101
|
Zhao H, Pflug BR, Lai X, Wang M. Metabolic and molecular regulation of dietary polyunsaturated fatty acids on prostate cancer. Proteomics Clin Appl 2015; 10:267-79. [DOI: 10.1002/prca.201500066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Heng Zhao
- Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Beth R. Pflug
- Department of Medicine, Division of Clinical Pharmacology; Indiana University School of Medicine; Indianapolis IN USA
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis IN USA
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN USA
| | - Mu Wang
- Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis IN USA
| |
Collapse
|
102
|
Hwang WM, Bak DH, Kim DH, Hong JY, Han SY, Park KY, Lim K, Lim DM, Kang JG. Omega-3 Polyunsaturated Fatty Acids May Attenuate Streptozotocin-Induced Pancreatic β-Cell Death via Autophagy Activation in Fat1 Transgenic Mice. Endocrinol Metab (Seoul) 2015; 30:569-75. [PMID: 26790385 PMCID: PMC4722413 DOI: 10.3803/enm.2015.30.4.569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/18/2015] [Accepted: 04/28/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Inflammatory factors and β-cell dysfunction due to high-fat diets aggravate chronic diseases and their complications. However, omega-3 dietary fats have anti-inflammatory effects, and the involvement of autophagy in the etiology of diabetes has been reported. Therefore, we examined the protective effects of autophagy on diabetes using fat-1 transgenic mice with omega-3 self-synthesis capability. METHODS Streptozotocin (STZ) administration induced β-cell dysfunction in mice; blood glucose levels and water consumption were subsequently measured. Using hematoxylin and eosin (H&E) and Masson's trichrome staining, we quantitatively assessed STZ-induced changes in the number, mass, and fibrosis of pancreatic islets in fat-1 and control mice. We identified the microtubule-associated protein 1A/1B light chain 3-immunoreactive puncta in β-cells and quantified p62 levels in the pancreas of fat-1 and control mice. RESULTS STZ-induced diabetic phenotypes, including hyperglycemia and polydipsia, were attenuated in fat-1 mice. Histological determination using H&E and Masson's trichrome staining revealed the protective effects of the fat-1 expression on cell death and the scarring of pancreatic islets after STZ injection. In the β-cells of control mice, autophagy was abruptly activated after STZ treatment. Basal autophagy levels were elevated in fat-1 mice β-cells, and this persisted after STZ treatment. Together with autophagosome detection, these results revealed that n-3 polyunsaturated fatty acid (PUFA) enrichment might partly prevent the STZ-related pancreatic islet damage by upregulating the basal activity of autophagy and improving autophagic flux disturbance. CONCLUSION Fat-1 transgenic mice with a n-3 PUFA self-synthesis capability exert protective effects against STZ-induced β-cell death by activating autophagy in β-cells.
Collapse
Affiliation(s)
- Won Min Hwang
- Division of Nephrology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
- Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
| | - Dong Ho Bak
- Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Dong Ho Kim
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Ju Young Hong
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Seung Yun Han
- Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Keun Young Park
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Kyu Lim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
- Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dong Mee Lim
- Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea.
| | - Jae Gu Kang
- Myunggok Research Institute, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
103
|
ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease. Nutrition 2015; 31:1423-1429.e2. [PMID: 26429665 DOI: 10.1016/j.nut.2015.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/07/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023]
|
104
|
Zhao J, Dong JN, Wang HG, Zhao M, Sun J, Zhu WM, Zuo LG, Gong JF, Li Y, Gu LL, Li N, Li JS. Docosahexaenoic Acid Attenuated Experimental Chronic Colitis in Interleukin 10-Deficient Mice by Enhancing Autophagy Through Inhibition of the mTOR Pathway. JPEN J Parenter Enteral Nutr 2015; 41:824-829. [PMID: 26407598 DOI: 10.1177/0148607115609308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the battle against Crohn's disease, autophagy stimulation is a promising therapeutic option-one both new and newly rediscovered. In experimental models, docosahexaenoic acid (DHA)-a long-chain polyunsaturated fatty acid-has been demonstrated to be useful in the treatment of inflammatory bowel disease through inhibition of the nuclear factor-κB pathway. However, the impact of DHA on autophagy in the colon remains unclear. METHODS Mice were divided into 3 groups: wild type (placebo), the interleukin 10 knockout group (IL-10-/-, placebo), and the DHA group (IL-10-/-, DHA). DHA was administered to IL-10-/- mice by gavage at a dosage of 35.5 mg/kg/d for 2 weeks. The severity of colitis, expression of proinflammatory cytokines, expression/distribution of LC3B, and mTOR signaling pathway were evaluated in the proximal colon tissues collected from all mice at the end of the experiment. RESULTS DHA administration ameliorated experimental colitis in the IL-10-/- mice, as demonstrated by decreased proinflammatory cytokines (TNF-α and IFN-γ), reduced infiltration of inflammatory cells, and lowered histologic scores of the proximal colon mucosa. Moreover, in the DHA-treated mice, enhanced autophagy was observed to be associated with (1) increased expression and restoration of the distribution integrity of LC3B in the colon and (2) inhibition of the mTOR signaling pathway. CONCLUSION This study showed that DHA therapy could attenuate experimental chronic colitis in IL-10-/- mice by triggering autophagy via inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Jie Zhao
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian-Ning Dong
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong-Gang Wang
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingli Zhao
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Sun
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Ming Zhu
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu-Gen Zuo
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian-Feng Gong
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li-Li Gu
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Li
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie-Shou Li
- 1 Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
105
|
Zajdel A, Wilczok A, Tarkowski M. Toxic effects of n-3 polyunsaturated fatty acids in human lung A549 cells. Toxicol In Vitro 2015; 30:486-91. [PMID: 26381084 DOI: 10.1016/j.tiv.2015.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/30/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) are crucial for the prevention of lung cancer. PUFAs may act through alteration of membrane fluidity and cell surface receptor functions; modulation of cyclooxygenase activity; and increased cellular oxidative stress, which may induce apoptosis and autophagy. Therefore the aim of the study was to investigate whether EPA and DHA (25-100 μM) are able to reduce human lung cancer cell growth through oxidative stress influence on autophagy and apoptosis. It was found that both EPA and DHA in the concentration-dependent manner suppressed the cell viability, enhanced cell death, induced activation of caspase-3/7 and potentiated intracellular oxidative DNA and protein damage. In response to PUFAs intracellular autophagic vacuolization occurred and the observed effect was reverted when the autophagy inhibitor 3-methyladenine (3-MA) was applied. The inhibition of the autophagic process enhanced the cell viability, suppressed cell death, and decreased activation of caspase-3/7 indicating that EPA and DHA-induced autophagy amplified A549 apoptotic cell death.
Collapse
Affiliation(s)
- Alicja Zajdel
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Sosnowiec, Poland.
| | - Adam Wilczok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Sosnowiec, Poland
| | - Michał Tarkowski
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biopharmacy, Sosnowiec, Poland
| |
Collapse
|
106
|
Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One 2015; 10:e0136542. [PMID: 26325577 PMCID: PMC4556657 DOI: 10.1371/journal.pone.0136542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.
Collapse
|
107
|
Docosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:239764. [PMID: 26339598 PMCID: PMC4538321 DOI: 10.1155/2015/239764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/07/2023]
Abstract
The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs) have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA), a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC) cells. DHA-induced cell death was accompanied by AMP-activated protein kinase (AMPK) activation and inactivated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling. Knocking down AMPK and overexpressing Akt increased mTOR activity and attenuated DHA-induced cell death, suggesting that DHA induces cell death via AMPK- and Akt-regulated mTOR inactivation. This was confirmed in Fat-1 transgenic mice, which produce ω3-PUFAs. Lewis lung cancer (LLC) tumor cells implanted into Fat-1 mice showed slower growth, lower phospho-Akt levels, and higher levels of apoptosis and autophagy than cells implanted into wild-type mice. Taken together, these data suggest that DHA-induced apoptosis and autophagy in NSCLC cells are associated with AMPK activation and PI3K/Akt inhibition, which in turn lead to suppression of mTOR; thus ω3-PUFAs may be utilized as potential therapeutic agents for NSCLC treatment.
Collapse
|
108
|
Sharma G, Rani I, Bhatnagar A, Agnihotri N. Documentation of Ultrastructural Changes in Nucleus and Microvilli by Fish Oil in Experimental Colon Carcinogenesis. Ultrastruct Pathol 2015. [PMID: 26213844 DOI: 10.3109/01913123.2015.1048914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fish oil (FO) exerts a chemopreventive effect by regulating apoptosis in colon carcinogenesis. The present study reports the ultrastructural changes in various organelles on supplementation of FO in experimental colon carcinogenesis. The carcinogen treatment led to abnormal nuclear shape and alteration in microvilli number indicating cancer establishment. On the other hand, different ratios of FO and corn oil increased chromatin condensation along with an extensive loss of microvilli in a dose- and time-dependent manner which depicts an increase in apoptosis. The associated ultrastuctural alterations support the facilitation of apoptosis by FO as a mechanism for its beneficial effect in colon carcinogenesis.
Collapse
Affiliation(s)
- Gayatri Sharma
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| | - Isha Rani
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| | - Archana Bhatnagar
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| | - Navneet Agnihotri
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| |
Collapse
|
109
|
Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci Rep 2015; 5:11398. [PMID: 26096816 PMCID: PMC4476041 DOI: 10.1038/srep11398] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/22/2015] [Indexed: 12/14/2022] Open
Abstract
Gold nanorods are a promising nanoscale material in clinical diagnosis and treatment. The physicochemical properties of GNRs, including size, shape and surface features, are crucial factors affecting their cytotoxicity. In this study, we investigated the effects of different aspect ratios and surface modifications on the cytotoxicity and cellular uptake of GNRs in cultured cells and in mice. The results indicated that the surface chemistry but not the aspect ratio of GNRs mediates their biological toxicity. CTAB-GNRs with various aspect ratios had similar abilities to induce cell apoptosis and autophagy by damaging mitochondria and activating intracellular reactive oxygen species (ROS). However, GNRs coated with CTAB/PSS, CTAB/PAH, CTAB/PSS/PAH or CTAB/PAH/PSS displayed low toxicity and did not induce cell death. CTAB/PAH-coated GNRs caused minimally abnormal cell morphology compared with CTAB/PSS and CTAB/PSS/PAH coated GNRs. Moreover, the intravenous injection of CTAB/PAH GNRs enabled the GNRs to reach tumor tissues through blood circulation in animals and remained stable, with a longer half-life compared to the other GNRs. Therefore, our results demonstrated that further coating can prevent cytotoxicity and cell death upon CTAB-coated GNR administration, similar to changing the GNR aspect ratio and CTAB/PAH coated GNRs show superior biological properties with better biocompatibility and minimal cytotoxicity.
Collapse
|
110
|
Chayboun I, Boulifa E, Mansour AI, Rodriguez-Serrano F, Carrasco E, Alvarez PJ, Chahboun R, Alvarez-Manzaneda E. First enantiospecific syntheses of marine merosesquiterpenes neopetrosiquinones a and B: evaluation of biological activity. JOURNAL OF NATURAL PRODUCTS 2015; 78:1026-1036. [PMID: 25906329 DOI: 10.1021/np500975b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The first enantiospecific syntheses of neopetrosiquinones A (6) and B (7), two merosesquiterpenes isolated from the deep-water sponge Neopetrosia cf. proxima, from the labdane diterpene trans-communic acid (10) have been achieved. A key step of the synthetic sequence is the simultaneous aromatization of the C ring and the benzylic oxidation on C-7 of an advanced intermediate, mediated by the oxygen-DDQ system. The in vitro antiproliferative activities of neopetrosiquinone B (7) and of the synthetic intermediates 8 and 9 against human breast (MCF-7), lung (A-549), and colon (T-84) tumor cell lines have been assayed. The most potent was compound 9 (IC50 = 4.1 μM), which was twice as active as natural compound 7 (IC50 = 8.3 μM) against A-549 cells. In addition, the treatment with these compounds resulted in an induction of apoptosis. These findings indicate that the terpene benzoquinones reported here might be potentially useful as anticancer agents.
Collapse
Affiliation(s)
- Ikram Chayboun
- †Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Abdelmalek Essaâdi, Tetouan, Morocco
| | - Ettahir Boulifa
- †Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Abdelmalek Essaâdi, Tetouan, Morocco
| | - Ahmed Ibn Mansour
- †Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Abdelmalek Essaâdi, Tetouan, Morocco
| | | | | | | | | | | |
Collapse
|
111
|
Coenzyme Q10 inhibits the aging of mesenchymal stem cells induced by D-galactose through Akt/mTOR signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:867293. [PMID: 25789082 PMCID: PMC4348608 DOI: 10.1155/2015/867293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 12/14/2022]
Abstract
Increasing evidences indicate that reactive oxygen species are the main factor promoting stem cell aging. Recent studies have demonstrated that coenzyme Q10 (CoQ10) plays a positive role in organ and cellular aging. However, the potential for CoQ10 to protect stem cell aging has not been fully evaluated, and the mechanisms of cell senescence inhibited by CoQ10 are still poorly understood. Our previous study had indicated that D-galactose (D-gal) can remarkably induce mesenchymal stem cell (MSC) aging through promoting intracellular ROS generation. In this study, we showed that CoQ10 could significantly inhibit MSC aging induced by D-gal. Moreover, in the CoQ10 group, the expression of p-Akt and p-mTOR was clearly reduced compared with that in the D-gal group. However, after Akt activating by CA-Akt plasmid, the senescence-cell number in the CoQ10 group was significantly higher than that in the control group. These results indicated that CoQ10 could inhibit D-gal-induced MSC aging through the Akt/mTOR signaling.
Collapse
|
112
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
113
|
Pacheco FJ, Almaguel FG, Evans W, Rios-Colon L, Filippov V, Leoh LS, Rook-Arena E, Mediavilla-Varela M, De Leon M, Casiano CA. Docosahexanoic acid antagonizes TNF-α-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features. Inflamm Res 2014; 63:859-71. [PMID: 25095742 DOI: 10.1007/s00011-014-0760-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 06/02/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE It was previously reported that docosahexanoic acid (DHA) reduces TNF-α-induced necrosis in L929 cells. However, the mechanisms underlying this reduction have not been investigated. The present study was designed to investigate cellular and biochemical mechanisms underlying the attenuation of TNF-α-induced necroptosis by DHA in L929 cells. METHODS L929 cells were pre-treated with DHA prior to exposure to TNF-α, zVAD, or Necrostatin-1 (Nec-1). Cell death and survival were assessed by MTT and caspase activity assays, and microscopic visualization. Reactive oxygen species (ROS) were measured by flow cytometry. C16- and C18-ceramides were measured by mass spectrometry. Lysosomal membrane permeabilization (LMP) was evaluated by fluorescence microscopy and flow cytometry using Acridine Orange. Cathepsin L activation was evaluated by immunoblotting and fluorescence microscopy. Autophagy was assessed by immunoblotting of LC3-II and Beclin. RESULTS Exposure of L929 cells to TNF-α alone for 24 h induced necroptosis, as evidenced by the inhibition of cell death by Nec-1, absence of caspase-3 activity and Lamin B cleavage, and morphological analysis. DHA attenuated multiple biochemical events associated with TNF-α-induced necroptosis, including ROS generation, ceramide production, lysosomal dysfunction, cathepsin L activation, and autophagic features. DHA also attenuated zVAD-induced necroptosis but did not attenuate the enhanced apoptosis and necrosis induced by the combination of TNF-α with Actinomycin D or zVAD, respectively, suggesting that its protective effects might be limited by the strength of the cell death insult induced by TNF-α. CONCLUSIONS DHA effectively attenuates TNF-α-induced necroptosis and autophagy, most likely via its ability to inhibit TNF-α-induced sphingolipid metabolism and oxidative stress. These results highlight the role of this Omega-3 fatty acid in antagonizing inflammatory cell death.
Collapse
Affiliation(s)
- Fabio J Pacheco
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Patterson WL, Georgel PT. Breaking the cycle: the role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers. Biochem Cell Biol 2014; 92:321-8. [PMID: 25098909 DOI: 10.1139/bcb-2013-0127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is a cyclical, self-stimulating process. Immune cells called to sites of inflammation release pro-inflammatory signaling molecules that stimulate activation of inducible enzymes and transcription factors. These enzymes and transcription factors then stimulate production of signaling molecules that attract more immune cells and induce more enzymatic and transcriptional activity, creating a perpetual loop of inflammation. This self-renewing pool of inflammatory stimuli makes for an ideal tumor microenvironment, and chronic inflammation has been linked to oncogenesis, tumor growth, tumor cell survival, and metastasis. Three protein pathways in particular, nuclear factor kappa B (NF-kB), cyclooxygenase (COX), and lipoxygenase (LOX), provide excellent examples of the cyclical, self-renewing nature of chronic inflammation-driven cancers. NF-kB is an inducible transcription factor responsible for the expression of a vast number of inflammation and cancer related genes. COX and LOX convert omega-6 (n-6) and omga-3 (n-3) polyunsaturated fatty acids (PUFA) into pro- and anti-inflammatory signaling molecules. These signaling molecules stimulate or repress activity of all three of these pathways. In this review, we will discuss the pro- and anti-inflammatory functions of these fatty acids and their role in chronic inflammation and cancer progression.
Collapse
Affiliation(s)
- William L Patterson
- a Byrd Biotechnology Science Center, Department of Biochemistry and Microbiology, Marshall University School of Medicine, 1700 3rd Avenue. Huntington, WV 25755, USA
| | | |
Collapse
|
116
|
Jeong S, Jing K, Kim N, Shin S, Kim S, Song KS, Heo JY, Park JH, Seo KS, Han J, Wu T, Kweon GR, Park SK, Park JI, Lim K. Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. BMC Cancer 2014; 14:481. [PMID: 24993937 PMCID: PMC4094407 DOI: 10.1186/1471-2407-14-481] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/30/2014] [Indexed: 11/27/2022] Open
Abstract
Background The role of omega-3 polyunsaturated fatty acids (ω3-PUFAs) in cancer prevention has been demonstrated; however, the exact molecular mechanisms underlying the anticancer activity of ω3-PUFAs are not fully understood. Here, we investigated the relationship between the anticancer action of a specific ω3-PUFA docosahexaenoic acid (DHA), and the conventional mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK) and p38 whose dysregulation has been implicated in human cancers. Methods MTT assays were carried out to determine cell viability of cancer cell lines (PA-1, H1299, D54MG and SiHa) from different origins. Apoptosis was confirmed by TUNEL staining, DNA fragmentation analysis and caspase activity assays. Activities of the conventional MAPKs were monitored by their phosphorylation levels using immunoblotting and immunocytochemistry analysis. Reactive oxygen species (ROS) production was measured by flow cytometry and microscopy using fluorescent probes for general ROS and mitochondrial superoxide. Results DHA treatment decreased cell viability and induced apoptotic cell death in all four studied cell lines. DHA-induced apoptosis was coupled to the activation of the conventional MAPKs, and knockdown of ERK/JNK/p38 by small interfering RNAs reduced the apoptosis induced by DHA, indicating that the pro-apoptotic effect of DHA is mediated by MAPKs activation. Further study revealed that the DHA-induced MAPKs activation and apoptosis was associated with mitochondrial ROS overproduction and malfunction, and that ROS inhibition remarkably reversed these effects of DHA. Conclusion Together, these results indicate that DHA-induced MAPKs activation is dependent on its capacity to provoke mitochondrial ROS generation, and accounts for its cytotoxic effect in human cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kyu Lim
- Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon 301-747, Korea.
| |
Collapse
|
117
|
Lin Z, Liu T, Kamp DW, Wang Y, He H, Zhou X, Li D, Yang L, Zhao B, Liu G. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy. Free Radic Biol Med 2014; 72:296-307. [PMID: 24735948 PMCID: PMC4075764 DOI: 10.1016/j.freeradbiomed.2014.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/21/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting these signaling pathways in the management of asbestos-induced lung disease.
Collapse
Affiliation(s)
- Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Tie Liu
- Department of Hematology, The Second Affiliated Hospital, Medical School of Xi׳an Jiaotong University, Xi׳an 710004, Shanxi, China
| | - David W Kamp
- Department of Medicine, Northwestern University Feinberg School of Medicine, and Jesse Brown VA Medical Center, Chicago, IL 60611, USA.
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Huijuan He
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Donghong Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Bin Zhao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China.
| |
Collapse
|
118
|
Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C, Kehrl JH. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One 2014; 9:e97957. [PMID: 24911523 PMCID: PMC4049592 DOI: 10.1371/journal.pone.0097957] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/25/2014] [Indexed: 01/12/2023] Open
Abstract
The omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR) 4 (also known as GPR120), a G-protein coupled receptor (GPR) known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.
Collapse
Affiliation(s)
- Yolanda Williams-Bey
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cedric Boularan
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ali Vural
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ning-Na Huang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chong Shan-Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|