101
|
Leko V, McDuffie LA, Zheng Z, Gartner JJ, Prickett TD, Apolo AB, Agarwal PK, Rosenberg SA, Lu YC. Identification of Neoantigen-Reactive Tumor-Infiltrating Lymphocytes in Primary Bladder Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3458-3467. [PMID: 31036766 PMCID: PMC6548619 DOI: 10.4049/jimmunol.1801022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors are effective in treating a variety of malignancies, including metastatic bladder cancer. A generally accepted hypothesis suggests that immune checkpoint inhibitors induce tumor regressions by reactivating a population of endogenous tumor-infiltrating lymphocytes (TILs) that recognize cancer neoantigens. Although previous studies have identified neoantigen-reactive TILs from several types of cancer, no study to date has shown whether neoantigen-reactive TILs can be found in bladder tumors. To address this, we generated TIL cultures from patients with primary bladder cancer and tested their ability to recognize tumor-specific mutations. We found that CD4+ TILs from one patient recognized mutated C-terminal binding protein 1 in an MHC class II-restricted manner. This finding suggests that neoantigen-reactive TILs reside in bladder cancer, which may help explain the effectiveness of immune checkpoint blockade in this disease and also provides a rationale for the future use of adoptive T cell therapy targeting neoantigens in bladder cancer.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20982
| | - Lucas A McDuffie
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yong-Chen Lu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
102
|
Schober K, Müller TR, Gökmen F, Grassmann S, Effenberger M, Poltorak M, Stemberger C, Schumann K, Roth TL, Marson A, Busch DH. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat Biomed Eng 2019; 3:974-984. [DOI: 10.1038/s41551-019-0409-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
|
103
|
Clauss J, Obenaus M, Miskey C, Ivics Z, Izsvák Z, Uckert W, Bunse M. Efficient Non-Viral T-Cell Engineering by Sleeping Beauty Minicircles Diminishing DNA Toxicity and miRNAs Silencing the Endogenous T-Cell Receptors. Hum Gene Ther 2019; 29:569-584. [PMID: 29562762 DOI: 10.1089/hum.2017.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transposon-based vectors have entered clinical trials as an alternative to viral vectors for genetic engineering of T cells. However, transposon vectors require DNA transfection into T cells, which were found to cause adverse effects. T-cell viability was decreased in a dose-dependent manner, and DNA-transfected T cells showed a delayed response upon T-cell receptor (TCR) stimulation with regard to blast formation, proliferation, and surface expression of CD25 and CD28. Gene expression analysis demonstrated a DNA-dependent induction of a type I interferon response and interferon-β upregulation. By combining Sleeping Beauty transposon minicircle vectors with SB100X transposase-encoding RNA, it was possible to reduce the amount of total DNA required, and stable expression of therapeutic TCRs was achieved in >50% of human T cells without enrichment. The TCR-engineered T cells mediated effective tumor cell killing and cytokine secretion upon antigen-specific stimulation. Additionally, the Sleeping Beauty transposon system was further improved by miRNAs silencing the endogenous TCR chains. These miRNAs increased the surface expression of the transgenic TCR, diminished mispairing with endogenous TCR chains, and enhanced antigen-specific T-cell functionality. This approach facilitates the rapid non-viral generation of highly functional, engineered T cells for immunotherapy.
Collapse
Affiliation(s)
- Julian Clauss
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| | - Matthias Obenaus
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,2 Charité Universitätsmedizin Berlin , Campus Virchow-Klinikum, Berlin, Germany
| | - Csaba Miskey
- 3 Division of Medical Biotechnology, Paul Ehrlich-Institut , Langen, Germany
| | - Zoltán Ivics
- 3 Division of Medical Biotechnology, Paul Ehrlich-Institut , Langen, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany
| | - Wolfgang Uckert
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany .,5 Institute of Biology, Humboldt-Universität zu Berlin , Berlin, Germany
| | - Mario Bunse
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
104
|
An Ig Transmembrane Domain Motif Improves the Function of TCRs Transduced in Human T Cells: Implications for Immunotherapy. J Immunother 2019; 42:97-109. [PMID: 30865026 DOI: 10.1097/cji.0000000000000259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adoptive transfer of T lymphocytes (ACT) engineered with T-cell receptors (TCRs) of known antitumor specificity is an effective therapeutic strategy. However, a major constraint of ACT is the unpredictable interference of the endogenous TCR α and β chains in pairing of the transduced TCR. This effect reduces the efficacy of the genetically modified primary T cells and carries the risk of generating novel TCR reactivities with unintended functional consequences. Here, we show a powerful approach to overcome these limitations. We engineered TCR α and β chains with mutations encompassing a conserved motif (FXXXFXXS) required to stabilize the pairing of immunoglobulin heavy chain transmembrane domains. Molecular modeling supported the preferential pairing of mutated TCR and impaired pairing between mutated and wild-type TCRs. Expression of the mutated TCR was similar to wild type and conferred the expected specificity. Fluorescence resonance energy transfer analysis in mouse splenocytes transduced with mutated or wild-type TCRs showed a higher proximity of the former over the latter. Importantly, we show that mutated TCRs effectively outcompete endogenous TCRs and improve in vitro antitumor cytotoxicity when expressed in ex vivo isolated human T cells. This approach should contribute to improving current protocols of anticancer immunetherapy protocols.
Collapse
|
105
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
106
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019; 565:240-245. [PMID: 30568303 DOI: 10.1038/s41586-018-0810-y] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.
Collapse
Affiliation(s)
- Norbert Hilf
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | - Stefan Stevanović
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
| | - Cécile Gouttefangeas
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Michael Platten
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
- Medical Faculty Mannheim, Mannheim, Germany
| | - Ghazaleh Tabatabai
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
- University Hospital Tübingen, Tübingen, Germany
| | | | - Sjoerd H van der Burg
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Leiden University Medical Center, Leiden, The Netherlands
| | - Per Thor Straten
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Hideho Okada
- University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Arie Admon
- Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | - Sebastian Kreiter
- BioNTech AG, Mainz, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Andreas von Deimling
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | | | | | - Judith R Kroep
- Leiden University Medical Center, Leiden, The Netherlands
| | - Manja Idorn
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Rodon
- Vall d'Hebron University Hospital, Barcelona, Spain
- M. D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | | | | | | | | | | | | | - Monika Stieglbauer
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Cedrik M Britten
- BioNTech AG, Mainz, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Oncology R&D, GlaxoSmithKline, Stevenage, UK
| | - David Capper
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
- Charité, University Medicine Berlin, Berlin, Germany
| | - Marij J P Welters
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Elisa Rusch
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Lukas Bunse
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Colette Song
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | - Jörg Ludwig
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - John C Castle
- BioNTech AG, Mainz, Germany
- Agenus Inc., Lexington, KY, USA
| | | | - Arbel D Tadmor
- TRON GmbH - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Edward Green
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
- Medical Faculty Mannheim, Mannheim, Germany
| | | | - Miriam Meyer
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | - Sonja Dorner
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | | | | | | | - Hans-Georg Rammensee
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
| | | | | | | | - Wolfgang Wick
- University Hospital Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
107
|
Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. LAB ON A CHIP 2018; 18:3733-3749. [PMID: 30397689 PMCID: PMC6279597 DOI: 10.1039/c8lc00818c] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adoptive T cell transfer, in particular TCR T cell therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, finding the right TCR T cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest. Here, we use droplet microfluidics for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells. Notably, our platform includes a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. Our TCR screening prototype will facilitate immunotherapeutic screening and development of T cell therapies.
Collapse
MESH Headings
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Equipment Design
- Humans
- Immunotherapy, Adoptive
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Aude I. Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Ci Ren
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Xiaoming Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Jessica K. Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Guikai Wu
- Amberstone Biosciences LLC, Irvine, CA 92617, U.S.A
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| |
Collapse
|
108
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
109
|
Zamora AE, Crawford JC, Thomas PG. Hitting the Target: How T Cells Detect and Eliminate Tumors. THE JOURNAL OF IMMUNOLOGY 2018; 200:392-399. [PMID: 29311380 DOI: 10.4049/jimmunol.1701413] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
The successes of antitumor immuno-based therapies and the application of next-generation sequencing to mutation profiling have produced insights into the specific targets of antitumor T cells. Mutated proteins have tremendous potential as targets for interventions using autologous T cells or engineered cell therapies and may serve as important correlates of efficacy for immunoregulatory interventions including immune checkpoint blockade. As mutated self, tumors present an exceptional case for host immunity, which has primarily evolved in response to foreign pathogens. Tumor Ags' resemblance to self may limit immune recognition, but key features appear to be the same between antipathogen and antitumor responses. Determining which targets will make efficacious Ags and which responses might be elicited therapeutically are key questions for the field. Here we discuss current knowledge on antitumor specificity, the mutations that provide immunogenic targets, and how cross-reactivity and immunodominance may contribute to variation in immune responses among tumor types.
Collapse
Affiliation(s)
- Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
110
|
Jin BY, Campbell TE, Draper LM, Stevanović S, Weissbrich B, Yu Z, Restifo NP, Rosenberg SA, Trimble CL, Hinrichs CS. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 2018; 3:99488. [PMID: 29669936 DOI: 10.1172/jci.insight.99488] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) T cell therapy is a promising cancer treatment modality. However, its successful development for epithelial cancers may depend on the identification of high-avidity TCRs directed against tumor-restricted target antigens. The human papillomavirus (HPV) E7 antigen is an attractive therapeutic target that is constitutively expressed by HPV+ cancers but not by healthy tissues. It is unknown if genetically engineered TCR T cells that target E7 can mediate regression of HPV+ cancers. We identified an HPV-16 E7-specific, HLA-A*02:01-restricted TCR from a uterine cervix biopsy from a woman with cervical intraepithelial neoplasia. This TCR demonstrated high functional avidity, with CD8 coreceptor-independent tumor targeting. Human T cells transduced to express the TCR specifically recognized and killed HPV-16+ cervical and oropharyngeal cancer cell lines and mediated regression of established HPV-16+ human cervical cancer tumors in a mouse model. These findings support the therapeutic potential of this approach and established the basis for an E7 TCR gene therapy clinical trial in patients with metastatic HPV+ cancers (NCT02858310).
Collapse
Affiliation(s)
- Benjamin Y Jin
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tracy E Campbell
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Lindsey M Draper
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sanja Stevanović
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Zhiya Yu
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
111
|
Miyao K, Terakura S, Okuno S, Julamanee J, Watanabe K, Hamana H, Kishi H, Sakemura R, Koyama D, Goto T, Nishida T, Murata M, Kiyoi H. Introduction of Genetically Modified CD3ζ Improves Proliferation and Persistence of Antigen-Specific CTLs. Cancer Immunol Res 2018; 6:733-744. [DOI: 10.1158/2326-6066.cir-17-0538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/18/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022]
|
112
|
Krackhardt AM, Anliker B, Hildebrandt M, Bachmann M, Eichmüller SB, Nettelbeck DM, Renner M, Uharek L, Willimsky G, Schmitt M, Wels WS, Schüssler-Lenz M. Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapies-the German Cancer Consortium approach. Cancer Immunol Immunother 2018; 67:513-523. [PMID: 29380009 PMCID: PMC11028374 DOI: 10.1007/s00262-018-2119-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/20/2018] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells genetically modified by TCRs or CARs represents a highly attractive novel therapeutic strategy to treat malignant diseases. Various approaches for the development of such gene therapy medicinal products (GTMPs) have been initiated by scientists in recent years. To date, however, the number of clinical trials commenced in Germany and Europe is still low. Several hurdles may contribute to the delay in clinical translation of these therapeutic innovations including the significant complexity of manufacture and non-clinical testing of these novel medicinal products, the limited knowledge about the intricate regulatory requirements of the academic developers as well as limitations of funds for clinical testing. A suitable good manufacturing practice (GMP) environment is a key prerequisite and platform for the development, validation, and manufacture of such cell-based therapies, but may also represent a bottleneck for clinical translation. The German Cancer Consortium (DKTK) and the Paul-Ehrlich-Institut (PEI) have initiated joint efforts of researchers and regulators to facilitate and advance early phase, academia-driven clinical trials. Starting with a workshop held in 2016, stakeholders from academia and regulatory authorities in Germany have entered into continuing discussions on a diversity of scientific, manufacturing, and regulatory aspects, as well as the benefits and risks of clinical application of CAR/TCR-based cell therapies. This review summarizes the current state of discussions of this cooperative approach providing a basis for further policy-making and suitable modification of processes.
Collapse
Affiliation(s)
- Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie, Klinikum rechts der Isar, TU München, TUM School of Medicine, Munich, Germany.
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany.
| | - Brigitte Anliker
- Paul-Ehrlich-Institut (PEI, German Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Martin Hildebrandt
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- TUMCells (Interdisciplinary Center for Cellular Therapies), TUM School of Medicine, Munich, Germany
| | - Michael Bachmann
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Radio and Tumorimmunology, Dresden, Germany
- Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg and Dresden, Germany
| | - Stefan B Eichmüller
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg and Dresden, Germany
- GMP and T Cell Therapy Unit, DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
| | - Dirk M Nettelbeck
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
| | - Matthias Renner
- Paul-Ehrlich-Institut (PEI, German Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Lutz Uharek
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Stem Cell Facility, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerald Willimsky
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Schmitt
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Department of Internal Medicine V, GMP Core Facility, Heidelberg University Hospital, Heidelberg, Germany
| | - Winfried S Wels
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Martina Schüssler-Lenz
- Paul-Ehrlich-Institut (PEI, German Federal Institute for Vaccines and Biomedicines), Langen, Germany
| |
Collapse
|
113
|
Tsuji T, Yoneda A, Matsuzaki J, Miliotto A, Ryan C, Koya RC, Odunsi K. Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 2018; 6:594-604. [PMID: 29588318 DOI: 10.1158/2326-6066.cir-17-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/26/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
T cells genetically engineered with tumor antigen-specific T-cell receptor (TCR) genes have demonstrated therapeutic potential in patients with solid tumors. In order to achieve broader application, an efficient method to identify TCR genes for an array of tumor antigens and HLA restriction elements is required. Here, we have developed a method to construct a TCR-expression library from specimens, including frozen tumor biopsies, that contain antigen-specific T cells. TCR-expressing cassettes were constructed and cloned in a retroviral plasmid vector within 24 hours by unbiased PCR amplification of TCR α and β chain variable regions assembled with TCR constant regions. The method was validated by constructing TCR-expressing vectors from tumor antigen-specific T-cell clones and functionally assessing TCR gene-transduced T cells. We applied this method to frozen ovarian tumor specimens that were infiltrated by tumor antigen-specific T cells. The tumor-derived TCR libraries were expressed in peripheral T cells from healthy volunteers and screened for tumor antigen-specific TCR pairs with the use of an MHC/peptide tetramer reagent. Tumor antigen-specific TCR-expressing transgenes were recovered from isolated tetramer-positive T cells. Peripheral T cells that were engineered with library-derived TCR gene showed potent therapeutic antitumor effect in a tumor xenograft model. Our method can efficiently and rapidly provide tumor-specific TCR-expressing viral vectors for the manufacture of therapeutic and personalized antitumor T-cell products. Cancer Immunol Res; 6(5); 594-604. ©2018 AACR.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Akira Yoneda
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Anthony Miliotto
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Courtney Ryan
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Richard C Koya
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York. .,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York.,Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
114
|
Hotblack A, Holler A, Piapi A, Ward S, Stauss HJ, Bennett CL. Tumor-Resident Dendritic Cells and Macrophages Modulate the Accumulation of TCR-Engineered T Cells in Melanoma. Mol Ther 2018; 26:1471-1481. [PMID: 29628306 PMCID: PMC5986719 DOI: 10.1016/j.ymthe.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Ongoing clinical trials explore T cell receptor (TCR) gene therapy as a treatment option for cancer, but responses in solid tumors are hampered by the immunosuppressive microenvironment. The production of TCR gene-engineered T cells requires full T cell activation in vitro, and it is currently unknown whether in vivo interactions with conventional dendritic cells (cDCs) regulate the accumulation and function of engineered T cells in tumors. Using the B16 melanoma model and the inducible depletion of CD11c+ cells in CD11c.diphtheria toxin receptor (DTR) mice, we analyzed the interaction between tumor-resident cDCs and engineered T cells expressing the melanoma-specific TRP-2 TCR. We found that depletion of CD11c+ cells triggered the recruitment of cross-presenting cDC1 into the tumor and enhanced the accumulation of TCR-engineered T cells. We show that the recruited tumor cDCs present melanoma tumor antigen, leading to enhanced activation of TCR-engineered T cells. In addition, detailed analysis of the tumor myeloid compartment revealed that the depletion of a population of DT-sensitive macrophages can contribute to the accumulation of tumor-infiltrating T cells. Together, these data suggest that the relative frequency of tumor-resident cDCs and macrophages may impact the therapeutic efficacy of TCR gene therapy in solid tumors.
Collapse
Affiliation(s)
- Alastair Hotblack
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Angelika Holler
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Alice Piapi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Sophie Ward
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK; Cancer Institute, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Hans J Stauss
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| | - Clare L Bennett
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK; Cancer Institute, Division of Cancer Studies, University College London, London WC1E 6DD, UK.
| |
Collapse
|
115
|
Immunotherapies: Exploiting the Immune System for Cancer Treatment. J Immunol Res 2018; 2018:9585614. [PMID: 29725606 PMCID: PMC5872614 DOI: 10.1155/2018/9585614] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a condition that has plagued humanity for thousands of years, with the first depictions dating back to ancient Egyptian times. However, not until recent decades have biological therapeutics been developed and refined enough to safely and effectively combat cancer. Three unique immunotherapies have gained traction in recent decades: adoptive T cell transfer, checkpoint inhibitors, and bivalent antibodies. Each has led to clinically approved therapies, as well as to therapies in preclinical and ongoing clinical trials. In this review, we outline the method by which these 3 immunotherapies function as well as any major immunotherapeutic drugs developed for treating a variety of cancers.
Collapse
|
116
|
Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 2018; 11:22. [PMID: 29433552 PMCID: PMC5809840 DOI: 10.1186/s13045-018-0568-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.
Collapse
Affiliation(s)
- Jian Li
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Kejia Huang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China
| | - Yang Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China
| | - Gary Kupfer
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Qi Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
117
|
Lu YC, Zheng Z, Robbins PF, Tran E, Prickett TD, Gartner JJ, Li YF, Ray S, Franco Z, Bliskovsky V, Fitzgerald PC, Rosenberg SA. An Efficient Single-Cell RNA-Seq Approach to Identify Neoantigen-Specific T Cell Receptors. Mol Ther 2018; 26:379-389. [PMID: 29174843 PMCID: PMC5835023 DOI: 10.1016/j.ymthe.2017.10.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of neoantigen-reactive tumor-infiltrating lymphocytes (TILs) can result in tumor regression in patients with metastatic cancer. To improve the efficacy of adoptive T cell therapy targeting these tumor-specific mutations, we have proposed a new therapeutic strategy, which involves the genetic modification of autologous T cells with neoantigen-specific T cell receptors (TCRs) and the transfer of these modified T cells back to cancer patients. However, the current techniques to isolate neoantigen-specific TCRs are labor intensive, time consuming, and technically challenging, not suitable for clinical applications. To facilitate this process, a new approach was developed, which included the co-culture of TILs with tandem minigene (TMG)-transfected or peptide-pulsed autologous antigen-presenting cells (APCs) and the single-cell RNA sequencing (RNA-seq) analysis of T cells to identify paired TCR sequences associated with cells expressing high levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2). Following this new approach, multiple TCRs were identified, synthesized, cloned into a retroviral vector, and then transduced into donor T cells. These transduced T cells were shown to specifically recognize the neoantigens presented by autologous APCs. In conclusion, this approach provides an efficient procedure to isolate neoantigen-specific TCRs for clinical applications, as well as for basic and translational research.
Collapse
Affiliation(s)
- Yong-Chen Lu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Tran
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong F Li
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satyajit Ray
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zulmarie Franco
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Valery Bliskovsky
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter C Fitzgerald
- Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
118
|
Stevanović S, Pasetto A, Helman SR, Gartner JJ, Prickett TD, Howie B, Robins HS, Robbins PF, Klebanoff CA, Rosenberg SA, Hinrichs CS. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017; 356:200-205. [PMID: 28408606 DOI: 10.1126/science.aak9510] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022]
Abstract
Immunotherapy has clinical activity in certain virally associated cancers. However, the tumor antigens targeted in successful treatments remain poorly defined. We used a personalized immunogenomic approach to elucidate the global landscape of antitumor T cell responses in complete regression of human papillomavirus-associated metastatic cervical cancer after tumor-infiltrating adoptive T cell therapy. Remarkably, immunodominant T cell reactivities were directed against mutated neoantigens or a cancer germline antigen, rather than canonical viral antigens. T cells targeting viral tumor antigens did not display preferential in vivo expansion. Both viral and nonviral tumor antigen-specific T cells resided predominantly in the programmed cell death 1 (PD-1)-expressing T cell compartment, which suggests that PD-1 blockade may unleash diverse antitumor T cell reactivities. These findings suggest a new paradigm of targeting nonviral antigens in immunotherapy of virally associated cancers.
Collapse
Affiliation(s)
- Sanja Stevanović
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Anna Pasetto
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sarah R Helman
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Bryan Howie
- Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Harlan S Robins
- Adaptive Biotechnologies, Seattle, WA 98102, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, New York, NY 10065, USA
| | | | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
119
|
Landoni E, Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther 2017; 18:65-75. [DOI: 10.1080/14712598.2018.1384810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
120
|
Abstract
Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation. However, TCRs depend on heavy signalling machinery only present in T cells which restricts the type of eligible therapeutic cells. Hence, an introduced therapeutic TCR will compete with the endogenous TCR for the signalling proteins and carries the potential risk of mixed dimer formation giving rise to a new TCR with unpredictable specificity. We have fused a soluble TCR construct to a CAR-signalling tail and named the final product TCR-CAR. We here show that, if expressed, the TCR-CAR conserved the specificity and the functionality of the original TCR. In addition, we demonstrate that TCR-CAR redirection was not restricted to T cells. Indeed, after transduction, the NK cell line NK-92 became TCR positive and reacted against pMHC target. This opens therapeutic avenues combing the killing efficiency of NK cells with the diversified target recognition of TCRs.
Collapse
|
121
|
Gato-Cañas M, Arasanz H, Blanco-Luquin I, Glaría E, Arteta-Sanchez V, Kochan G, Escors D. Novel immunotherapies for the treatment of melanoma. Immunotherapy 2017; 8:613-32. [PMID: 27140413 DOI: 10.2217/imt-2015-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immunotherapies are achieving clinical success for the treatment of many cancers. However, it has taken a long time to exploit the potential of the immune system for the treatment of human cancers. We cannot forget that this has been the consequence of very extensive work in basic research in preclinical models and in human patients. Thus, it is rather hard to compile all of it while giving a comprehensive view on this subject. Here we have attempted to give an overall perspective in immunotherapy of melanoma. A brief overview on current therapies is provided, followed by adoptive cell therapies. Gene engineering strategies to improve these therapies are also explained, finishing with therapies based on interference with immune checkpoint pathways.
Collapse
Affiliation(s)
- Maria Gato-Cañas
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Hugo Arasanz
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Estíbaliz Glaría
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Virginia Arteta-Sanchez
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Grazyna Kochan
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain.,Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| |
Collapse
|
122
|
Foley KC, Spear TT, Murray DC, Nagato K, Garrett-Mayer E, Nishimura MI. HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:105-115. [PMID: 28573185 PMCID: PMC5447397 DOI: 10.1016/j.omto.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/13/2017] [Indexed: 12/21/2022]
Abstract
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
Collapse
Affiliation(s)
- Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kaoru Nagato
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29415, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29415, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
123
|
Hull CM, Nickolay LE, Estorninho M, Richardson MW, Riley JL, Peakman M, Maher J, Tree TI. Generation of human islet-specific regulatory T cells by TCR gene transfer. J Autoimmun 2017; 79:63-73. [DOI: 10.1016/j.jaut.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
124
|
|
125
|
Inderberg EM, Wälchli S, Myhre MR, Trachsel S, Almåsbak H, Kvalheim G, Gaudernack G. T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces in vivo tumor growth. Oncoimmunology 2017; 6:e1302631. [PMID: 28507809 PMCID: PMC5414866 DOI: 10.1080/2162402x.2017.1302631] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023] Open
Abstract
T-cell receptor (TCR) transfer is an attractive strategy to increase the number of cancer-specific T cells in adoptive cell therapy. However, recent clinical and pre-clinical findings indicate that careful consideration of the target antigen is required to limit the risk of off-target toxicity. Directing T cells against mutated proteins such as frequently occurring frameshift mutations may thus be a safer alternative to tumor-associated self-antigens. Furthermore, such frameshift mutations result in novel polypeptides allowing selection of TCRs from the non-tolerant T-cell repertoire circumventing the problem of low affinity TCRs due to central tolerance. The transforming growth factor β Receptor II frameshift mutation (TGFβRIImut) is found in Lynch syndrome cancer patients and in approximately 15% of sporadic colorectal and gastric cancers displaying microsatellite instability (MSI). The -1A mutation within a stretch of 10 adenine bases (nucleotides 709-718) of the TGFβRII gene gives rise to immunogenic peptides previously used for vaccination of MSI+ colorectal cancer patients in a Phase I clinical trial. From a clinically responding patient, we isolated a cytotoxic T lymphocyte (CTL) clone showing a restriction for HLA-A2 in complex with TGFβRIImut peptide. Its TCR was identified and shown to redirect T cells against colon carcinoma cell lines harboring the frameshift mutation. Finally, T cells transduced with the HLA-A2-restricted TGFβRIImut-specific TCR were demonstrated to significantly reduce the growth of colorectal cancer and enhance survival in a NOD/SCID xenograft mouse model.
Collapse
Affiliation(s)
- Else M Inderberg
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marit R Myhre
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Sissel Trachsel
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Hilde Almåsbak
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
126
|
Tao C, Shao H, Zhang W, Bo H, Wu F, Shen H, Huang S. γδTCR immunoglobulin constant region domain exchange in human αβTCRs improves TCR pairing without altering TCR gene-modified T cell function. Mol Med Rep 2017; 15:1555-1564. [PMID: 28259946 PMCID: PMC5365024 DOI: 10.3892/mmr.2017.6206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The adoptive genetic transfer of T cell receptors (TCRs) has been shown to be overall feasible and offer clinical potential as a treatment for different types of cancer. However, this promising clinical approach is limited by the serious potential consequence that exogenous TCR mispairing with endogenous TCR chains may lead to the risk of self-reactivity. In the present study, domain-exchange and three-dimensional modeling strategies were used to create a set of chimeric TCR variants, which were used to exchange the partial or complete constant region of αβTCR with corresponding γδTCR domains. The expression, assembly and function of the chimeric TCR variants were examined in Jurkat T cells and peripheral mononuclear blood cells (PBMCs). Genetically-encoded chimeras were fused with a pair of fluorescent proteins (ECFP/EYFP) to monitor expression and the pairing between chimeric TCRα chains and TCRβ chains. The fluorescence energy transfer based on confocal laser scanning microscopy showed that the introduction of γδTCR constant sequences into the αβTCR did not result in a global reduction of mispairing with endogenous TCR. However, the TCR harboring the immunoglobulin-like domain of the γδTCR constant region (i.e., TCR∆IgC), showed a higher expression and preferential pairing, compared with wild-type (wt)TCR. The function analysis showed that TCR∆IgC exhibited the same levels of interferon-γ production and cytotoxic activity, compared with wtTCR. Furthermore, these modified TCR-transduced T cells retained the classic human leukocyte antigen restriction of the original TCR. The other two chimeric TCRs, had either exchange of the cp+tm+ic domain or exchange of the whole C domain (Fig. 1). Ultimately, exchange of these domains demonstrated defective function in the transduced T cells. Taken together, these findings may provide further understanding of the γδTCR constant domain with implications for the improvement of TCR gene transfer therapy.
Collapse
Affiliation(s)
- Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Fenglin Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Shulin Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
127
|
Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C, Schmidt M, Gabriel R. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:213-224. [PMID: 28345006 PMCID: PMC5363317 DOI: 10.1016/j.omtm.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
In T cells with transgenic high-avidity T cell receptors (TCRs), endogenous and transferred TCR chains compete for surface expression and may pair inappropriately, potentially causing autoimmunity. To knock out endogenous TCR expression, we assembled 12 transcription activator-like effector nucleases (TALENs) and five guide RNAs (gRNAs) from the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Using TALEN mRNA, TCR knockout was successful in up to 81% of T cells. Additionally, we were able to verify targeted gene addition of a GFP gene by homology-directed repair at the TALEN target site, using a donor suitable for replacement of the reporter transgene with therapeutic TCR chains. Remarkably, analysis of TALEN and CRISPR/Cas9 specificity using integrase-defective lentiviral vector capture revealed only one off-target site for one of the gRNAs and three off-target sites for both of the TALENs, indicating a high level of specificity. Collectively, our work shows highly efficient and specific nucleases for T cell engineering.
Collapse
Affiliation(s)
- Friederike Knipping
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, Seoul 05505, Republic of Korea
| | - Karl Petri
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, Seoul 05505, Republic of Korea
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
128
|
Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, Bonte S, Taghon T, Leclercq G, Kerre T, Debets R, Vermijlen D, Abken H, Vandekerckhove B. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology 2017; 6:e1283460. [PMID: 28405508 PMCID: PMC5384408 DOI: 10.1080/2162402x.2017.1283460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/25/2022] Open
Abstract
Recent clinical studies indicate that adoptive T-cell therapy and especially chimeric antigen receptor (CAR) T-cell therapy is a very potent and potentially curative treatment for B-lineage hematologic malignancies. Currently, autologous peripheral blood T cells are used for adoptive T-cell therapy. Adoptive T cells derived from healthy allogeneic donors may have several advantages; however, the expected occurrence of graft versus host disease (GvHD) as a consequence of the diverse allogeneic T-cell receptor (TCR) repertoire expressed by these cells compromises this approach. Here, we generated T cells from cord blood hematopoietic progenitor cells (HPCs) that were transduced to express an antigen receptor (AR): either a CAR or a TCR with or without built-in CD28 co-stimulatory domains. These AR-transgenic HPCs were culture-expanded on an OP9-DL1 feeder layer and subsequently differentiated to CD5+CD7+ T-lineage precursors, to CD4+ CD8+ double positive cells and finally to mature AR+ T cells. The AR+ T cells were largely naive CD45RA+CD62L+ T cells. These T cells had mostly germline TCRα and TCRβ loci and therefore lacked surface-expressed CD3/TCRαβ complexes. The CD3- AR-transgenic cells were mono-specific, functional T cells as they displayed specific cytotoxic activity. Cytokine production, including IL-2, was prominent in those cells bearing ARs with built-in CD28 domains. Data sustain the concept that cord blood HPC derived, in vitro generated allogeneic CD3- AR+ T cells can be used to more effectively eliminate malignant cells, while at the same time limiting the occurrence of GvHD.
Collapse
Affiliation(s)
- Yasmine Van Caeneghem
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Stijn De Munter
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Paola Tieppo
- Department of Biopharmacy and Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | - Glenn Goetgeluk
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Karin Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Greet Verstichel
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Sarah Bonte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Tessa Kerre
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Immunology, Erasmus MC Cancer Center , Rotterdam, the Netherlands
| | - David Vermijlen
- Department of Biopharmacy and Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC) and Department of Internal Medicine, University of Cologne , Cologne, Germany
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| |
Collapse
|
129
|
Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, Rosenberg SA. Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clin Cancer Res 2016; 23:2491-2505. [PMID: 27827318 DOI: 10.1158/1078-0432.ccr-16-2680] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023]
Abstract
Purpose: The adoptive transfer of lymphocytes genetically modified to express tumor reactive T-cell receptors (TCR) can mediate tumor regression. Some tumor-infiltrating lymphocytes (TIL) recognize somatic mutations expressed only in the patient's tumors, and evidence suggests that clinically effective TILs target tumor-specific neoantigens. Here we attempted to isolate neoantigen-reactive TCRs as a prelude to the treatment of patients with autologous T cells genetically modified to express such TCRs.Experimental Design: Mutations expressed by tumors were identified using whole-exome and RNA sequencing. Tandem minigene (TMG) constructs encoding 12-24 mutated gene products were synthesized, each encoding the mutated amino acid flanked by 12 amino acids of the normal protein sequence. TILs were cultured with autologous dendritic cells (DC) transfected with in vitro transcribed (IVT) mRNAs encoding TMGs and were evaluated for IFNγ secretion and CD137 expression. Neoantigen-reactive T cells were enriched from TILs by sorting for CD137+ CD8+ T cells and expanded in vitro Dominant TCR α and β chains were identified in the enriched populations using a combination of 5' rapid amplification of cDNA ends, deep sequencing of genomic DNA, PairSeq analysis, and single-cell RT-PCR analysis. Human PBL retrovirally transduced to express the TCRs were evaluated for recognition of relevant neoantigens.Results: We identified 27 TCRs from 6 patients that recognized 14 neoantigens expressed by autologous tumor cells.Conclusions: This strategy provides the means to generate T cells expressing neoantigen-reactive TCRs for use in future adoptive cell transfer immunotherapy trials for patients with cancer. Clin Cancer Res; 23(10); 2491-505. ©2016 AACR.
Collapse
Affiliation(s)
| | - Alena Gros
- NIH/NCI Surgery Branch, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
130
|
Ando M, Nakauchi H. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 2016; 47:2-12. [PMID: 27826124 DOI: 10.1016/j.exphem.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Adoptive T-cell therapy to target and kill tumor cells shows promise and induces durable remissions in selected malignancies. However, for most cancers, clinical utility is limited. Cytotoxic T lymphocytes continuously exposed to viral or tumor antigens, with long-term expansion, may become unable to proliferate ("exhausted"). To exploit fully rejuvenated induced pluripotent stem cell (iPSC)-derived antigen-specific cytotoxic T lymphocytes is a potentially powerful approach. We review recent progress in engineering iPSC-derived T cells and prospects for clinical translation. We also describe the importance of introducing a suicide gene safeguard system into adoptive T-cell therapy, including iPSC-derived T-cell therapy, to protect from unexpected events in first-in-humans clinical trials.
Collapse
Affiliation(s)
- Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
131
|
Wang Z, Li B, Ren Y, Ye Z. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities. Front Immunol 2016; 7:353. [PMID: 27683579 PMCID: PMC5021687 DOI: 10.3389/fimmu.2016.00353] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Even though combining surgery with chemotherapy has significantly improved the prognosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are often non-responsive to chemotherapy, making development of novel efficient therapeutic methods an urgent need. Adoptive immunotherapy has the potential to be a useful non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, including immunotherapies using naturally occurring or genetically modified T cells, have been found to hold promise in the treatment of hematologic malignancies and solid tumors. In this review, we will discuss possible T-cell-based therapies against osteosarcoma with a special emphasis on combination strategies to improve the effectiveness of adoptive T cell transfer and, thus, to provide a rationale for the clinical development of immunotherapies.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Binghao Li
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Yingqing Ren
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Zhaoming Ye
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
132
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
133
|
Mensali N, Ying F, Sheng VOY, Yang W, Walseng E, Kumari S, Fallang LE, Kolstad A, Uckert W, Malmberg KJ, Wälchli S, Olweus J. Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncoimmunology 2016; 5:e1138199. [PMID: 27467957 DOI: 10.1080/2162402x.2016.1138199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeted to CD19 are effective in treatment of B-lymphoid malignancies. However, CARs recognize all CD19 positive (pos) cells, and durable responses are linked to profound depletion of normal B cells. Here, we designed a strategy to specifically target patient B cells by utilizing the fact that T-cell receptors (TCRs), in contrast to CARs, are restricted by HLA. Two TCRs recognizing a peptide from CD20 (SLFLGILSV) in the context of foreign HLA-A*02:01 (CD20p/HLA-A2) were expressed as 2A-bicistronic constructs. T cells re-directed with the A23 and A94 TCR constructs efficiently recognized malignant HLA-A2(pos) B cells endogenously expressing CD20, including patient-derived follicular lymphoma and chronic lymphocytic leukemia (CLL) cells. In contrast, a wide range of HLA-A2(pos)CD20(neg) cells representing different tissue origins, and HLA-A2(neg)CD20(pos) cells, were not recognized. Cytotoxic T cells re-directed with CD20p/HLA-A2-specific TCRs or CD19 CARs responded with similar potencies to cells endogenously expressing comparable levels of CD20 and CD19. The CD20p/HLA-A2-specific TCRs recognized CD20p bound to HLA-A2 with high functional avidity. The results show that T cells expressing CD20p/HLA-A2-specific TCRs efficiently and specifically target B cells. When used in context of an HLA-haploidentical allogeneic stem cell transplantation where the donor is HLA-A2(neg) and the patient HLA-A2(pos), these T cells would selectively kill patient-derived B cells and allow reconstitution of the B-cell compartment with HLA-A2(neg) donor cells. These results should pave the way for clinical testing of T cells genetically engineered to target malignant B cells without permanent depletion of normal B cells.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fan Ying
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Oei Yi Sheng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Even Walseng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Shraddha Kumari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars-Egil Fallang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Arne Kolstad
- K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine and Institute of Biology, Humboldt University , Berlin, Germany
| | - Karl Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Cell Therapy, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
134
|
Casey NP, Fujiwara H, Tanimoto K, Okamoto S, Mineno J, Kuzushima K, Shiku H, Yasukawa M. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy. PLoS One 2016; 11:e0156896. [PMID: 27271876 PMCID: PMC4896450 DOI: 10.1371/journal.pone.0156896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/21/2016] [Indexed: 11/23/2022] Open
Abstract
Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient’s own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this ‘siTCR’ vector. We then compared the activity of this vector against the original, ‘conventional’ vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene-transfer will be crucial for clinical applications of this technology.
Collapse
Affiliation(s)
- Nicholas Paul Casey
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | - Hiroshi Shiku
- Department of Cancer Vaccine and Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
135
|
Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood 2016; 127:3305-11. [PMID: 27207802 DOI: 10.1182/blood-2015-11-629071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients.
Collapse
|
136
|
Hamana H, Shitaoka K, Kishi H, Ozawa T, Muraguchi A. A novel, rapid and efficient method of cloning functional antigen-specific T-cell receptors from single human and mouse T-cells. Biochem Biophys Res Commun 2016; 474:709-714. [PMID: 27155153 DOI: 10.1016/j.bbrc.2016.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
T-cell receptor (TCR) gene therapy is a promising approach for the treatment of infectious diseases and cancers. However, the paired cloning and functional assays of antigen-specific TCRα and TCRβ is time-consuming and laborious. In this study, we developed a novel, rapid and efficient antigen-specific TCR-cloning system by combining three technologies: multiplex one-step RT-PCR, transcriptionally active PCR (TAP) and luciferase reporter assays. Multiplex one-step RT-PCR with leader primers designed from leader peptide sequences of TCRs enabled us to amplify cDNAs of TCRα and β pairs from single T-cells with remarkably high efficiency. The combination of TAP fragments and HEK293T-based NFAT-luciferase reporter cells allowed for a rapid functional assay without the need to construct expression vectors. Using this system, we cloned human TCRs specific for Epstein-Barr virus BRLF-1-derived peptide as well as mouse TCRs specific for melanoma-associated antigen tyrosinase-related protein 2 (TRP-2) within four days. These results suggest that our system provides rapid and efficient cloning of functional antigen-specific human and mouse TCRs and contributes to TCR-based immunotherapy for cancers and infectious diseases.
Collapse
Affiliation(s)
- Hiroshi Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kiyomi Shitaoka
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
137
|
Ikeda H. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. Int Immunol 2016; 28:349-53. [PMID: 27127191 DOI: 10.1093/intimm/dxw022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has received the expectation that it should contribute to the therapy of cancer patients for >100 years. At long last, recent clinical trials of immunotherapy with immune checkpoint inhibitors and adoptive cell therapy with genetically engineered T cells have reported their remarkable efficacies. Nowadays, it is expected that T-cell adoptive immunotherapy can not only control tumor progression but even cure cancer in some patients. Conversely, severe adverse events associated with efficacy have frequently been reported in clinical trials, suggesting that the assessment and control of safety will be indispensable in the future development of the therapy. New approaches in T-cell adoptive immunotherapy such as reduction of adverse events, targeting of new antigens or utilization of allogeneic cells will open a new gate for less harmful and more effective immunological treatment of cancer patients.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
138
|
Antigen-specificity using chimeric antigen receptors: the future of regulatory T-cell therapy? Biochem Soc Trans 2016; 44:342-8. [DOI: 10.1042/bst20150247] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Adoptive regulatory T-cell (Treg) therapy using autologous Tregs expanded ex vivo is a promising therapeutic approach which is currently being investigated clinically as a means of treating various autoimmune diseases and transplant rejection. Despite this, early results have highlighted the need for potent Tregs to yield a substantial clinical advantage. One way to achieve this is to create antigen-specific Tregs which have been shown in pre-clinical animal models to have an increased potency at suppressing undesired immune responses, compared to polyclonal Tregs. This mini review outlines where Treg therapy currently stands and discusses the approaches which may be taken to generate antigen-specific Tregs, including the potential use of chimeric antigen receptors (CARs), for future clinical trials.
Collapse
|
139
|
Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 2016; 22:433-8. [PMID: 26901407 PMCID: PMC7446107 DOI: 10.1038/nm.4051] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 01/10/2023]
Abstract
Detection of lymphocytes that target tumor-specific mutant neoantigens--derived from products encoded by mutated genes in the tumor--is mostly limited to tumor-resident lymphocytes, but whether these lymphocytes often occur in the circulation is unclear. We recently reported that intratumoral expression of the programmed cell death 1 (PD-1) receptor can guide the identification of the patient-specific repertoire of tumor-reactive CD8(+) lymphocytes that reside in the tumor. In view of these findings, we investigated whether PD-1 expression on peripheral blood lymphocytes could be used as a biomarker to detect T cells that target neoantigens. By using a high-throughput personalized screening approach, we identified neoantigen-specific lymphocytes in the peripheral blood of three of four melanoma patients. Despite their low frequency in the circulation, we found that CD8(+)PD-1(+), but not CD8(+)PD-1(-), cell populations had lymphocytes that targeted 3, 3 and 1 unique, patient-specific neoantigens, respectively. We show that neoantigen-specific T cells and gene-engineered lymphocytes expressing neoantigen-specific T cell receptors (TCRs) isolated from peripheral blood recognized autologous tumors. Notably, the tumor-antigen specificities and TCR repertoires of the circulating and tumor-infiltrating CD8(+)PD-1(+) cells appeared similar, implying that the circulating CD8(+)PD-1(+) lymphocytes could provide a window into the tumor-resident antitumor lymphocytes. Thus, expression of PD-1 identifies a diverse and patient-specific antitumor T cell response in peripheral blood, providing a novel noninvasive strategy to develop personalized therapies using neoantigen-reactive lymphocytes or TCRs to treat cancer.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy
- Lymphocytes/immunology
- Lymphocytes/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/therapy
- Middle Aged
- Programmed Cell Death 1 Receptor/blood
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Prospective Studies
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Alena Gros
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Maria R Parkhurst
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Tran
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Pasetto
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Sadia Ilyas
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica S Crystal
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Ilana M Roberts
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Kasia Trebska-McGowan
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - John R Wunderlich
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - James C Yang
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
140
|
Holler A, Zech M, Ghorashian S, Pike R, Hotblack A, Veliça P, Xue SA, Chakraverty R, Morris EC, Stauss HJ. Expression of a dominant T-cell receptor can reduce toxicity and enhance tumor protection of allogeneic T-cell therapy. Haematologica 2016; 101:482-90. [PMID: 26802053 PMCID: PMC5004405 DOI: 10.3324/haematol.2015.132712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Due to the lack of specificity for tumor antigens, allogeneic T-cell therapy is associated with graft-versus-host disease. Enhancing the anti-tumor specificity while reducing the graft-versus-host disease risk of allogeneic T cells has remained a research focus. In this study, we demonstrate that the introduction of 'dominant' T-cell receptors into primary murine T cells can suppress the expression of endogenous T-cell receptors in a large proportion of the gene-modified T cells. Adoptive transfer of allogeneic T cells expressing a 'dominant' T-cell receptor significantly reduced the graft-versus-host toxicity in recipient mice. Using two bone marrow transplant models, enhanced anti-tumor activity was observed in the presence of reduced graft-versus-host disease. However, although transfer of T-cell receptor gene-modified allogeneic T cells resulted in the elimination of antigen-positive tumor cells and improved the survival of treated mice, it was associated with accumulation of T cells expressing endogenous T-cell receptors and the development of delayed graft-versus-host disease. The in-vivo deletion of the engineered T cells, mediated by endogenous mouse mammary tumor virus MTV8 and MTV9, abolished graft-versus-host disease while retaining significant anti-tumor activity of adoptively transferred T cells. Together, this study shows that the in-vitro selection of allogeneic T cells expressing high levels of a 'dominant' T-cell receptor can lower acute graft-versus-host disease and enhance anti-tumor activity of adoptive cell therapy, while the in-vivo outgrowth of T cells expressing endogenous T-cell receptors remains a risk factor for the delayed onset of graft-versus-host disease.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/methods
- Cell Line, Tumor
- Female
- Gene Expression
- Genes, Dominant
- Genetic Vectors/immunology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Graft vs Host Disease/prevention & control
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Depletion/methods
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transgenes
- Transplantation, Homologous
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Angelika Holler
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Mathias Zech
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Sara Ghorashian
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Rebecca Pike
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Alastair Hotblack
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Pedro Veliça
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Shao-An Xue
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Ronjon Chakraverty
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London Department of Haematology, Cancer Institute, University College London, UK
| | - Emma C Morris
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| | - Hans J Stauss
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital London
| |
Collapse
|
141
|
Themeli M, Rivière I, Sadelain M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 2016; 16:357-66. [PMID: 25842976 DOI: 10.1016/j.stem.2015.03.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The promising clinical results obtained with engineered T cells, including chimeric antigen receptor (CAR) therapy, call for further advancements to facilitate and broaden their applicability. One potentially beneficial innovation is to exploit new T cell sources that reduce the need for autologous cell manufacturing and enable cell transfer across histocompatibility barriers. Here we review emerging T cell engineering approaches that utilize alternative T cell sources, which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent stem cell (iPSC)-derived T lymphocytes. The latter offer the prospect for true off-the-shelf, genetically enhanced, histocompatible cell therapy products.
Collapse
Affiliation(s)
- Maria Themeli
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Isabelle Rivière
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michel Sadelain
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
142
|
Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, Idel C, Arina A, Duraiswamy J, Weichselbaum RR, Uckert W, Nakamura Y, Schreiber H. Eradication of Large Solid Tumors by Gene Therapy with a T-Cell Receptor Targeting a Single Cancer-Specific Point Mutation. Clin Cancer Res 2015; 22:2734-43. [PMID: 26667491 DOI: 10.1158/1078-0432.ccr-15-2361] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. EXPERIMENTAL DESIGN By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. RESULTS When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. CONCLUSIONS Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602.
Collapse
Affiliation(s)
| | - Boris Engels
- Department of Pathology, The University of Chicago, Illinois
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Illinois
| | - Poh Yin Yew
- Department of Medicine, The University of Chicago, Illinois
| | | | - Christian Idel
- Department of Pathology, The University of Chicago, Illinois
| | - Ainhoa Arina
- Department of Pathology, The University of Chicago, Illinois
| | | | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Illinois
| | - Wolfgang Uckert
- Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | | | - Hans Schreiber
- Institute of Immunology, Charité, Campus Buch, Berlin, Germany. Department of Pathology, The University of Chicago, Illinois
| |
Collapse
|
143
|
Nicholson E, Peggs KS. Cytomegalovirus-specific T-cell therapies: current status and future prospects. Immunotherapy 2015; 7:135-46. [PMID: 25713989 DOI: 10.2217/imt.14.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adoptive transfer of T cells specific for viral pathogens offers an attractive method for hastening immune reconstitution and protective immunity in patients following stem cell transplantation. The largest experience to date has been in the context of treatment or prevention of cytomegalovirus or Epstein-Barr virus. A number of technical hurdles have now been overcome allowing consideration of more widespread application of products compliant with Good Manufacturing Practice regulations, and of the development of commercialization pathways for these products. This review summarizes progress to date and highlights some of the areas that remain problematic and that require further innovation and evaluation before more widespread adoption is considered.
Collapse
Affiliation(s)
- Emma Nicholson
- Department of Haematology, University College London Hospital, London, NW1 2BU, UK
| | | |
Collapse
|
144
|
|
145
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
146
|
Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies. Clin Cancer Res 2015; 21:5191-7. [PMID: 26463711 DOI: 10.1158/1078-0432.ccr-15-0860] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022]
Abstract
The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion.
Collapse
Affiliation(s)
- Thomas M Schmitt
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ingunn M Stromnes
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington
| | - Aude G Chapuis
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington. Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
147
|
Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol 2015; 67:46-57. [DOI: 10.1016/j.molimm.2014.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023]
|
148
|
Stauss HJ, Morris EC, Abken H. Cancer gene therapy with T cell receptors and chimeric antigen receptors. Curr Opin Pharmacol 2015; 24:113-8. [PMID: 26342910 DOI: 10.1016/j.coph.2015.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Viral and non-viral gene transfer technologies have been used to efficiently generate therapeutic T cells with desired cancer-specificity. Chimeric antigen receptors (CARs) redirect T cell specificity toward antibody-recognized antigens expressed on the surface of cancer cells, while T cell receptors (TCRs) extend the range of targets to include intracellular tumor antigens. CAR redirected T cells specific for the B cell differentiation antigen CD19 have shown dramatic efficacy in the treatment of B cell malignancies, while TCR-redirected T cells have shown benefits in patients suffering from solid cancer. In this review we will present strategies to optimize CAR and TCR function, and discuss the importance of target antigen selection to enhance tumor specificity, while reducing on-target and off-target toxicity.
Collapse
Affiliation(s)
- Hans J Stauss
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | - Emma C Morris
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Clinic I for Internal Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
149
|
Motozono C, Bridgeman JS, Price DA, Sewell AK, Ueno T. Clonotypically similar hybrid αβ T cell receptors can exhibit markedly different surface expression, antigen specificity and cross-reactivity. Clin Exp Immunol 2015; 180:560-70. [PMID: 25721491 PMCID: PMC4449784 DOI: 10.1111/cei.12610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/29/2022] Open
Abstract
Emerging data indicate that particular major histocompatibility complex (MHC)‐bound antigenic peptides can be recognized by identical or near‐identical αβ T cell receptors (TCRs) in different individuals. To establish the functional relevance of this phenomenon, we artificially paired α and β chains from closely related TCRs specific for the human leucocyte antigen (HLA)‐B*35:01‐restricted HIV‐1 negative regulatory factor (Nef)‐derived epitope VY8 (VPLRPMTY, residues 74–81). Several hybrid TCRs generated in this manner failed to express at the cell surface, despite near homology with naturally isolated αβ chain combinations. Moreover, a substantial proportion of those αβ TCRs that did express lost specificity for the index VY8 peptide sequence. One such hybrid αβ pair gained neo‐variant specificity in the context of the VY8 backbone. Collectively, these data show that clonotypically similar TCRs can display profound differences in surface expression, antigen specificity and cross‐reactivity with potential relevance for the control of mutable viruses.
Collapse
Affiliation(s)
- C Motozono
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - J S Bridgeman
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - D A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - A K Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - T Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
150
|
Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol 2015; 37:799-806. [PMID: 26250457 DOI: 10.1007/s13277-015-3845-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022] Open
Abstract
Alpha-fetoprotein (AFP) is overexpressed in hepatocellular carcinoma (HCC) and could serve as a tumor-associated antigen (TAA) and potential target for adoptive immunotherapy. However, low frequency and severe functional impairment of AFP-specific T cells in vivo hamper adoptive infusion. TAA-specific T cell receptor (TCR) gene transfer could be an efficient and reliable alternation to generate AFP-specific cytotoxic T lymphocytes (CTLs). Autologous dendritic cells (DC) pulsed with AFP158-166 peptides were used to stimulate AFP-specific CTLs. TCR α/β chain genes of AFP-specific CTLs were cloned and linked by 2A peptide to form full-length TCR coding sequence synthesized into a lentiviral vector. Nonspecific activated T cells were engineered by lentivirus infection. Transgenetic CTLs were evaluated for transfection efficiency, expression of AFP158-166-specific TCR, interferon (IFN)-γ secretion, and specific cytotoxicity toward AFP+ HCC cells in vitro and in vivo. Flow cytometry revealed the AFP158-166-MHC-Pentamer positive transgenetic CTLs was 9.86 %. The number of IFN-γ secretion T cells and the specific cytotoxicity toward HpeG2 in vitro and in tumor-bearing NOD/SCID mice were significantly raised in transgenetic CTLs than that of AFP158-166-specific CTLs obtained by peptide-pulsed DCs or control group. TCR gene transfer is a promising strategy to generate AFP158-166-specific CTLs for the treatment of HCC.
Collapse
|