101
|
Abstract
PURPOSE OF REVIEW Survivors of a critical illness may experience poor physical function and quality of life as a result of reduced skeletal muscle mass and strength during their acute illness. Patients diagnosed with sepsis are particularly at risk, and mechanical ventilation may result in diaphragm dysfunction. Interest in the interaction of these conditions is both growing and important to understand for individualized patient care. RECENT FINDINGS This review describes developments in the presentation of both diaphragm and limb myopathy in critical illness, as measured from muscle biopsy and at the bedside with various imaging and strength-testing modalities. The influence of unloading of the diaphragm with mechanical ventilation and peripheral muscles with immobilization in septic patients has been recently questioned. Systemic inflammation appears to primarily accelerate and accentuate dysfunction, which may be remedied by early mobilization and augmented with developing muscle and/or nerve stimulation techniques. SUMMARY Many acute muscle changes in septic patients are likely to stem from pre-existing impairments, which should provide context for clinical evaluations of strength. During illness, sarcolemmal injury promotes a cascade of intra-cellular abnormalities. As unique characteristics of ICU-acquired weakness and differential effects on muscle groups are understood, early diagnosis and management should be facilitated.
Collapse
Affiliation(s)
- Claire E Baldwin
- aInternational Centre for Allied Health Evidence and School of Health Sciences, University of South Australia, Adelaide bPhysiotherapy Department, Flinders Medical Centre, Bedford Park cDepartment of Critical Care Medicine, School of Medicine, Faculty of Health Sciences, Flinders University, Bedford Park dIntensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | |
Collapse
|
102
|
Jung B, Gleeton D, Daurat A, Conseil M, Mahul M, Rao G, Matecki S, Lacampagne A, Jaber S. Conséquences de la ventilation mécanique sur le diaphragme. Rev Mal Respir 2015; 32:370-80. [DOI: 10.1016/j.rmr.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023]
|
103
|
Wiggs MP. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 2015; 6:63. [PMID: 25814955 PMCID: PMC4356230 DOI: 10.3389/fphys.2015.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity -induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
104
|
Ahn B, Beaver T, Martin T, Hess P, Brumback BA, Ahmed S, Smith BK, Leeuwenburgh C, Martin AD, Ferreira LF. Phrenic nerve stimulation increases human diaphragm fiber force after cardiothoracic surgery. Am J Respir Crit Care Med 2015; 190:837-9. [PMID: 25271750 DOI: 10.1164/rccm.201405-0993le] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Bumsoo Ahn
- 1 University of Florida Gainesville, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Tang H, Smith IJ, Hussain SNA, Goldberg P, Lee M, Sugiarto S, Godinez GL, Singh BK, Payan DG, Rando TA, Kinsella TM, Shrager JB. The JAK-STAT pathway is critical in ventilator-induced diaphragm dysfunction. Mol Med 2015; 20:579-89. [PMID: 25286450 DOI: 10.2119/molmed.2014.00049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Mechanical ventilation (MV) is one of the lynchpins of modern intensive-care medicine and is life saving in many critically ill patients. Continuous ventilator support, however, results in ventilation-induced diaphragm dysfunction (VIDD) that likely prolongs patients' need for MV and thereby leads to major associated complications and avoidable intensive care unit (ICU) deaths. Oxidative stress is a key pathogenic event in the development of VIDD, but its regulation remains largely undefined. We report here that the JAK-STAT pathway is activated in MV in the human diaphragm, as evidenced by significantly increased phosphorylation of JAK and STAT. Blockage of the JAK-STAT pathway by a JAK inhibitor in a rat MV model prevents diaphragm muscle contractile dysfunction (by ~85%, p < 0.01). We further demonstrate that activated STAT3 compromises mitochondrial function and induces oxidative stress in vivo, and, interestingly, that oxidative stress also activates JAK-STAT. Inhibition of JAK-STAT prevents oxidative stress-induced protein oxidation and polyubiquitination and recovers mitochondrial function in cultured muscle cells. Therefore, in ventilated diaphragm muscle, activation of JAK-STAT is critical in regulating oxidative stress and is thereby central to the downstream pathogenesis of clinical VIDD. These findings establish the molecular basis for the therapeutic promise of JAK-STAT inhibitors in ventilated ICU patients.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Ira J Smith
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Sabah N A Hussain
- Critical Care Division, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Peter Goldberg
- Critical Care Division, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Myung Lee
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Sista Sugiarto
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Guillermo L Godinez
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Baljit K Singh
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Donald G Payan
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America.,Neurology Service, Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Todd M Kinsella
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| |
Collapse
|
106
|
Sollanek KJ, Smuder AJ, Wiggs MP, Morton AB, Koch LG, Britton SL, Powers SK. Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 2015; 118:849-57. [PMID: 25571991 DOI: 10.1152/japplphysiol.00797.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
Abstract
Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed "ventilator-induced diaphragm dysfunction" (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested the hypothesis that animals with a high intrinsic aerobic capacity would naturally be afforded protection against VIDD. To this end, animals were selectively bred over 33 generations to create two divergent strains, differing in aerobic capacity: high-capacity runners (HCR) and low-capacity runners (LCR). Both groups of animals were subjected to 12 h of MV and compared with nonventilated control animals within the same strains. As expected, contrasted to LCR animals, the diaphragm muscle from the HCR animals contained higher levels of oxidative enzymes (e.g., citrate synthase) and antioxidant enzymes (e.g., superoxide dismutase and catalase). Nonetheless, compared with nonventilated controls, prolonged MV resulted in significant diaphragmatic atrophy and impaired diaphragm contractile function in both the HCR and LCR animals, and the magnitude of VIDD did not differ between strains. In conclusion, these data demonstrate that possession of a high intrinsic aerobic capacity alone does not afford protection against VIDD. Importantly, these results suggest that endurance exercise training differentially alters the diaphragm phenotype to resist VIDD. Interestingly, levels of heat shock protein 72 did not differ between strains, thus potentially representing an important area of difference between animals with intrinsically high aerobic capacity and exercise-trained animals.
Collapse
Affiliation(s)
- Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| |
Collapse
|
107
|
Bowen TS, Mangner N, Werner S, Glaser S, Kullnick Y, Schrepper A, Doenst T, Oberbach A, Linke A, Steil L, Schuler G, Adams V. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation. J Appl Physiol (1985) 2014; 118:11-9. [PMID: 25359720 DOI: 10.1152/japplphysiol.00756.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heart failure induced by myocardial infarction (MI) causes diaphragm muscle weakness, with elevated oxidants implicated. We aimed to determine whether diaphragm muscle weakness is 1) early-onset post-MI (i.e., within the early left ventricular remodeling phase of 72 h); and 2) associated with elevated protein oxidation. Ligation of the left coronary artery to induce MI (n = 10) or sham operation (n = 10) was performed on C57BL6 mice. In vitro contractile function of diaphragm muscle fiber bundles was assessed 72 h later. Diaphragm mRNA and protein expression, enzyme activity, and individual carbonylated proteins (by two-dimensional differential in-gel electrophoresis and mass spectrometry) were subsequently assessed. Infarct size averaged 57 ± 1%. Maximal diaphragm function was reduced (P < 0.01) by 20% post-MI, with the force-frequency relationship depressed (P < 0.01) between 80 and 300 Hz. The mRNA expression of inflammation, atrophy, and regulatory Ca(2+) proteins remained unchanged post-MI, as did the protein expression of key contractile proteins. However, enzyme activity of the oxidative sources NADPH oxidase and xanthine oxidase was increased (P < 0.01) by 45 and 33%, respectively. Compared with sham, a 57 and 45% increase (P < 0.05) was observed in the carbonylation of sarcomeric actin and creatine kinase post-MI, respectively. In conclusion, diaphragm muscle weakness was rapidly induced in mice during the early left ventricular remodeling phase of 72 h post-MI, which was associated with increased oxidation of contractile and energetic proteins. Collectively, these findings suggest diaphragm muscle weakness may be early onset in heart failure, which is likely mediated in part by posttranslational oxidative modifications at the myofibrillar level.
Collapse
Affiliation(s)
- T Scott Bowen
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany;
| | - Norman Mangner
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Sarah Werner
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Stefanie Glaser
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Yvonne Kullnick
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University of Jena, Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, University of Jena, Jena, Germany
| | - Andreas Oberbach
- Department of Cardiac Surgery, Leipzig University-Heart Center, Leipzig, Germany; and
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Leif Steil
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gerhard Schuler
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, Germany
| |
Collapse
|
108
|
Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care 2014; 20:69-76. [PMID: 24335656 DOI: 10.1097/mcc.0000000000000055] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the most recent clinical and experimental data on the impact of spontaneous breathing in acute respiratory distress syndrome (ARDS). RECENT FINDINGS Spontaneous breathing during assisted as well as nonassisted modes of mechanical ventilation improves lung function and reduces lung damage in mild and moderate ARDS. New modes of assisted mechanical ventilation with improved patient ventilator interaction and enhanced variability of the respiratory pattern offer additional benefit on lung function and damage. However, data supporting an outcome benefit of spontaneous breathing in ARDS, even in its mild and moderate forms, are missing. In contrast, controlled mechanical ventilation with muscle paralysis in the first 48 h of severe ARDS has been shown to improve survival, as compared with placebo. Currently, it is unclear whether ventilator settings, rather than the severity of lung injury, determine the potential of spontaneous breathing for benefit or harm. SUMMARY Clinical and experimental studies show that controlled mechanical ventilation with muscle paralysis in the early phase of severe ARDS reduces lung injury and even mortality. At present, spontaneous breathing should be avoided in the early phase of severe ARDS, but considered in mild-to-moderate ARDS.
Collapse
|
109
|
Sassoon CSH, Zhu E, Fang L, Sieck GC, Powers SK. Positive end-expiratory airway pressure does not aggravate ventilator-induced diaphragmatic dysfunction in rabbits. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:494. [PMID: 25212227 PMCID: PMC4210557 DOI: 10.1186/s13054-014-0494-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/05/2014] [Indexed: 02/02/2023]
Abstract
Introduction Immobilization of hindlimb muscles in a shortened position results in an accelerated rate of inactivity-induced muscle atrophy and contractile dysfunction. Similarly, prolonged controlled mechanical ventilation (CMV) results in diaphragm inactivity and induces diaphragm muscle atrophy and contractile dysfunction. Further, the application of positive end-expiratory airway pressure (PEEP) during mechanical ventilation would result in shortened diaphragm muscle fibers throughout the respiratory cycle. Therefore, we tested the hypothesis that, compared to CMV without PEEP, the combination of PEEP and CMV would accelerate CMV-induced diaphragm muscle atrophy and contractile dysfunction. To test this hypothesis, we combined PEEP with CMV or with assist-control mechanical ventilation (AMV) and determined the effects on diaphragm muscle atrophy and contractile properties. Methods The PEEP level (8 cmH2O) that did not induce lung overdistension or compromise circulation was determined. In vivo segmental length changes of diaphragm muscle fiber were then measured using sonomicrometry. Sedated rabbits were randomized into seven groups: surgical controls and those receiving CMV, AMV or continuous positive airway pressure (CPAP) with or without PEEP for 2 days. We measured in vitro diaphragmatic force, diaphragm muscle morphometry, myosin heavy-chain (MyHC) protein isoforms, caspase 3, insulin-like growth factor 1 (IGF-1), muscle atrophy F-box (MAFbx) and muscle ring finger protein 1 (MuRF1) mRNA. Results PEEP shortened end-expiratory diaphragm muscle length by 15%, 14% and 12% with CMV, AMV and CPAP, respectively. Combined PEEP and CMV reduced tidal excursion of segmental diaphragm muscle length; consequently, tidal volume (VT) decreased. VT was maintained with combined PEEP and AMV. CMV alone decreased maximum tetanic force (Po) production by 35% versus control (P < 0.01). Combined PEEP and CMV did not decrease Po further. Po was preserved with AMV, with or without PEEP. Diaphragm muscle atrophy did not occur in any fiber types. Diaphragm MyHC shifted to the fast isoform in the combined PEEP and CMV group. In both the CMV and combined PEEP and CMV groups compared to controls, IGF-1 mRNAs were suppressed, whereas Caspase-3, MAFbx and MuRF1 mRNA expression were elevated. Conclusions Two days of diaphragm muscle fiber shortening with PEEP did not exacerbate CMV-induced diaphragm muscle dysfunction.
Collapse
|
110
|
Friedrich O, Yi B, Edwards JN, Reischl B, Wirth-Hücking A, Buttgereit A, Lang R, Weber C, Polyak F, Liu I, von Wegner F, Cully TR, Lee A, Most P, Völkers M. IL-1α reversibly inhibits skeletal muscle ryanodine receptor. a novel mechanism for critical illness myopathy? Am J Respir Cell Mol Biol 2014; 50:1096-106. [PMID: 24400695 DOI: 10.1165/rcmb.2013-0059oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Critical illness myopathies in patients with sepsis or sustained mechanical ventilation prolong intensive care treatment and threaten both patients and health budgets; no specific therapy is available. Underlying pathophysiological mechanisms are still patchy. We characterized IL-1α action on muscle performance in "skinned" muscle fibers using force transducers and confocal Ca(2+) fluorescence microscopy for force/Ca(2+) transients and Ca(2+) sparks. Association of IL-1α with sarcoplasmic reticulum (SR) release channel, ryanodine receptor (RyR) 1, was investigated with coimmunoprecipitation and confocal immunofluorescence colocalization. Membrane integrity was studied in single, intact fibers challenged with IL-1α. IL-1α reversibly stabilized Mg(2+) inhibition of Ca(2+) release. Low Mg(2+)-induced force and Ca(2+) transients were reversibly abolished by IL-1α. At normal Mg(2+), IL-1α reversibly increased caffeine-induced force and Ca(2+) transients. IL-1α reduced SR Ca(2+) leak via RyR1, as judged by (1) increased SR Ca(2+) retention, (2) increased IL-1α force transients being reproduced by 25 μM tetracaine, and (3) reduced Ca(2+) spark frequencies by IL-1α or tetracaine. Coimmunoprecipitation confirmed RyR1/IL-1 association. RyR1/IL-1 immunofluorescence patterns perfectly colocalized. Long-term, 8-hour IL-1α challenge of intact muscle fibers compromised membrane integrity in approximately 50% of fibers, and confirmed intracellular IL-1α deposition. IL-1α exerts a novel, specific, and reversible interaction mechanism with the skeletal muscle RyR1 macromolecular release complex without the need to act via its membrane IL-1 receptor, as IL-1R membrane expression levels were not detectable in Western blots or immunostaining of single fibers. We present a potential explanation of how the inflammatory mediator, IL-1α, may contribute to muscle weakness in critical illness.
Collapse
Affiliation(s)
- Oliver Friedrich
- 1 Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ichinoseki-Sekine N, Yoshihara T, Kakigi R, Sugiura T, Powers SK, Naito H. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy. J Appl Physiol (1985) 2014; 117:518-24. [PMID: 25059237 DOI: 10.1152/japplphysiol.00170.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm.
Collapse
Affiliation(s)
| | - Toshinori Yoshihara
- School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Ryo Kakigi
- School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yamaguchi, Yamaguchi, Japan; and
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Hisashi Naito
- School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
112
|
Age related differences in diaphragm muscle fiber response to mid/long term controlled mechanical ventilation. Exp Gerontol 2014; 59:28-33. [PMID: 24973500 DOI: 10.1016/j.exger.2014.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Critically ill intensive care patients are subjected to controlled mechanical ventilation (CMV) which has an important association in triggering the impaired muscle function and the consequent delayed weaning from the respirator. AIM The main aim of this study was to measure the effects of age and CMV over a period up to 5days on rat diaphragm muscle fibers, more specifically focusing on the changes in fiber structure and function. METHODS Diaphragm muscle fiber cross-sectional area (CSA) and force generating capacity were measured in young (6months) and old (28-32months) rats in response to five days of CMV. To investigate the biological age of the old rats in this rat strain (F344 BN hybrid), a second set of experiments comparing muscle fiber size and specific force (maximum force normalized to CSA) was investigated in fast- and slow-twitch distal hind limb muscles in 3 different age groups: young adults (6months), middle aged (18months) and old rats (28months). RESULTS This study shows an unexpected response of the diaphragm fibers to 5days CMV, demonstrating an increased CSA (p<0.001) in both young and old animals. Furthermore, an observed decreased maximum force of 39.8-45.2% (p<0.001) in both young and old animals compared with controls resulted in a dramatic loss of specific force. We suggest that this increase in CSA and decrease in specific force observed in both the young and old diaphragm fibers is an ineffective compensatory hypertrophy in response to the CMV. These results demonstrate an important mechanism of significant importance for the weaning problems associated with mechanical ventilation.
Collapse
|
113
|
Gao M, Liu D, Du Y, Sun R, Zhao L. Autophagy facilitates ventilator-induced lung injury partly through activation of NF-kappaB pathway. Med Sci Monit 2013; 19:1173-5. [PMID: 24343346 PMCID: PMC3871487 DOI: 10.12659/msm.889746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanical ventilation is an important supportive therapy in the intensive care unit (ICU) to assist the critically ill patients with respiratory failure. But longer ventilation time has been proven to contribute to the lung injury which has been recognized as ventilator-induced lung injury (VILI). Recently studies have suggested that NF-κB signaling pathways may play a critical role in the process of inflammation and autophagy, and autophagy can reduce the damage of VILI partly by activating the NF-κB pathways. Thus, we propose that autophagy may facilitate ventilator-induced lung injury partly through activation of NF-κB pathway, which might be a new potential therapeutic target for ventilator-induced lung injury. Although the exact mechanism of autophagy and its exact role in the VILI need to be further explored, at least it provides us a potential target in the future prevention of VILI.
Collapse
Affiliation(s)
- Min Gao
- Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (mainland)
| | - Donglei Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (mainland)
| | - Yuming Du
- Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (mainland)
| | - Rongqing Sun
- Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (mainland)
| | - Luosha Zhao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (mainland)
| |
Collapse
|
114
|
Gill LC, Ross HH, Lee KZ, Gonzalez-Rothi EJ, Dougherty BJ, Judge AR, Fuller DD. Rapid diaphragm atrophy following cervical spinal cord hemisection. Respir Physiol Neurobiol 2013; 192:66-73. [PMID: 24341999 DOI: 10.1016/j.resp.2013.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/07/2013] [Accepted: 12/06/2013] [Indexed: 01/20/2023]
Abstract
A cervical (C2) hemilesion (C2Hx), which disrupts ipsilateral bulbospinal inputs to the phrenic nucleus, was used to study diaphragm plasticity after acute spinal cord injury. We hypothesized that C2Hx would result in rapid atrophy of the ipsilateral hemidiaphragm and increases in mRNA expression of proteolytic biomarkers. Diaphragm tissue was harvested from male Sprague-Dawley rats at 1 or 7 days following C2Hx. Histological analysis demonstrated reduction in cross-sectional area (CSA) of type I and IIa fibers in the ipsilateral hemidiaphragm at 1 but not 7 days. Type IIb/x fibers, however, had reduced CSA at 1 and 7 days. A targeted gene array was used to screen mRNA changes for genes associated with skeletal muscle myopathy and myogenesis; this was followed by qRT-PCR validation. Changes in diaphragm gene expression suggested that profound myoplasticity is initiated immediately following C2Hx including activation of both proteolytic and myogenic pathways. We conclude that an immediate myoplastic response occurs in the diaphragm after C2Hx with atrophy occurring in ipsilateral myofibers within 1 day.
Collapse
Affiliation(s)
- L C Gill
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - H H Ross
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - K Z Lee
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - E J Gonzalez-Rothi
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - B J Dougherty
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - A R Judge
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - D D Fuller
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States.
| |
Collapse
|
115
|
Preserving spontaneous breathing during mechanical ventilatory support: an old yet fascinating story. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:1013. [PMID: 24245610 PMCID: PMC4056584 DOI: 10.1186/cc13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Facilitation of early spontaneous breathing activity is the most important measure to shorten weaning and avoid ventilator-induced lung injury and diaphragmatic injury in mechanically ventilated patients. However, the optimal degree of spontaneous muscle activity and ventilator support remains to be determined. Furthermore, effectiveness in relation to the pathophysiology of respiratory failure is unclear. In this regard the experimental study by Saddy and colleagues reveals interesting insights into the pathophysiology of ventilator-induced injury. More important, their results raise important questions that should be evaluated in further studies.
Collapse
|