101
|
Mudduluru G, Medved F, Grobholz R, Jost C, Gruber A, Leupold JH, Post S, Jansen A, Colburn NH, Allgayer H. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007; 110:1697-707. [PMID: 17849461 DOI: 10.1002/cncr.22983] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Programmed cell death 4 (Pdcd4) inhibits malignant transformation, and initial studies of Pdcd4 suggested the regulation of Pdcd4 localization by protein kinase B (Akt). However, supporting patient tissue data are missing, and the diagnostic/prognostic potential of Pdcd4 rarely has been studied. The objectives of the current were 1) to determine Pdcd4 as a diagnostic marker in the adenoma-carcinoma sequence, 2) to support phosphorylated Akt (pAkt)-mediated Pdcd4 regulation in vivo, and 3) to obtain the first prognostic evidence of Pdcd4 in colorectal cancer. METHODS Tumor samples and normal tissues from 71 patients with colorectal cancer who were followed prospectively (median follow-up, 36 months) and 42 adenomas were analyzed for Pdcd4, Akt, and pAkt in immunohistochemical and Western blot analyses. RESULTS A significant reduction in Pdcd4 was observed between normal mucosa and adenomas and between adenomas and tumor samples (P < .01 and P < .01, respectively). Normal mucosa demonstrated strong nuclear Pdcd4, which was reduced significantly in adenomas (P < .01) and almost was lost in tumors (P < .01). pAkt was correlated inversely with Pdcd4 and with the transition of Pdcd4 from nucleus to cytoplasm (P < .01). Kaplan-Meier analysis (using the Mantel-Cox log-rank test) indicated a significant correlation between the loss of total and nuclear Pdcd4 in tumors and overall survival (P < .05 and P < .02, respectively) and disease-specific survival (P < .01 and P < .01, respectively). In multivariate analysis, loss of total or nuclear Pdcd4 was an independent predictor of disease-specific or overall survival. CONCLUSIONS To the authors' knowledge, this is the first study to demonstrate an independent prognostic impact of Pdcd4 and its expression pattern in colorectal cancer. Data from this study support the regulation of Pdcd4 localization by pAkt in vivo. Pdcd4 immunohistochemistry may be useful as a supportive diagnostic tool for the transition between normal, adenoma, and tumor tissues.
Collapse
Affiliation(s)
- Giridhar Mudduluru
- Department of Experimental Surgery Mannheim/Molecular Oncology of Solid Tumors, Deutsches Krebsforschungszentrum and University Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2007; 283:1026-33. [PMID: 17991735 DOI: 10.1074/jbc.m707224200] [Citation(s) in RCA: 854] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21 and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells.
Collapse
Affiliation(s)
- Lisa B Frankel
- Biotech Research and Innovation Centre, Bioinformatics Centre, University of Copenhagen, DK-2200 N Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
103
|
The action of Pdcd4 may be cell type specific: evidence that reduction of dUTPase levels might contribute to its tumor suppressor activity in Bon-1 cells. Apoptosis 2007; 13:157-64. [DOI: 10.1007/s10495-007-0153-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
104
|
Hwang SK, Jin H, Kwon JT, Chang SH, Kim TH, Cho CS, Lee KH, Young MR, Colburn NH, Beck GR, Yang HS, Cho MH. Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice. Gene Ther 2007; 14:1353-61. [PMID: 17611588 DOI: 10.1038/sj.gt.3302983] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.
Collapse
Affiliation(s)
- S-K Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Ozpolat B, Akar U, Steiner M, Zorrilla-Calancha I, Tirado-Gomez M, Colburn N, Danilenko M, Kornblau S, Berestein GL. Programmed Cell Death-4 Tumor Suppressor Protein Contributes to Retinoic Acid–Induced Terminal Granulocytic Differentiation of Human Myeloid Leukemia Cells. Mol Cancer Res 2007; 5:95-108. [PMID: 17259349 DOI: 10.1158/1541-7786.mcr-06-0125] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Programmed cell death-4 (PDCD4) is a recently discovered tumor suppressor protein that inhibits protein synthesis by suppression of translation initiation. We investigated the role and the regulation of PDCD4 in the terminal differentiation of acute myeloid leukemia (AML) cells. Expression of PDCD4 was markedly up-regulated during all-trans retinoic acid (ATRA)-induced granulocytic differentiation in NB4 and HL60 AML cell lines and in primary human promyelocytic leukemia (AML-M3) and CD34(+) hematopoietic progenitor cells but not in differentiation-resistant NB4.R1 and HL60R cells. Induction of PDCD4 expression was associated with nuclear translocation of PDCD4 in NB4 cells undergoing granulocytic differentiation but not in NB4.R1 cells. Other granulocytic differentiation inducers such as DMSO and arsenic trioxide also induced PDCD4 expression in NB4 cells. In contrast, PDCD4 was not up-regulated during monocytic/macrophagic differentiation induced by 1,25-dihydroxyvitamin D3 or 12-O-tetradecanoyl-phorbol-13-acetate in NB4 cells or by ATRA in THP1 myelomonoblastic cells. Knockdown of PDCD4 by RNA interference (siRNA) inhibited ATRA-induced granulocytic differentiation and reduced expression of key proteins known to be regulated by ATRA, including p27(Kip1) and DAP5/p97, and induced c-myc and Wilms' tumor 1, but did not alter expression of c-jun, p21(Waf1/Cip1), and tissue transglutaminase (TG2). Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was found to regulate PDCD4 expression because inhibition of PI3K by LY294002 and wortmannin or of mTOR by rapamycin induced PDCD4 protein and mRNA expression. In conclusion, our data suggest that PDCD4 expression contributes to ATRA-induced granulocytic but not monocytic/macrophagic differentiation. The PI3K/Akt/mTOR pathway constitutively represses PDCD4 expression in AML, and ATRA induces PDCD4 through inhibition of this pathway.
Collapse
Affiliation(s)
- Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Merkerova M, Bruchova H, Brdicka R. Expression analysis of PCNA gene in chronic myelogenous leukemia--combined application of siRNA silencing and expression arrays. Leuk Res 2006; 31:661-72. [PMID: 17070905 DOI: 10.1016/j.leukres.2006.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Imatinib metylase is the first choice treatment for BCR/ABL positive chronic myelogenous leukemia (CML). However, as some CML patients develop resistance to imatinib therapy, there is a significant interest in development of alternative treatment strategies, such as identifying targets other than BCR/ABL that may participate in CML. Previously, we demonstrated strong PCNA up-regulation in CML patients. To further study its role in CML pathogenesis, we performed silencing of PCNA expression followed by array experiments. PCNA inhibition led to down-regulation of CDK1, CDK4, PLK1, ERK3, JNK1, STAT5, and several inhibitors of apoptosis (DAXX, Mdm2, survivin). The following genes were up-regulated: CDK inhibitors p21 and p19-INK4D, pro-apoptotic FAST kinase, fibronectin, etc. However, as PCNA affects cell growth in naturally proliferating cells as well as in cancerous cells, it seems to act a secondary role relating to proliferation activity of leukemic cells.
Collapse
MESH Headings
- Apoptosis
- Benzamides
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Silencing
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Oligonucleotide Array Sequence Analysis
- Piperazines/therapeutic use
- Proliferating Cell Nuclear Antigen/genetics
- Pyrimidines/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Michaela Merkerova
- Institute of Hematology and Blood Transfusion, Department of Molecular Genetics, U nemocnice 1, 12820 Prague 2, Czech Republic.
| | | | | |
Collapse
|
107
|
Galons H, Bettayeb K, Meijer L. (R)-Roscovitine (CYC202, Seliciclib). ENZYME INHIBITORS SERIES 2006. [DOI: 10.1201/9781420005400.ch9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
108
|
Jin H, Kim TH, Hwang SK, Chang SH, Kim HW, Anderson HK, Lee HW, Lee KH, Colburn NH, Yang HS, Cho MH, Cho CS. Aerosol delivery of urocanic acid–modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol Cancer Ther 2006; 5:1041-9. [PMID: 16648576 DOI: 10.1158/1535-7163.mct-05-0433] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The low efficiency of conventional therapies in achieving long-term survival of patients with lung cancer calls for development of novel treatment options. Although several genes have been investigated for their antitumor activities through gene delivery, problems surrounding the methods used, such as efficiency, specificity, and toxicity, hinder application of such therapies in clinical settings. Aerosol gene delivery as nonviral and noninvasive method for gene therapy may provide an alternative for a safer and more effective treatment for lung cancer. In this study, imidazole ring-containing urocanic acid-modified chitosan (UAC) designed in previous study was used as a gene carrier. The efficiency of UAC carrier in lungs was confirmed, and the potential effects of the programmed cell death protein 4 (PDCD4) tumor suppressor gene on three major pathways (apoptosis, cell cycle, and angiogenesis) were evaluated. Aerosol containing UAC/PDCD4 complexes was delivered into K-ras null lung cancer model mice through the nose-only inhalation system developed by our group. Delivered UAC/PDCD4 complex facilitated apoptosis, inhibited pathways important for cell proliferation, and efficiently suppressed pathways important for tumor angiogenesis. In summary, results obtained by Western blot analysis, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated nick end labeling assay suggest that our aerosol gene delivery technique is compatible with in vivo gene delivery and can be applied as a noninvasive gene therapy.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Palamarchuk A, Efanov A, Maximov V, Aqeilan RI, Croce CM, Pekarsky Y. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Res 2006; 65:11282-6. [PMID: 16357133 DOI: 10.1158/0008-5472.can-05-3469] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.
Collapse
Affiliation(s)
- Alexey Palamarchuk
- Comprehensive Cancer Center, Human Cancer Genetics Program, and Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University School of Medicine, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
110
|
Wong YF, Cheung TH, Tsao GSW, Lo KWK, Yim SF, Wang VW, Heung MMS, Chan SCS, Chan LKY, Ho TWF, Wong KWY, Li C, Guo Y, Chung TKH, Smith DI. Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 2006; 118:2461-9. [PMID: 16353136 DOI: 10.1002/ijc.21660] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An analysis of gene expression profiles obtained from cervical cancers was performed to find those genes most aberrantly expressed. Total RNA was prepared from 29 samples of cervical squamous cell carcinoma and 18 control samples, and hybridized to Affymetrix oligonucleotide microarrays with probe sets complementary to over 20,000 transcripts. Unsupervised hierarchical clustering of the expression data readily distinguished normal cervix from cancer. Supervised analysis of gene expression data identified 98 and 139 genes that exhibited >2-fold upregulation and >2-fold downregulation, respectively, in cervical cancer compared to normal cervix. Several of the genes that were differentially regulated included SPP1 (Osteopontin), CDKN2A (p16), RPL39L, Clorf1, MAL, p11, ARS and NICE-1. These were validated by quantitative RT-PCR on an independent set of cancer and control specimens. Gene Ontology analysis showed that the list of differentially expressed genes included ones that were involved in multiple biological processes, including cell proliferation, cell cycle and protein catabolism. Immunohistochemical staining of cancer specimens further confirmed differential expression of SPP1 in cervical cancer cells vs. nontumor cells. In addition, 2 genes, CTGF and RGS1 were found to be upregulated in late stage cancer compared to early stage cancer, suggesting that they might be involved in cancer progression. The pathway analysis of expression data showed that the SPP1, VEGF, CDC2 and CKS2 genes were coordinately differentially regulated between cancer and normal. The present study is promising and provides potential new insights into the extent of expression differences underlying the development and progression of cervical squamous cell cancer. This study has also revealed several genes that may be highly attractive candidate molecular markers/targets for cervical cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Yick-Fu Wong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, and Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Jansen AP, Camalier CE, Colburn NH. Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 2005; 65:6034-41. [PMID: 16024603 DOI: 10.1158/0008-5472.can-04-2119] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Programmed cell death 4 (Pdcd4) is a novel repressor of in vitro transformation. Pdcd4 directly inhibits the helicase activity of eukaryotic translation initiation factor 4A, a component of the translation initiation complex. To ascertain whether Pdcd4 suppresses tumor development in vivo, we have generated transgenic mice that overexpress Pdcd4 in the epidermis (K14-Pdcd4). K14-regulated Pdcd4 expression caused a neonatal short-hair phenotype due to early catagen entry compared with matched wild-type siblings. In response to the 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) mouse skin carcinogenesis protocol, K14-Pdcd4 mice showed significant reductions in papilloma formation, carcinoma incidence, and papilloma-to-carcinoma conversion frequency compared with wild-type mice. The translational efficiency of an mRNA engineered to form a structured 5' untranslated region (UTR) was attenuated in primary keratinocytes when Pdcd4 was overexpressed. Pdcd4 inhibited by 46% TPA-induced activator protein-1 (AP-1)-dependent transcription, an event required for tumorigenesis. CDK4 and ornithine decarboxylase (ODC) are candidates for Pdcd4-regulated translation as their mRNAs contain 5'structured UTRs. In K14-Pdcd4 primary keratinocytes expressing activated Ha-Ras to mimic DMBA-initiated epidermis, ODC and CDK4 protein levels were decreased by 40% and 46%, respectively. Expression of a protein encoded by 5' unstructured mRNA showed no change. These results extend to an in vivo model the observations that Pdcd4 inhibits both translation initiation and AP-1 activation while decreasing benign tumor development and malignant progression. The K14-Pdcd4 mice seem to validate translation initiation as a novel target for cancer prevention.
Collapse
Affiliation(s)
- Aaron P Jansen
- Gene Regulation Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
112
|
Zakowicz H, Yang HS, Stark C, Wlodawer A, Laronde-Leblanc N, Colburn NH. Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI. RNA (NEW YORK, N.Y.) 2005; 11:261-274. [PMID: 15661843 PMCID: PMC1370716 DOI: 10.1261/rna.7191905] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 12/02/2004] [Indexed: 05/24/2023]
Abstract
Eukaryotic initiation factor (eIF) 4A unwinds secondary and tertiary structures in the 5'-untranslated region of mRNA, permitting translation initiation. Programmed cell death 4 (Pdcd4) is a novel transformation suppressor and eIF4A-binding partner that inhibits eIF4A helicase activity and translation. To elucidate the regions of eIF4A that are functionally significant in binding to Pdcd4, we generated point mutations of eIF4A. Two-hybrid analysis revealed that five eIF4A mutants completely lost binding to Pdcd4 while four eIF4A mutants retained wild-type levels of binding. The residues that, when mutated, inactivated Pdcd4 binding specified ATP binding, ATP hydrolysis, or RNA binding. With the exception of the Q-motif mutant eIF4AP56L, the eIF4A mutants inactivated for Pdcd4 binding were inactivated for binding to eIF4G (GM, GC, or both) and for enhancing translation. Several eIF4A mutants showing wild-type level binding to Pdcd4 were also inactivated for binding to eIF4G and for enhancing translation. Thus, significant dissociation of eIF4A's Pdcd4- and eIF4G-binding regions appears to occur. Because three of the four eIF4A mutants that retained Pdcd4 binding also suppressed translation activity in a dominant-negative manner, the structure that defines the Pdcd4-binding domain of eIF4A may be necessary but is insufficient for translation. A structural homology model of eIF4A shows regions important for binding to Pdcd4 and/or eIF4G lying on the perimeters of the hinge area of eIF4A. A competition experiment revealed that Pdcd4 competes with C-terminal eIF4G for binding to eIF4A. In summary, the Pdcd4-binding domains on eIF4A impact both binding to eIF4G and translation initiation in cells.
Collapse
Affiliation(s)
- Halina Zakowicz
- Laboratory of Cancer Prevention, Bldg. 576, Rm. 101, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|