101
|
Naro C, Barbagallo F, Chieffi P, Bourgeois CF, Paronetto MP, Sette C. The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Res 2014; 42:3218-27. [PMID: 24369428 PMCID: PMC3950702 DOI: 10.1093/nar/gkt1307] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022] Open
Abstract
NEK2 is a serine/threonine kinase that promotes centrosome splitting and ensures correct chromosome segregation during the G2/M phase of the cell cycle, through phosphorylation of specific substrates. Aberrant expression and activity of NEK2 in cancer cells lead to dysregulation of the centrosome cycle and aneuploidy. Thus, a tight regulation of NEK2 function is needed during cell cycle progression. In this study, we found that NEK2 localizes in the nucleus of cancer cells derived from several tissues. In particular, NEK2 co-localizes in splicing speckles with SRSF1 and SRSF2. Moreover, NEK2 interacts with several splicing factors and phosphorylates some of them, including the oncogenic SRSF1 protein. Overexpression of NEK2 induces phosphorylation of endogenous SR proteins and affects the splicing activity of SRSF1 toward reporter minigenes and endogenous targets, independently of SRPK1. Conversely, knockdown of NEK2, like that of SRSF1, induces expression of pro-apoptotic variants from SRSF1-target genes and sensitizes cells to apoptosis. Our results identify NEK2 as a novel splicing factor kinase and suggest that part of its oncogenic activity may be ascribed to its ability to modulate alternative splicing, a key step in gene expression regulation that is frequently altered in cancer cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Psychology, II University of Naples, Caserta, Italy, Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, F-67400, INSERM U964, F-67400 Illkirch, France and Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Federica Barbagallo
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Psychology, II University of Naples, Caserta, Italy, Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, F-67400, INSERM U964, F-67400 Illkirch, France and Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Chieffi
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Psychology, II University of Naples, Caserta, Italy, Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, F-67400, INSERM U964, F-67400 Illkirch, France and Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cyril F. Bourgeois
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Psychology, II University of Naples, Caserta, Italy, Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, F-67400, INSERM U964, F-67400 Illkirch, France and Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Maria Paola Paronetto
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Psychology, II University of Naples, Caserta, Italy, Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, F-67400, INSERM U964, F-67400 Illkirch, France and Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Psychology, II University of Naples, Caserta, Italy, Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, F-67400, INSERM U964, F-67400 Illkirch, France and Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| |
Collapse
|
102
|
Almeida LO, Garcia CB, Matos-Silva FA, Curti C, Leopoldino AM. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation. Biochem Biophys Res Commun 2014; 445:196-202. [PMID: 24508256 DOI: 10.1016/j.bbrc.2014.01.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.
Collapse
Affiliation(s)
- Luciana O Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiana B Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flavia A Matos-Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréia M Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
103
|
Sette C. Alternative splicing programs in prostate cancer. Int J Cell Biol 2013; 2013:458727. [PMID: 23983695 PMCID: PMC3747374 DOI: 10.1155/2013/458727] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) remains one of the most frequent causes of death for cancer in the male population. Although the initial antiandrogenic therapies are efficacious, PCa often evolves into a hormone-resistant, incurable disease. The genetic and phenotypic heterogeneity of this type of cancer renders its diagnosis and cure particularly challenging. Mounting evidence indicates that alternative splicing, the process that allows production of multiple mRNA variants from each gene, contributes to the heterogeneity of the disease. Key genes for the biology of normal and neoplastic prostate cells, such as those encoding for the androgen receptor and cyclin D1, are alternatively spliced to yield protein isoforms with different or even opposing functions. This review illustrates some examples of genes whose alternative splicing regulation is relevant to PCa biology and discusses the possibility to exploit alternative splicing regulation as a novel tool for prognosis, diagnosis, and therapeutic approaches to PCa.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|