism by which ABA could increase anthocyanin synthesis under drought stress conditions potentially throughout microRNA156 (miRNA156).
Collapse
Affiliation(s)
- Jorge González-Villagra
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Leonid V Kurepin
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, Western University, London, ON, N6A 5B7, Canada
| | - Marjorie M Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
116
|
Early Detection of Plant Physiological Responses to Different Levels of Water Stress Using Reflectance Spectroscopy. REMOTE SENSING 2017. [DOI: 10.3390/rs9070745] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
117
|
Saradadevi R, Palta JA, Siddique KHM. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1251. [PMID: 28769957 PMCID: PMC5513975 DOI: 10.3389/fpls.2017.01251] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 05/19/2023]
Abstract
End-of-season drought or "terminal drought," which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE). When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA) is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under terminal drought. Ease of collecting leaf samples to quantify ABA compared to extracting xylem sap will facilitate rapid screening of a large number of germplasm for drought tolerance.
Collapse
Affiliation(s)
- Renu Saradadevi
- School of Agriculture and Environment, The University of Western Australia, PerthWA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, PerthWA, Australia
| | - Jairo A. Palta
- School of Agriculture and Environment, The University of Western Australia, PerthWA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, PerthWA, Australia
- CSIRO Agriculture and Food, WembleyWA, Australia
| | - Kadambot H. M. Siddique
- School of Agriculture and Environment, The University of Western Australia, PerthWA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, PerthWA, Australia
| |
Collapse
|
118
|
Singh M, Khan MMA, Uddin M, Naeem M, Qureshi MI. Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress. PLoS One 2017; 12:e0180129. [PMID: 28708833 PMCID: PMC5510827 DOI: 10.1371/journal.pone.0180129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022] Open
Abstract
Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud.), grown under different water stress regimes [(100% field capacity (FC), 80% FC and 60% FC)], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA). Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol) of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC), irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO) content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP), respectively, as compared to the deionized-water (DW) spray treatment (80% FC+ DW). Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment).
Collapse
Affiliation(s)
- Minu Singh
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - M. Masroor A. Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Moin Uddin
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - M. Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - M. Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
119
|
Ederli L, Brunetti C, Centritto M, Colazza S, Frati F, Loreto F, Marino G, Salerno G, Pasqualini S. Infestation of Broad Bean ( Vicia faba) by the Green Stink Bug ( Nezara viridula) Decreases Shoot Abscisic Acid Contents under Well-Watered and Drought Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:959. [PMID: 28642773 PMCID: PMC5463057 DOI: 10.3389/fpls.2017.00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/22/2017] [Indexed: 05/11/2023]
Abstract
The response of broad bean (Vicia faba) plants to water stress alone and in combination with green stink bug (Nezara viridula) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H2O2) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host-plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis (A) and stomatal conductance (gs ), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H2O2. However, infestation of N. viridula greatly increased both SA and H2O2 contents in leaves and roots, which suggests that endogenous SA and H2O2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugia, Italy
| | - Cecilia Brunetti
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of PalermoPalermo, Italy
| | - Francesca Frati
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of ItalyRome, Italy
| | - Giovanni Marino
- Trees and Timber Institute, National Research Council of ItalySesto Fiorentino, Italy
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugia, Italy
| |
Collapse
|
120
|
Deans RM, Brodribb TJ, McAdam SAM. An Integrated Hydraulic-Hormonal Model of Conifer Stomata Predicts Water Stress Dynamics. PLANT PHYSIOLOGY 2017; 174:478-486. [PMID: 28341770 PMCID: PMC5462058 DOI: 10.1104/pp.17.00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 05/07/2023]
Abstract
A simple model combining leaf hydraulics and abscisic acid sensitivity can predict stomatal dynamics to short-term changes in plant water status in a conifer.
Collapse
Affiliation(s)
- Ross M Deans
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
121
|
Gilliham M, Able JA, Roy SJ. Translating knowledge about abiotic stress tolerance to breeding programmes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:898-917. [PMID: 27987327 DOI: 10.1111/tpj.13456] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 05/20/2023]
Abstract
Plant breeding and improvements in agronomic practice are making a consistent contribution to increasing global crop production year upon year. However, the rate of yield improvement currently lags behind the targets set to produce enough food to meet the demands of the predicted global population in 2050. Furthermore, crops that are exposed to harmful abiotic environmental factors (abiotic stresses, e.g. water limitation, salinity, extreme temperature) are prone to reduced yields. Here, we briefly describe the processes undertaken in conventional breeding programmes, which are usually designed to improve yields in near-optimal conditions rather than specifically breeding for improved crop yield stability under stressed conditions. While there is extensive fundamental research activity that examines mechanisms of plant stress tolerance, there are few examples that apply this research to improving commercial crop yields. There are notable exceptions, and we highlight some of these to demonstrate the magnitude of yield gains that could be made by translating agronomic, phenological and genetic solutions focused on improving or mitigating the effect of abiotic stress in the field; in particular, we focus on improvements in crop water-use efficiency and salinity tolerance. We speculate upon the reasons for the disconnect between research and research translation. We conclude that to realise untapped rapid gains towards food security targets new funding structures need to be embraced. Such funding needs to serve both the core and collaborative activities of the fundamental, pre-breeding and breeding research communities in order to expedite the translation of innovative research into the fields of primary producers.
Collapse
Affiliation(s)
- Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Australian Centre for Plant Functional Genomics, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
122
|
Guo YM, Samans B, Chen S, Kibret KB, Hatzig S, Turner NC, Nelson MN, Cowling WA, Snowdon RJ. Drought-Tolerant Brassica rapa Shows Rapid Expression of Gene Networks for General Stress Responses and Programmed Cell Death Under Simulated Drought Stress. PLANT MOLECULAR BIOLOGY REPORTER 2017; 35:416-430. [PMID: 28751801 PMCID: PMC5504209 DOI: 10.1007/s11105-017-1032-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Production of oilseed rape/canola (Brassica napus) is increasingly threatened by dry conditions while the demand for vegetable oil is increasing. Brassica rapa is a genetically diverse ancestor of B. napus, and is readily crossed with B. napus. Recently, we reported promising levels of drought tolerance in a wild type of B. rapa which could be a source of drought tolerance for B. napus. We analysed global gene expression by messenger RNA sequencing in seedlings of the drought-tolerant and a drought-sensitive genotype of B. rapa under simulated drought stress and control conditions. A subset of stress-response genes were validated by reverse transcription quantitative PCR. Gene ontology enrichment analysis and pathway enrichment analysis revealed major differences between the two genotypes in the mode and onset of stress responses in the first 12 h of treatment. Drought-tolerant plants reacted uniquely and rapidly by upregulating genes associated with jasmonic acid and salicylic acid metabolism, as well as genes known to cause endoplasmic reticulum stress and induction of programmed cell death. Conversely, active responses in drought-sensitive plants were delayed until 8 or 12 h after stress application. The results may help to identify biomarkers for selection of breeding materials with potentially improved drought tolerance.
Collapse
Affiliation(s)
- Yi Ming Guo
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009 Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009 Australia
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Birgit Samans
- Department of Plant Breeding, Justus Liebig University, 35392 Giessen, Germany
| | - Sheng Chen
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009 Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009 Australia
| | - Kidist B. Kibret
- Department of Plant Breeding, Justus Liebig University, 35392 Giessen, Germany
| | - Sarah Hatzig
- Department of Plant Breeding, Justus Liebig University, 35392 Giessen, Germany
| | - Neil C. Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009 Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009 Australia
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, 6009 Australia
| | - Matthew N. Nelson
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009 Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009 Australia
- Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN UK
| | - Wallace A. Cowling
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009 Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009 Australia
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
123
|
Król A, Weidner S. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:114-126. [PMID: 28178572 DOI: 10.1016/j.jplph.2016.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 05/21/2023]
Abstract
The essence of exploring and understanding mechanisms of plant adaptation to environmental stresses lies in the determination of patterns of the expression of proteins, identification of stress proteins and their association with the specific functions in metabolic pathways. To date, little information has been provided about the proteomic response of grapevine to the persistent influence of adverse environmental conditions. This article describes changes in the profile of protein accumulation in leaves of common grapevine (Vitis vinifera L.) seedlings in response to prolonged drought. Isolated proteins were separated by two-dimensional electrophoresis (2 DE), and the proteins whose level of accumulation changed significantly due to the applied stress factors were identified with tandem mass spectrometry MALDI TOF/TOF type. Analysis of the proteome of grapevine leaves led to the detection of many proteins whose synthesis changed in response to the applied stressor. Drought caused the most numerous changes in the accumulation of proteins associated with carbohydrate and energy metabolism, mostly connected with the pathways of glycolysis and photosystem II protein components. The biological function of the identified proteins is discussed with reference to the stress of drought. Some of the identified proteins, especially the ones whose accumulation increased during drought stress, may be responsible for the adaptation of grapevine to drought.
Collapse
Affiliation(s)
- Angelika Król
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn, Kortowo, Poland.
| | - Stanisław Weidner
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn, Kortowo, Poland
| |
Collapse
|
124
|
Yang J, Zhou Q, Zhang J. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
125
|
Pang J, Turner NC, Khan T, Du YL, Xiong JL, Colmer TD, Devilla R, Stefanova K, Siddique KHM. Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1973-1985. [PMID: 27099375 PMCID: PMC5429003 DOI: 10.1093/jxb/erw153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Flower and pod production and seed set of chickpea (Cicer arietinum L.) are sensitive to drought stress. A 2-fold range in seed yield was found among a large number of chickpea genotypes grown at three dryland field sites in south-western Australia. Leaf water potential, photosynthetic characteristics, and reproductive development of two chickpea genotypes with contrasting yields in the field were compared when subjected to terminal drought in 106kg containers of soil in a glasshouse. The terminal drought imposed from early podding reduced biomass, reproductive growth, harvest index, and seed yield of both genotypes. Terminal drought at least doubled the percentage of flower abortion, pod abscission, and number of empty pods. Pollen viability and germination decreased when the fraction of transpirable soil water (FTSW) decreased below 0.18 (82% of the plant-available soil water had been transpired); however, at least one pollen tube in each flower reached the ovary. The young pods which developed from flowers produced when the FTSW was 0.50 had viable embryos, but contained higher abscisic acid (ABA) concentrations than those of the well-watered plants; all pods ultimately aborted in the drought treatment. Cessation of seed set at the same soil water content at which stomata began to close and ABA increased strongly suggested a role for ABA signalling in the failure to set seed either directly through abscission of developing pods or seeds or indirectly through the reduction of photosynthesis and assimilate supply to the seeds.
Collapse
Affiliation(s)
- Jiayin Pang
- School of Plant Biology, The University of Western Australia, M084, LB 5005 Perth, WA 6001, Australia
- The UWA Institute of Agriculture, The University of Western Australia, M082, LB 5005 Perth, WA 6001, Australia
| | - Neil C Turner
- The UWA Institute of Agriculture, The University of Western Australia, M082, LB 5005 Perth, WA 6001, Australia
| | - Tanveer Khan
- The UWA Institute of Agriculture, The University of Western Australia, M082, LB 5005 Perth, WA 6001, Australia
| | - Yan-Lei Du
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jun-Lan Xiong
- State Key Laboratory of Grassland Agroecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Timothy D Colmer
- School of Plant Biology, The University of Western Australia, M084, LB 5005 Perth, WA 6001, Australia
- The UWA Institute of Agriculture, The University of Western Australia, M082, LB 5005 Perth, WA 6001, Australia
| | - Rosangela Devilla
- CSIRO Agriculture, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Katia Stefanova
- The UWA Institute of Agriculture, The University of Western Australia, M082, LB 5005 Perth, WA 6001, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, M082, LB 5005 Perth, WA 6001, Australia
| |
Collapse
|
126
|
Hamim H, Violita V, Triadiati T, Miftahudin M. Oxidative Stress and Photosynthesis Reduction of Cultivated
(Glycine max L.) and Wild Soybean (G. tomentella L.) Exposed to
Drought and Paraquat. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajps.2017.65.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
127
|
Chakhchar A, Haworth M, El Modafar C, Lauteri M, Mattioni C, Wahbi S, Centritto M. An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree ( Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:276. [PMID: 28303146 PMCID: PMC5332407 DOI: 10.3389/fpls.2017.00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/14/2017] [Indexed: 05/10/2023]
Abstract
The argan tree (Argania spinosa) occurs in a restricted area of Southwestern Morocco characterized by low water availability and high evapotranspirative demand. Despite the adaptation of the argan tree to drought stress, the extent of the argan forest has declined markedly due to increased aridity, land use changes and the expansion of olive cultivation. The oil of the argan seed is used for cooking and as the basis for numerous cosmetics. The identification of argan tree varieties with enhanced drought tolerance may minimize the economic losses associated with the decline of the argan forest and constrain the spread of desertification. In this study we collected argan ecotypes from four contrasting habitats and grew them under identical controlled environment conditions to investigate their response to drought. Leaf gas exchange analysis indicated that the argan ecotypes showed a high degree of adaptation to drought stress, maintaining photosynthetic activity at low levels of foliar water content and co-ordinating photosynthesis, stomatal behavior and metabolism. The stomata of the argan trees were highly sensitive to increased leaf to air vapor pressure deficit, representing an adaptation to growth in an arid environment where potential evapotranspiration is high. However, despite originating in contrasting environments, the four argan ecotypes exhibited similar gas exchange characteristics under both fully irrigated and water deficit conditions. Population genetic analyses using microsatellite markers indicated a high degree of relatedness between the four ecotypes; indicative of both artificial selection and the transport of ecotypes between different provinces throughout centuries of management of the argan forest. The majority of genetic variation across the four populations (71%) was observed between individuals, suggesting that improvement of argan is possible. Phenotypic screening of physiological responses to drought may prove effective in identifying individuals and then developing varieties with enhanced drought tolerance to enable the maintenance of argan production as climate change results in more frequent and severe drought events in Northern Africa.
Collapse
Affiliation(s)
- Abdelghani Chakhchar
- Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi AyyadMarrakech, Morocco
| | - Matthew Haworth
- Tree and Timber Institute, National Research Council – Istituto per la Valorizzazione del Legno e delle Specie ArboreeFlorence, Italy
| | - Cherkaoui El Modafar
- Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi AyyadMarrakech, Morocco
| | - Marco Lauteri
- Institute of Agro-Environmental and Forest Biology, National Research Council – Istituto di Biologia Agroambientale e ForestalePorano, Italy
| | - Claudia Mattioni
- Institute of Agro-Environmental and Forest Biology, National Research Council – Istituto di Biologia Agroambientale e ForestalePorano, Italy
| | - Said Wahbi
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences Semlalia, Université Cadi AyyadMarrakech, Morocco
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council – Istituto per la Valorizzazione del Legno e delle Specie ArboreeFlorence, Italy
| |
Collapse
|
128
|
Calvo OC, Franzaring J, Schmid I, Müller M, Brohon N, Fangmeier A. Atmospheric CO 2 enrichment and drought stress modify root exudation of barley. GLOBAL CHANGE BIOLOGY 2017; 23:1292-1304. [PMID: 27633609 DOI: 10.1111/gcb.13503] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/02/2016] [Indexed: 05/22/2023]
Abstract
Rising CO2 concentrations associated with drought stress is likely to influence not only aboveground growth, but also belowground plant processes. Little is known about root exudation being influenced by elements of climate change. Therefore, this study wanted to clarify whether barley root exudation responds to drought and CO2 enrichment and whether this reaction differs between an old and a recently released malting barley cultivar. Barley plants were grown in pots filled with sand in controlled climate chambers at ambient (380 ppm) or elevated (550 ppm) atmospheric [CO2 ] and a normal or reduced water supply. Root exudation patterns were examined at the stem elongation growth stage and when the inflorescences emerged. At both dates, root exudates were analyzed for different compounds such as total free amino acids, proline, potassium, and some phytohormones. Elevated [CO2 ] decreased the concentrations in root exudates of some compounds such as total free amino acids, proline, and abscisic acid. Moreover, reduced water supply increased proline, potassium, electric conductivity, and hormone concentrations. In general, the modern cultivar showed higher concentrations of proline and abscisic acid than the old one, but the cultivars responded differentially under elevated CO2 . Plant developmental stage had also an impact on the root exudation patterns of barley. Generally, we observed significant effects of CO2 enrichment, watering levels, and, to a lesser extent, cultivar on root exudation. However, we did not find any mitigation of the adverse effects of drought by elevated CO2 . Understanding the multitude of relationships within the rhizosphere is an important aspect that has to be taken into consideration in the context of crop performance and carbon balance under conditions of climate change.
Collapse
Affiliation(s)
- Olga C Calvo
- Institut für Landschafts- und Pflanzenökologie, FG Pflanzenökologie, Universität Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Jürgen Franzaring
- Institut für Landschafts- und Pflanzenökologie, FG Pflanzenökologie, Universität Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Iris Schmid
- Institut für Landschafts- und Pflanzenökologie, FG Pflanzenökologie, Universität Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Matthias Müller
- Institut für Landschafts- und Pflanzenökologie, FG Pflanzenökologie, Universität Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Nolwenn Brohon
- Institut für Landschafts- und Pflanzenökologie, FG Pflanzenökologie, Universität Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Andreas Fangmeier
- Institut für Landschafts- und Pflanzenökologie, FG Pflanzenökologie, Universität Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| |
Collapse
|
129
|
Li W, Jia L, Wang L. Chemical signals and their regulations on the plant growth and water use efficiency of cotton seedlings under partial root-zone drying and different nitrogen applications. Saudi J Biol Sci 2017; 24:477-487. [PMID: 28386170 PMCID: PMC5372376 DOI: 10.1016/j.sjbs.2017.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/28/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022] Open
Abstract
Partial root-zone drying during irrigation (PRD) has been shown effective in enhancing plant water use efficiency (WUE), however, the roles of chemical signals from root and shoot that are involved and the possible interactions affected by nitrogen nutrition are not clear. Pot-grown cotton (Gossypium spp.) seedlings were treated with three levels of N fertilization and PRD. The concentrations of nitrate (NO3−), abscisic acid (ABA) and the pH value of leaf and root xylem saps, biomass and WUE were measured. Results showed that PRD plants produced larger biomass and higher WUE than non-PRD plants, with significant changes in leaf xylem ABA, leaf and root xylem NO3− concentrations and pH values, under heterogeneous soil moisture conditions. Simultaneously, high-N treated plants displayed larger changes in leaf xylem ABA and higher root xylem NO3− concentrations, than in the medium- or low-N treated plants. However, the WUE of plants in the low-N treatment was higher than that of those in the high- and medium-N treatments. PRD and nitrogen levels respectively induced signaling responses of ABA/NO3− and pH in leaf or root xylem to affect WUE and biomass under different watering levels, although significant interactions of PRD and nitrogen levels were found when these signal molecules responded to soil drying. We conclude that these signaling chemicals are regulated by interaction of PRD and nitrogen status to regulate stomatal behavior, either directly or indirectly, and thus increase PRD plant WUE under less irrigation.
Collapse
Affiliation(s)
- Wenrao Li
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liguo Jia
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Lei Wang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
130
|
Zhao J, Bodner G, Rewald B, Leitner D, Nagel KA, Nakhforoosh A. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:965-982. [PMID: 28168270 PMCID: PMC5441853 DOI: 10.1093/jxb/erw494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research.
Collapse
Affiliation(s)
- Jiangsan Zhao
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Gernot Bodner
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Daniel Leitner
- Computational Science Center, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Kerstin A Nagel
- Institute of Biosciences and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Alireza Nakhforoosh
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| |
Collapse
|
131
|
Mitchell PJ, McAdam SAM, Pinkard EA, Brodribb TJ. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata. TREE PHYSIOLOGY 2017; 37:236-245. [PMID: 28399262 DOI: 10.1093/treephys/tpw092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/20/2016] [Indexed: 06/07/2023]
Abstract
The complex regulatory system controlling stomata involves physical and chemical signals that affect guard cell turgor to bring about changes in stomatal conductance (gs). Abscisic acid (ABA) closes stomata, yet the mechanisms controlling foliar ABA status in tree species remain unclear. The importance of foliage-derived ABA in regulating gas exchange was evaluated under treatments that affected phloem export through girdling and reduced water availability in the tree species, Pinus radiata (D. Don). Branch- and whole-plant girdling increased foliar ABA levels leading to declines in gs, despite no change in plant water status. Changes in gs were largely independent of the more transient increases in foliar non-structural carbohydrates (NSC), suggesting that gradual accumulation of foliar ABA was the primary mechanism for reductions in gs and assimilation. Whole-plant girdling eventually reduced root NSC, hindering root water uptake and decreasing foliar water potential, causing a dramatic increase in ABA level in leaves and concentrations in the xylem sap of shoots (4032 ng ml-1), while root xylem sap concentrations remained low (43 ng ml-1). Contrastingly, the drought treatment caused similar increases in xylem sap ABA in both roots and shoots, suggesting that declines in water potential result in relatively consistent changes in ABA along the hydraulic pathway. ABA levels in plant canopies can be regulated independently of changes in root water status triggered by changes by both phloem export and foliar water status.
Collapse
Affiliation(s)
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, College Rd, Hobart, Tasmania 7005, Australia
| | | | | |
Collapse
|
132
|
Killi D, Bussotti F, Raschi A, Haworth M. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. PHYSIOLOGIA PLANTARUM 2017; 159:130-147. [PMID: 27535211 DOI: 10.1111/ppl.12490] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/07/2016] [Accepted: 07/01/2016] [Indexed: 05/21/2023]
Abstract
Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (PN ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on PN was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (Gs ), we observed no change or a reduction in Gs with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on PN was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions.
Collapse
Affiliation(s)
- Dilek Killi
- Department of Agri-food Production and Environmental Sciences (DiSPAA), University of Florence, Florence, Italy
| | - Filippo Bussotti
- Department of Agri-food Production and Environmental Sciences (DiSPAA), University of Florence, Florence, Italy
| | - Antonio Raschi
- Istituto di Biometeorologia (CNR - IBIMET), Florence, Italy
| | | |
Collapse
|
133
|
|
134
|
Luo SS, Sun YN, Zhou X, Zhu T, Zhu LS, Arfan M, Zou LJ, Lin HH. Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:190-198. [PMID: 27721134 DOI: 10.1016/j.plaphy.2016.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Drought is one of the most significant abiotic stresses that restrict crop productivity. Medicago truncatula is a model legume species with a wide genetic diversity. We compared the differential physiological and molecular changes of two genotypes of M. truncatula (Jemalong A17 and R108) in response to progressive drought stress and rewatering. The MtNCED and MtZEP activation and higher abscisic acid (ABA) content was observed in Jemalong A17 plants under normal conditions. Additionally, a greater increase in ABA content and expression of MtNCED and MtZEP in Jemalong A17 plants than that of R108 plants were observed under drought conditions. A more ABA-sensitive stomatal closure and a slower water loss was found in excised leaves of Jemalong A17 plants. Meanwhile, Jemalong A17 plants alleviated leaf wilting and maintained higher relative water content under drought conditions. Exposed to drought stress, Jemalong A17 plants exhibited milder oxidative damage which has less H2O2 and MDA accumulation, lower electrolyte leakage and higher chlorophyll content and PSII activity. Furthermore, Jemalong A17 plants enhanced expression of stress-upregulated genes under drought conditions. These results suggest that genotypes Jemalong A17 and R108 differed in their response and adaptation to drought stress. Given the relationship between ABA and these physiological responses, the MtNCED and MtZEP activation under normal conditions may play an important role in regulation of greater tolerance of Jemalong A17 plants to drought stress. The activation of MtNCED and MtZEP may lead to the increase of ABA content which may activate expression of drought-stress-regulated genes and cause a series of physiological resistant responses.
Collapse
Affiliation(s)
- Shi-Shuai Luo
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Yan-Ni Sun
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Xue Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Li-Sha Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Muhammad Arfan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China; Life Science and Technology College and Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China.
| |
Collapse
|
135
|
Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. THE NEW PHYTOLOGIST 2016; 212:954-963. [PMID: 27716937 DOI: 10.1111/nph.14190] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/04/2016] [Indexed: 05/03/2023]
Abstract
Strigolactones (SL) contribute to drought acclimatization in shoots, because SL-depleted plants are hypersensitive to drought due to stomatal hyposensitivity to abscisic acid (ABA). However, under drought, SL biosynthesis is repressed in roots, suggesting organ specificity in their metabolism and role. Because SL can be transported acropetally, such a drop may also affect shoots, as a systemic indication of stress. We investigated this hypothesis by analysing molecularly and physiologically wild-type (WT) tomato (Solanum lycopersicum) scions grafted onto SL-depleted rootstocks, compared with self-grafted WT and SL-depleted genotypes, during a drought time-course. Shoots receiving few SL from the roots behaved as if under mild stress even if irrigated. Their stomata were hypersensitive to ABA (likely via a localized enhancement of SL synthesis in shoots). Exogenous SL also enhanced stomata sensitivity to ABA. As the partial shift of SL synthesis from roots to shoots mimics what happens under drought, a reduction of root-produced SL might represent a systemic signal unlinked from shootward ABA translocation, and sufficient to prime the plant for better stress avoidance.
Collapse
Affiliation(s)
- Ivan Visentin
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Marco Vitali
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Manuela Ferrero
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, 6708, PB Wageningen, the Netherlands
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, 6708, PB Wageningen, the Netherlands
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacky University Olomouc, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacky University Olomouc, Olomouc, Czech Republic
| | - Claudio Lovisolo
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Andrea Schubert
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Francesca Cardinale
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| |
Collapse
|
136
|
Zhang W, Zwiazek JJ. Effects of root medium pH on root water transport and apoplastic pH in red-osier dogwood (Cornus sericea) and paper birch (Betula papyrifera) seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:1001-1007. [PMID: 27425790 DOI: 10.1111/plb.12483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Soil pH is a major factor affecting plant growth. Plant responses to pH conditions widely vary between different species of plants. However, the exact mechanisms of high pH tolerance of plants are largely unknown. In the present study, we compared the pH responses of paper birch (Betula papyrifera) seedlings, a relatively sensitive species to high soil pH, with red-osier dogwood (Cornus sericea), reported to be relatively tolerant of high pH conditions. We examined the hypotheses that tolerance of plants to high root zone pH is linked to effective control of root apoplastic pH to facilitate nutrient and water transport processes In the study, we exposed paper birch and red-osier dogwood seedlings for six weeks to pH 5, 7 and 9 under controlled-environment conditions in hydroponic culture. Then, we measured biomass, gas exchange, root hydraulic conductivity, ferric chelate reductase (FCR) activity, xylem sap pH and the relative abundance of major elements in leaf protoplasts and apoplasts. The study sheds new light on the rarely studied high pH tolerance mechanisms in plants. We found that compared with paper birch, red-osier dogwood showed greater growth, higher gas exchange, and maintained higher root hydraulic conductivity as well as lower xylem sap pH under high pH conditions. The results suggest that the relatively high pH tolerance of dogwood is associated with greater water uptake ability and maintenance of low apoplastic pH. These traits may have a significant impact on the uptake of Fe and Mn by leaf cells.
Collapse
Affiliation(s)
- W Zhang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| | - J J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
137
|
Apple Tree Responses to Deficit Irrigation Combined with Periodic Applications of Particle Film or Abscisic Acid. HORTICULTURAE 2016. [DOI: 10.3390/horticulturae2040016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
138
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
139
|
Dias LP, de Oliveira-Busatto LA, Bodanese-Zanettini MH. The differential expression of soybean [Glycine max (L.) Merrill] WRKY genes in response to water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:288-300. [PMID: 27343875 DOI: 10.1016/j.plaphy.2016.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
Drought is today, and perhaps even more in the future, the main challenge for grain crops, resulting in a drastic yield reduction. Thus, it is of great interest to obtain soybean genotypes tolerant to water deficit. The drought tolerance trait is difficult to obtain through classical breeding due to its polygenic basis. In this context, genetic engineering is presented as a way to achieve this attribute. The ability to modulate the expression of many genes placed the transcription factors as promising biotechnological targets to develop stress tolerant cultivars. The WRKY proteins form a large family of transcription factors that are involved in important physiological and biochemical processes in plants, including the response to water deficit. In this study, the expression pattern determined by qPCR showed that, GmWRKY6, GmWRKY46, GmWRKY56, GmWRKY106 and GmWRKY149 genes are differentially expressed between a drought tolerant and a susceptible soybean genotype in water stress conditions. The in silico promoter and coexpression analysis indicate that these genes act in a stress physiological background.
Collapse
Affiliation(s)
- Letícia Pereira Dias
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.
| | - Luisa Abruzzi de Oliveira-Busatto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
140
|
Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS. Elucidation of Complex Nature of PEG Induced Drought-Stress Response in Rice Root Using Comparative Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:1466. [PMID: 27746797 PMCID: PMC5040710 DOI: 10.3389/fpls.2016.01466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/14/2016] [Indexed: 05/22/2023]
Abstract
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29%) and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase, and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22%) such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21%) e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase, and cysteine synthase. Further, cell signaling (9%) proteins like actin and prolyl endopeptidase, and proteins with miscellaneous function (19%) like Sgt1 and some hypothetical proteins were also represented a large contribution toward drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense, and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritization as potential molecular targets for perfect adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chandra S. Nautiyal
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research InstituteLucknow, India
| |
Collapse
|
141
|
Feller U. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:84-94. [PMID: 27083537 DOI: 10.1016/j.jplph.2016.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate.
Collapse
Affiliation(s)
- Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.
| |
Collapse
|
142
|
Prudent M, Salon C, Smith DL, Emery RJN. Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean. PLANT SIGNALING & BEHAVIOR 2016; 11:e1212799. [PMID: 27454159 PMCID: PMC5058462 DOI: 10.1080/15592324.2016.1212799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 05/29/2023]
Abstract
Nod factors (NF) are molecules produced by rhizobia which are involved in the N2-fixing symbiosis with legume plants, enabling the formation of specific organs called nodules. Under drought conditions, nitrogen acquisition by N2-fixation is depressed, resulting in low legume productivity. In this study, we evaluated the effects of NF supply on nitrogen acquisition and on cytokinin biosynthesis of soybean plants grown under drought. NF supply to water stressed soybeans increased the CK content of all organs. The profile of CK metabolites also shifted from t-Z to cis-Z and an accumulation of nucleotide and glucoside conjugates. The changes in CK coincided with enhanced nodule formation with sustained nodule specific activity, which ultimately increased the total nitrogen fixed by the plant.
Collapse
Affiliation(s)
| | | | - Donald L. Smith
- Plant Science Department, McGill University, McDonald Campus, St Anne de Bellevue, Quebec, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
143
|
Rodriguez-Dominguez CM, Buckley TN, Egea G, de Cires A, Hernandez-Santana V, Martorell S, Diaz-Espejo A. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. PLANT, CELL & ENVIRONMENT 2016; 39:2014-26. [PMID: 27255698 DOI: 10.1111/pce.12774] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 05/21/2023]
Abstract
Reduced stomatal conductance (gs ) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root-derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor-mediated and leaf turgor-independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process-based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63-84% across species, and the model reproduced these changes well (r(2) = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA-centric model of stomatal responses to drought.
Collapse
Affiliation(s)
- Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Seville, Spain
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| | - Thomas N Buckley
- IA Watson Grains Research Centre, Plant Breeding Institute, Faculty of Agriculture and Environment, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Gregorio Egea
- Área de Ingeniería Agroforestal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra Utrera, km 1, 41013, Seville, Spain
| | - Alfonso de Cires
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| | - Virginia Hernandez-Santana
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Seville, Spain
| | - Sebastia Martorell
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Antonio Diaz-Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Seville, Spain
| |
Collapse
|
144
|
Naser V, Shani E. Auxin response under osmotic stress. PLANT MOLECULAR BIOLOGY 2016; 91:661-72. [PMID: 27052306 DOI: 10.1007/s11103-016-0476-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/28/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.
Collapse
Affiliation(s)
- Victoria Naser
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Eilon Shani
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
145
|
Dbara S, Haworth M, Emiliani G, Ben Mimoun M, Gómez-Cadenas A, Centritto M. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions. PLoS One 2016; 11:e0157089. [PMID: 27315081 PMCID: PMC4912070 DOI: 10.1371/journal.pone.0157089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/24/2016] [Indexed: 12/02/2022] Open
Abstract
The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of 'hydro-passive' stomatal behaviour indicate that the 'Chetoui' variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for 'Chetoui' olive production.
Collapse
Affiliation(s)
- Soumaya Dbara
- Centre Régional des Recherches en Horticulture et Agriculture Biologique, Chott Mariem, 4042, BP57, Tunisia
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council (CNR—IVALSA), Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Giovani Emiliani
- Trees and Timber Institute, National Research Council (CNR—IVALSA), Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Mehdi Ben Mimoun
- Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle, Tunis, 1082, Tunisia
| | - Aurelio Gómez-Cadenas
- Dept Ciencias Agrarias y del Medio Natural, Universitat Jaume I, campus Riu Sec, E-12071, Castellon, Spain
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council (CNR—IVALSA), Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
146
|
February EC, Higgins SI. Rapid Leaf Deployment Strategies in a Deciduous Savanna. PLoS One 2016; 11:e0157833. [PMID: 27310398 PMCID: PMC4911110 DOI: 10.1371/journal.pone.0157833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/06/2016] [Indexed: 12/03/2022] Open
Abstract
Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ13C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains.
Collapse
Affiliation(s)
- Edmund Carl February
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
- * E-mail:
| | - Steven Ian Higgins
- Department of Botany, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
147
|
McAdam SAM, Manzi M, Ross JJ, Brodribb TJ, Gómez-Cadenas A. Uprooting an abscisic acid paradigm: Shoots are the primary source. PLANT SIGNALING & BEHAVIOR 2016; 11:e1169359. [PMID: 27031537 PMCID: PMC4973758 DOI: 10.1080/15592324.2016.1169359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress.
Collapse
Affiliation(s)
- Scott A. M. McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Australia
- CONTACT Scott A. M. McAdam ; Aurelio Gómez-Cadenas
| | - Matías Manzi
- Ecofisiologia y Biotecnologia, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I. Castellón de la Plana, Spain
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | | | - Aurelio Gómez-Cadenas
- Ecofisiologia y Biotecnologia, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I. Castellón de la Plana, Spain
- CONTACT Scott A. M. McAdam ; Aurelio Gómez-Cadenas
| |
Collapse
|
148
|
Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, Weckwerth W. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteomics 2016; 143:122-135. [DOI: 10.1016/j.jprot.2016.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
149
|
Benlloch M, Benlloch-González M. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:14-19. [PMID: 27016874 DOI: 10.1016/j.jplph.2016.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the stem must be one of the first responses induced in the plant during water stress recovery.
Collapse
Affiliation(s)
- Manuel Benlloch
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain
| | - María Benlloch-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Ctra. Madrid-Cádiz, Km. 396, E-14071 Córdoba, Spain.
| |
Collapse
|
150
|
Valluru R, Davies WJ, Reynolds MP, Dodd IC. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:461. [PMID: 27148292 PMCID: PMC4834443 DOI: 10.3389/fpls.2016.00461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance.
Collapse
Affiliation(s)
- Ravi Valluru
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)El Batan, Mexico
- Plant Biology Department, Lancaster Environmental Center, Lancaster UniversityLancaster, UK
| | - William J. Davies
- Plant Biology Department, Lancaster Environmental Center, Lancaster UniversityLancaster, UK
| | - Matthew P. Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)El Batan, Mexico
| | - Ian C. Dodd
- Plant Biology Department, Lancaster Environmental Center, Lancaster UniversityLancaster, UK
| |
Collapse
|