101
|
Sau A, Lau R, Cabrita MA, Nolan E, Crooks PA, Visvader JE, Pratt MAC. Persistent Activation of NF-κB in BRCA1-Deficient Mammary Progenitors Drives Aberrant Proliferation and Accumulation of DNA Damage. Cell Stem Cell 2016; 19:52-65. [PMID: 27292187 DOI: 10.1016/j.stem.2016.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/20/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Human BRCA1 mutation carriers and BRCA1-deficient mouse mammary glands contain an abnormal population of mammary luminal progenitors that can form 3D colonies in a hormone-independent manner. The intrinsic cellular regulatory defect in these presumptive breast cancer precursors is not known. We have discovered that nuclear factor kappaB (NF-κB) (p52/RelB) is persistently activated in a subset of BRCA1-deficient mammary luminal progenitors. Hormone-independent luminal progenitor colony formation required NF-κB, ataxia telangiectasia-mutated (ATM), and the inhibitor of kappaB kinase, IKKα. Progesterone (P4)-stimulated proliferation resulted in a marked enhancement of DNA damage foci in Brca1(-/-) mouse mammary. In vivo, NF-κB inhibition prevented recovery of Brca1(-/-) hormone-independent colony-forming cells. The majority of human BRCA1(mut/+) mammary glands showed marked lobular expression of nuclear NF-κB. We conclude that the aberrant proliferative capacity of Brca1(-/-) luminal progenitor cells is linked to the replication-associated DNA damage response, where proliferation of mammary progenitors is perpetuated by damage-induced, autologous NF-κB signaling.
Collapse
Affiliation(s)
- Andrea Sau
- Breast Cancer Research Laboratory, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Rosanna Lau
- Breast Cancer Research Laboratory, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Miguel A Cabrita
- Breast Cancer Research Laboratory, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Emma Nolan
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - M A Christine Pratt
- Breast Cancer Research Laboratory, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
102
|
Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert(-/-) mice. Transl Psychiatry 2016; 6:e836. [PMID: 27300262 PMCID: PMC4931604 DOI: 10.1038/tp.2016.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022] Open
Abstract
The role of telomerase reverse transcriptase (TERT) has been extensively investigated in the contexts of aging and cancer. Interestingly, Tert(-/-) mice exhibit additional but unexpected aggressive and depressive behaviors, implying the potential involvement of TERT function in mood control. Our conditional rescue experiments revealed that the depressive and aggressive behaviors of Tert(-/-) mice originate from Tert deficiency in two distinct brain structures. Reactivation of Tert in the hippocampus was sufficient to normalize the depressive but not the aggressive behaviors of Tert(-/-) mice. Conversely, re-expression of Tert in the medial prefrontal cortex (mPFC) reversed the aggressive but not the depressive behavior of Tert(-/-) mice. Mechanistically, decreased serotonergic signaling and increased nitric oxide (NO) transmission in the hippocampus transduced Tert deficiency into depression as evidenced by our observation that the infusion of a pharmacological agonist for serotonin receptor 1a (5-HTR1A) and a selective antagonist for neuronal NO synthase into the hippocampus successfully normalized the depressive behavior of Tert(-/-) mice. In addition, increased serotonergic transmission by the 5-HTR1A agonist in the mPFC was sufficient to rescue the aggressive behavior of Tert(-/-) mice. Thus, our studies revealed a novel function of TERT in the pathology of depression and aggression in a brain structure-specific manner, providing direct evidence for the contribution of TERT to emotional control.
Collapse
|
103
|
Xu Y, Goldkorn A. Telomere and Telomerase Therapeutics in Cancer. Genes (Basel) 2016; 7:genes7060022. [PMID: 27240403 PMCID: PMC4929421 DOI: 10.3390/genes7060022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics.
Collapse
Affiliation(s)
- Yucheng Xu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
104
|
Affiliation(s)
- Vinay Tergaonkar
- Institute of Molecular and Cell Biology (A*STAR), Proteos, Singapore
| |
Collapse
|
105
|
Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci 2016; 73:1659-70. [PMID: 26846696 PMCID: PMC4805692 DOI: 10.1007/s00018-016-2146-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
Activation of telomerase is a critical step in the development of about 85 % of human cancers. Levels of Tert, which encodes the reverse transcriptase subunit of telomerase, are limiting in normal somatic cells. Tert is subjected to transcriptional, post-transcriptional and epigenetic regulation, but the precise mechanism of how telomerase is re-activated in cancer cells is poorly understood. Reactivation of the Tert promoter involves multiple changes which evolve during cancer progression including mutations and chromosomal re-arrangements. Newly described non-coding mutations in the Tert promoter region of many cancer cells (19 %) in two key positions, C250T and C228T, have added another layer of complexity to telomerase reactivation. These mutations create novel consensus sequences for transcription factors which can enhance Tert expression. In this review, we will discuss gene structure and function of Tert and provide insights into the mechanisms of Tert reactivation in cancers, highlighting the contribution of recently identified Tert promoter mutations.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Bilal Unal
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
106
|
Li Y, Tergaonkar V. Telomerase reactivation in cancers: Mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters. Transcription 2016; 7:44-9. [PMID: 27028424 DOI: 10.1080/21541264.2016.1160173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcriptional activation of telomerase reverse transcriptase (TERT) gene is a rate-limiting determinant in the reactivation of telomerase expression in cancers. TERT promoter mutations represent one of the fundamental mechanisms of TERT reactivation in cancer development. We review recent studies that elucidate the molecular mechanisms underscoring activation of mutant TERT promoters.
Collapse
Affiliation(s)
- Yinghui Li
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Singapore
| | - Vinay Tergaonkar
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Singapore.,b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore (NUS) , Singapore , Singapore.,c Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide , Australia
| |
Collapse
|
107
|
Peek GW, Tollefsbol TO. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene. Exp Cell Res 2016; 344:95-102. [PMID: 27017931 DOI: 10.1016/j.yexcr.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression.
Collapse
Affiliation(s)
- Gregory W Peek
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
108
|
Hong J, Lee JH, Chung IK. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J Cell Sci 2016; 129:1566-79. [PMID: 26906424 DOI: 10.1242/jcs.181040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that is required for the maintenance of telomere repeats. Although overexpression of telomerase in normal human somatic cells is sufficient to overcome replicative senescence, the ability of telomerase to promote tumorigenesis requires additional activities that are independent of its role in telomere extension. Here, we identify proliferation-associated nucleolar antigen 120 (NOL1, also known as NOP2) as a telomerase RNA component (TERC)-binding protein that is found in association with catalytically active telomerase. Although NOL1 is highly expressed in the majority of human tumor cells, the molecular mechanism by which NOL1 contributes to tumorigenesis remained unclear. We show that NOL1 binds to the T-cell factor (TCF)-binding element of the cyclin D1 promoter and activates its transcription. Interestingly, telomerase is also recruited to the cyclin D1 promoter in a TERC-dependent manner through the interaction with NOL1, further enhancing transcription of the cyclin D1 gene. Depletion of NOL1 suppresses cyclin D1 promoter activity, thereby leading to induction of growth arrest and altered cell cycle distributions. Collectively, our findings suggest that NOL1 represents a new route by which telomerase activates transcription of cyclin D1 gene, thus maintaining cell proliferation capacity.
Collapse
Affiliation(s)
- Juyeong Hong
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Hoon Lee
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - In Kwon Chung
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
109
|
Laheurte C, Galaine J, Beziaud L, Dosset M, Kerzerho J, Jacquemard C, Gaugler B, Ferrand C, Dormoy A, Aubin F, Jacoulet P, Westeel V, Borg C, Tartour E, Godet Y, Maillère B, Adotévi O. Immunoprevalence and magnitude of HLA-DP4 versus HLA-DR-restricted spontaneous CD4(+) Th1 responses against telomerase in cancer patients. Oncoimmunology 2016; 5:e1137416. [PMID: 27467955 DOI: 10.1080/2162402x.2015.1137416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022] Open
Abstract
Cumulative evidence supports that CD4(+) Th1 cells play a key role in antitumor immunity. We previously reported the presence of spontaneous HLA-DR-restricted CD4(+) Th1 responses against telomerase reverse transcriptase (TERT) in various cancers by using promiscuous HLA-DR epitopes. Here, we described novel highly immunogenic HLA-DP4-binding epitopes from TERT named TERT541-555, TERT573-587, TERT613-627 and TERT911-925 and addressed the question about the immunoprevalence and magnitude of the naturally occurring antitumor CD4(+) T cell responses restricted by HLA-DP4 or HLA-DR, the two most common HLA class II. Direct comparative study of spontaneous anti-TERT CD4(+) T cell responses in a cohort of 87 lung cancer patients showed that HLA-DP4 and HLA-DR sustained specific Th1 responses in 10.1% and 25.2% of cancer patients respectively (p = 0.01). The magnitude of the HLA-DR-restricted responses was two to three times significantly higher than HLA-DP one (p = 0.005). Similar results were found in other cancers such as melanoma, breast cancer, renal cell carcinoma and colon cancer. Thus, our results describe for the first time in a large cohort of cancer patients a high immunoprevalence of HLA-DR-restricted spontaneous anti-TERT Th1 immunity compared to HLA-DP restriction. These results provide a new tool for comprehensive monitoring of antitumor CD4(+) Th1 response in various cancers.
Collapse
Affiliation(s)
- Caroline Laheurte
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC1431, Besançon, France
| | - Jeanne Galaine
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France
| | - Laurent Beziaud
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France
| | - Magalie Dosset
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France
| | - Jerome Kerzerho
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Labex LERMIT, Labex VRI , Gif Sur Yvette, France
| | - Claire Jacquemard
- EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC1431 , Besançon, France
| | - Béatrice Gaugler
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC1431, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France
| | - Christophe Ferrand
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC1431, Besançon, France
| | - Anne Dormoy
- EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC1431 , Besançon, France
| | - François Aubin
- Department of Dermatology, University Hospital of Besançon, EA3181, SFR4234 , Besançon cedex, France
| | - Pascale Jacoulet
- Department of Pneumology, University Hospital of Besançon , Besançon cedex, France
| | - Virginie Westeel
- Department of Pneumology, University Hospital of Besançon , Besançon cedex, France
| | - Christophe Borg
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC1431, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France; Department of Medical Oncology, University Hospital of Besançon, Besançon cedex, France
| | - Eric Tartour
- INSERM, UMR970, Hôpital Européen Georges Pompidou, Paris, France, Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France, University Paris Descartes , Sorbonne Paris Cité , Paris, France
| | - Yann Godet
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France
| | - Bernard Maillère
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Labex LERMIT, Labex VRI , Gif Sur Yvette, France
| | - Olivier Adotévi
- INSERM, UMR1098, LabEx LipSTIC, Besançon, France; Univ. Bourgogne Franche-Comté, UMR1098, Besançon, France; Department of Medical Oncology, University Hospital of Besançon, Besançon cedex, France
| |
Collapse
|
110
|
Maurelli R, Tinaburri L, Gangi F, Bondanza S, Severi AL, Scarponi C, Albanesi C, Mesiti G, Guerra L, Capogrossi MC, Dellambra E. The role of oncogenic Ras in human skin tumorigenesis depends on the clonogenic potential of the founding keratinocytes. J Cell Sci 2016; 129:1003-17. [PMID: 26795563 DOI: 10.1242/jcs.176842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/14/2016] [Indexed: 02/02/2023] Open
Abstract
The role of Ras in human skin tumorigenesis induction is still ambiguous. Overexpression of oncogenic Ras causes premature senescence in cultured human cells and hyperplasia in transgenic mice. Here, we investigated whether the oncogenic insult outcome might depend on the nature of the founding keratinocyte. We demonstrate that overexpression of the constitutively active Ras-V12 induces senescence in primary human keratinocyte cultures, but that some cells escape senescence and proliferate indefinitely. Ras overexpression in transient-amplifying- or stem-cell-enriched cultures shows that p16 (encoded by CDKN2A) levels are crucial for the final result. Indeed, transient-amplifying keratinocytes expressing high levels of p16 are sensitive to Ras-V12-induced senescence, whereas cells with high proliferative potential, but that do not display p16, are resistant. The subpopulation that sustains the indefinite culture growth exhibits stem cell features. Bypass of senescence correlates with inhibition of the pRb (also known as RB1) pathway and resumption of telomerase reverse transcriptase (TERT) activity. Immortalization is also sustained by activation of the ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1) and Akt pathways. Moreover, only transduced cultures originating from cultures bearing stem cells induce tumors in nude mice. Our findings demonstrate that the Ras overexpression outcome depends on the clonogenic potential of the recipient keratinocyte and that only the stem cell compartment is competent to initiate tumorigenesis.
Collapse
Affiliation(s)
| | - Lavinia Tinaburri
- Vascular Pathology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | - Fabio Gangi
- Vascular Pathology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | - Sergio Bondanza
- Vascular Pathology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | - Anna Lisa Severi
- Vascular Pathology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | - Claudia Scarponi
- Experimental Immunology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Experimental Immunology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | - Giuseppe Mesiti
- Charles River Laboratories, Research Model and Services, 23885 Calco (LC), Italy
| | - Liliana Guerra
- Molecular and Cellular Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| | | | - Elena Dellambra
- Vascular Pathology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Rome, Italy
| |
Collapse
|
111
|
Abstract
Cancer cells continue to challenge scientists and oncologists due to the phenomenon of resistance. Moreover, recurrence, as seen in many treated patients, shows that currently-used anti-cancer drugs are unable to prevent the development of new cancer cells harboring new mutations. The purpose of this paper is to try to answer some of the questions regarding why cancer arises and why evolution would naturally lead to the development of cancer. Providing answers to these questions may shed new light on cancer development and potential causes of cancer. This work demonstrates that (1) cancer hallmarks are a series of events that can be organized in three consecutive stages; (2) cancer may develop when cells seek immortality; (3) heterogeneity in tumors may be explained by cancer cells not following universal laws for division; (4) evolution may not have selected for cancer; (5) currently-used anti-cancer drugs, with telomerase and poly adenosine diphosphate ribose polymerase inhibition given as examples, show that we may not be on the right track, as these drugs are probably targeting molecular symptoms of tumors but not their cause; and (6) after an attempt to define the cause of cancer, the potentials of immunotherapy are discussed. Future anti-cancer drugs should be able to shrink the original tumor(s) and most importantly prevent the rise of new cancer cells in treated patients. In order to achieve this goal, new drugs must target the cause of cancer. Therefore, future research must focus on identifying potential causes of cancer common to all types of cancers. Finally, while immunotherapy holds great prospects for future cancer cure and prevention, global action is needed to reduce harmful substances known to contribute to the development of cancer in the environment.
Collapse
Affiliation(s)
- Adouda Adjiri
- Physics Department, Faculty of Sciences, Sétif-1 University, 19000 Sétif, Algeria
| |
Collapse
|
112
|
Telomerase reverse transcriptase acts in a feedback loop with NF-κB pathway to regulate macrophage polarization in alcoholic liver disease. Sci Rep 2016; 6:18685. [PMID: 26725521 PMCID: PMC4698632 DOI: 10.1038/srep18685] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022] Open
Abstract
Activation of Kupffer cells (KCs) plays a central role in the pathogenesis of alcoholic liver disease (ALD). C57BL/6 mice fed EtOH-containing diet showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Since telomerase activation occurs at critical stages of myeloid and lymphoid cell activation, we herein investigated the role of telomerase reverse transcriptase (TERT), the determining factor of telomerase, in macrophage activation during ALD. In our study, TERT expression and telomerase activity (TA) were remarkably increased in liver tissue of EtOH-fed mice. Moreover, EtOH significantly up-regulated TERT in isolated KCs and RAW 264.7 cells and LPS induced TERT production in vitro. These data indicate that up-regulation of TERT may play a critical role in macrophages during ALD. Furthermore, loss- and gain-of-function studies suggested that TERT switched macrophages towards M1 phenotype by regulating NF-κB signaling, but had limited effect on M2 macrophages polarization in vitro. Additionally, PDTC, a chemical inhibitor of NF-κB, could dramatically down-regulate TERT expression and the hallmarks of M1 macrophages. Therefore, our study unveils the role of TERT in macrophage polarization and the cross-talk between TERT and p65, which may provide a possible explanation for the ethanol-mediated hepatic proinflammatory response and M1 macrophage polarization.
Collapse
|
113
|
Tergaonkar V. NFκB drives TERT promoter reactivation in cancer. Cell Cycle 2016; 15:156-7. [PMID: 26588470 PMCID: PMC4825903 DOI: 10.1080/15384101.2015.1118908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/07/2015] [Indexed: 11/02/2022] Open
Affiliation(s)
- Vinay Tergaonkar
- Laboratory of NFκB Signaling, IMCB, Singapore
- Department of Biochemistry, National University of Singapore, Singapore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
114
|
|
115
|
Zhu DD, Zhang J, Deng W, Yip YL, Lung HL, Tsang CM, Law WT, Yang J, Lau VMY, Shuen WH, Lung ML, Cheung ALM, Tsao SW. Significance of NF-κB activation in immortalization of nasopharyngeal epithelial cells. Int J Cancer 2015; 138:1175-85. [PMID: 26370441 DOI: 10.1002/ijc.29850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/04/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
NF-κB is a key regulator of inflammatory response and is frequently activated in human cancer including the undifferentiated nasopharyngeal carcinoma (NPC), which is common in Southern China including Hong Kong. Activation of NF-κB is common in NPC and may contribute to NPC development. The role of NF-κB activation in immortalization of nasopharyngeal epithelial (NPE) cells, which may represent an early event in NPC pathogenesis, is unknown. Examination of NF-κB activation in immortalization of NPE cells is of particular interest as the site of NPC is often heavily infiltrated with inflammatory cellular components. We found that constitutive activation of NF-κB signaling is a common phenotype in telomerase-immortalized NPE cell lines. Our results suggest that NF-κB activation promotes the growth of telomerase-immortalized NPE cells, and suppression of NF-κB activity inhibits their proliferation. Furthermore, we observed upregulation of c-Myc, IL-6 and Bmi-1 in our immortalized NPE cells. Inhibition of NF-κB downregulated expression of c-Myc, IL-6 and Bmi-1, suggesting that they are downstream events of NF-κB activation in immortalized NPE cells. We further delineated that EGFR/MEK/ERK/IKK/mTORC1 is the key upstream pathway of NF-κB activation in immortalized NPE cells. Elucidation of events underlying immortalization of NPE cells may provide insights into early events in pathogenesis of NPC. The identification of NF-κB activation and elucidation of its activation mechanism in immortalized NPE cells may reveal novel therapeutic targets for treatment and prevention of NPC.
Collapse
Affiliation(s)
- Dan Dan Zhu
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Jun Zhang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wen Deng
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Yim Ling Yip
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Hong Lok Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Chi Man Tsang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wai Tak Law
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Jie Yang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Victoria Ming Yi Lau
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wai Ho Shuen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Annie Lai Man Cheung
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
116
|
Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol 2015; 16:e342-51. [PMID: 26149886 DOI: 10.1016/s1470-2045(15)00077-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
Treatment for non-small-cell lung cancer is evolving from the use of cytotoxic chemotherapy to personalised treatment based on molecular alterations. This past decade has witnessed substantial progress in the treatment of patients with EGFR mutations and ALK rearrangements, and it is now possible to study complex genomic alterations in cancer using next-generation sequencing. Sequencing data from large-scale consortia, such as The Cancer Genome Atlas, as well as several independent groups, have helped identify novel drivers and potentially targetable alterations in lung adenocarcinomas. These data clearly suggest that lung adenocarcinoma is associated with distinct genomic alterations compared with other lung cancer subtypes, and highlight the widespread molecular heterogeneity that underlies the disease. In this Review, we discuss some of the key findings from genomic studies of lung adenocarcinoma.
Collapse
Affiliation(s)
- Siddhartha Devarakonda
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Morgensztern
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA; Alvin J Siteman Cancer Center, St Louis, MO, USA
| | - Ramaswamy Govindan
- Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA; Alvin J Siteman Cancer Center, St Louis, MO, USA.
| |
Collapse
|
117
|
Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat Cell Biol 2015; 17:1327-38. [PMID: 26389665 DOI: 10.1038/ncb3240] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations-C250T and C228T-in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications.
Collapse
|
118
|
Wu X, Chen J, Cao Y, Xie B, Li H, Zhou P, Qiu Y, Pang J. Antitumor effect of COOH-terminal polypeptide of human TERT is associated with the declined expression of hTERT and NF-κB p65 in HeLa cells. Oncol Rep 2015; 34:2909-16. [PMID: 26398300 DOI: 10.3892/or.2015.4298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/03/2015] [Indexed: 11/06/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays an important role in the development of tumors and has been investigated as a potent target for anticancer therapy. In the present study, we constructed a recombinant adenovirus, Ad-EGFP-C197 which was capable of expressing COOH‑terminal polypeptide of hTERT (amino acid 936-1,132, termed as C197 for the reason that it contains 197 amino acids). Infection of HeLa cells with Ad-EGFP-C197 suppressed the activity of telomerase, decreased the expression of hTERT and NF-κB p65, and induced rapid growth delay and apoptosis of HeLa cells in vitro. In nude mice xenografted with HeLa tumors, injection of Ad-EGFP-C197 into the tumor nodule significantly slowed tumor growth and promoted tumor cell apoptosis, as well as reduced the expression of NF-κB p65 in tumor tissues. In the present study, we suggest that the antitumor effect of C197 is associated with the declined expression of hTERT and NF-κB p65. Our results highlight the potential of C197 in tumor therapy.
Collapse
Affiliation(s)
- Xian Wu
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Jiasheng Chen
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Cao
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Baoping Xie
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Pingzheng Zhou
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Yuchang Qiu
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Jianxin Pang
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
119
|
TERT promoter mutations in primary central nervous system lymphoma are associated with spatial distribution in the splenium. Acta Neuropathol 2015. [PMID: 26195323 DOI: 10.1007/s00401-015-1461-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
120
|
Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discov 2015; 1:15007. [PMID: 27551443 PMCID: PMC4981000 DOI: 10.1038/cddiscovery.2015.7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
Paracrine effect is the major mechanism that underlies mesenchymal stem cells (MSC)-based therapy. This study aimed to examine how Rap1, telomeric repeat-binding factor 2-interacting protein 1 (Terf2IP), which is a novel modulator involved in the nuclear factor-kappaB (NF-κB) pathway, regulates the paracrine effects of MSC-mediated heart repair following infarction. NF-κB activity of stromal cells was increased by Rap1 as measured by pNF-κB-luciferase reporter activity, and this was abolished by IkB-dominant-negative protein. Knockdown of Rap1 with shRap1 resulted in diminished translocation of p65-NF-κB from the cytoplasm to nuclei in response to tumor necrosis factor-α (TNF-α) stimulation. Compared with BM-MSCs, Rap1−/−-BM-MSCs displayed a significantly reduced ratio of phosphorylated NF-κB to NF-κB-p65 and of Bax to Bcl-2, and increased resistance to hypoxia-induced apoptosis by the terminal deoxynucleotidal transferase-mediated dUTP nick end labeling (TUNEL) assay. In contrast, re-expression of Rap1 in Rap1−/−-BM-MSCs resulted in loss of resistance to apoptosis in the presence of hypoxia. Moreover, absence of Rap1 in BM-MSCs led to downregulation of NF-κB activity accompanied by reduced pro-inflammatory paracrine cytokines TNF-α, IL (interleukin)-6 and monocyte chemotactic protein-1 in Rap1−/−-BM-MSCs compared with BM-MSCs. The apoptosis of neonatal cardiomyocytes (NCMCs) induced by hypoxia was significantly reduced when cocultured with Rap1−/−-BM-MSC hypoxic-conditioned medium (CdM). The increased cardioprotective effects of Rap1−/−-BM-MSCs were reduced when Rap1−/−-BM-MSCs were reconstituted with Rap1 re-expression. Furthermore, in vivo study showed that transplantation of Rap1−/−-BM-MSCs significantly improved heart function, decreased infarct size, prevented cardiomyocyte apoptosis and inhibited inflammation compared with controls and BM-MSCs (P<0.01). This study reveals that Rap1 has a critical role in the regulation of MSC paracrine actions. Compared with BM-MSCs, Rap1−/−-BM-MSCs decreased NF-κB sensitivity to stress-induced pro-inflammatory cytokine production and reduced apoptosis. Selective inhibition of Rap1 in BM-MSCs may be a novel strategy to enhance MSC-based therapeutic efficacy in myocardial infarction.
Collapse
|
121
|
de Martino M, Taus C, Lucca I, Hofbauer SL, Haitel A, Shariat SF, Klatte T. Association of human telomerase reverse transcriptase gene polymorphisms, serum levels, and telomere length with renal cell carcinoma risk and pathology. Mol Carcinog 2015; 55:1458-66. [PMID: 26294352 DOI: 10.1002/mc.22388] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the human telomerase and plays a key role in telomere restitution and gene regulation. Evidence suggests that hTERT is linked with the risk and progression of several malignancies, but there are no comprehensive data in renal cell carcinoma (RCC). In this case-control study, we assessed seven polymorphic hTERT gene variants (MNS16A, rs2736100, rs2736098, rs7726159, rs2853677, rs13172201, and rs10069690), hTERT serum levels, and the telomere length of 663 individuals, including 243 with clear cell RCC and 420 age- and gender-matched healthy controls. The SL and SS genotypes of MNS16A were associated with a decreased risk for RCC on the multivariable logistic regression analysis (SL-OR 0.72, SS-OR 0.37, P < 0.001). The GG genotype of rs2736098 was associated with a decreased risk for RCC compared with AA (OR 0.18, P < 0.001). Both telomere length and hTERT serum levels increased with every G allele in rs2736098 (P = 0.008). Pretherapeutic hTERT serum levels were higher in patients with advanced tumor stages (P = 0.037) and distant metastases (P = 0.006). Rs2736100, rs7726159, rs2853677, rs13172201, and rs10069690 were not linked with RCC risk, and none of the polymorphisms was associated with RCC pathology. In conclusion, the polymorphic number of tandem repeats in hTERT (MNS16A) and rs2736098 may be linked with the risk for RCC. Rs2736098 may have an important role in telomere length restitution and serum hTERT levels may represent a novel biomarker for RCC. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michela de Martino
- Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christopher Taus
- Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Sebastian L Hofbauer
- Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andrea Haitel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Tobias Klatte
- Department of Urology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.
| |
Collapse
|
122
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
123
|
Abstract
NUCKS regulates genes involved in insulin signalling and loss of NUCKS in vivo leads to insulin resistance and obesity. We report here the specificity of NUCKS in hypothalamus to regulate hypothalamic insulin signalling and peripheral glucose homoeostasis.
Collapse
|
124
|
Abstract
Deregulated inflammatory response plays a pivotal role in the initiation, development and progression of tumours. Potential molecular mechanism(s) that drive the establishment of an inflammatory-tumour microenvironment is not entirely understood owing to the complex cross-talk between pro-inflammatory and tumorigenic mediators such as cytokines, chemokines, oncogenes, enzymes, transcription factors and immune cells. These molecular mediators are critical linchpins between inflammation and cancer, and their activation and/or deactivation are influenced by both extrinsic (i.e. environmental and lifestyle) and intrinsic (i.e. hereditary) factors. At present, the research pertaining to inflammation-associated cancers is accumulating at an exponential rate. Interest stems from hope that new therapeutic strategies against molecular mediators can be identified to assist in cancer treatment and patient management. The present review outlines the various molecular and cellular inflammatory mediators responsible for tumour initiation, progression and development, and discusses the critical role of chronic inflammation in tumorigenesis.
Collapse
|
125
|
Giunco S, Celeghin A, Gianesin K, Dolcetti R, Indraccolo S, De Rossi A. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis 2015; 6:e1774. [PMID: 26018735 PMCID: PMC4669716 DOI: 10.1038/cddis.2015.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Epstein–Barr virus (EBV)-associated malignancies, as well as lymphoblastoid cell lines (LCLs), obtained in vitro by EBV infection of B cells, express latent viral proteins and maintain their ability to grow indefinitely through inappropriate activation of telomere-specific reverse transcriptase (TERT), the catalytic component of telomerase. Our previous studies demonstrated that high levels of TERT expression in LCLs prevent the activation of EBV lytic cycle, which is instead triggered by TERT silencing. As lytic infection promotes the death of EBV-positive tumor cells, understanding the mechanism(s) by which TERT affects the latent/lytic status of EBV may be important for setting new therapeutic strategies. BATF, a transcription factor activated by NOTCH2, the major NOTCH family member in B cells, negatively affects the expression of BZLF1, the master regulator of viral lytic cycle. We therefore analyzed the interplay between TERT, NOTCH and BATF in LCLs and found that high levels of endogenous TERT are associated with high NOTCH2 and BATF expression levels. In addition, ectopic expression of TERT in LCLs with low levels of endogenous telomerase was associated with upregulation of NOTCH2 and BATF at both mRNA and protein levels. By contrast, infection of LCLs with retroviral vectors expressing functional NOTCH2 did not alter TERT transcript levels. Luciferase reporter assays, demonstrated that TERT significantly activated NOTCH2 promoter in a dose-dependent manner. We also found that NF-κB pathway is involved in TERT-induced NOTCH2 activation. Lastly, pharmacologic inhibition of NOTCH signaling triggers the EBV lytic cycle, leading to the death of EBV-infected cells. Overall, these results indicate that TERT contributes to preserve EBV latency in B cells mainly through the NOTCH2/BAFT pathway, and suggest that NOTCH2 inhibition may represent an appealing therapeutic strategy against EBV-associated malignancies.
Collapse
Affiliation(s)
- S Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - A Celeghin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - K Gianesin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - R Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - S Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - A De Rossi
- 1] Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy [2] Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| |
Collapse
|
126
|
Zhao X, Wang S, Wu J, Li X, Wang X, Gao Z, Wu W, Wang H, Wang J, Qian J, Ma K, Li H, Han B, Bai C, Li Q, Liu W, Lu D. Association of TERT Polymorphisms with Clinical Outcome of Non-Small Cell Lung Cancer Patients. PLoS One 2015; 10:e0129232. [PMID: 26020272 PMCID: PMC4447454 DOI: 10.1371/journal.pone.0129232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
TERT is of great importance in cancer initiation and progression. Many studies have demonstrated the TERT polymorphisms as risk factors for many cancer types, including lung cancer. However, the impacts of TERT variants on cancer progression and treatment efficacy have remained controversial. This study aimed to investigate the association of TERT polymorphisms with clinical outcome of advanced non-small cell lung cancer (NSCLC) patients receiving first-line platinum-based chemotherapy, including response rate, clinical benefit, progression-free survival (PFS), overall survival (OS), and grade 3 or 4 toxicity. Seven polymorphisms of TERT were assessed, and a total of 1004 inoperable advanced NSCLC patients treated with platinum-based chemotherapy were enrolled. It is exhibited that the variant heterozygote of rs4975605 showed significant association with a low rate of clinical benefit, and displayed a much stronger effect in never-smoking female subset, leading to the clinical benefit rate decreased from 82.9% (C/C genotype) to 56.4% (C/A genotype; adjusted OR, 3.58; P=1.40×10(-4)). It is also observed that the polymorphism rs2736109 showed significant correlation with PFS (log-rank P=0.023). In age > 58 subgroup, patients carrying the heterozygous genotype had a longer median PFS than those carrying the wild-type genotypes (P=0.002). The results from the current study, for the first time to our knowledge, provide suggestive evidence of an effect of TERT polymorphisms on disease progression variability among Chinese patients with platinum-treated advanced NSCLC.
Collapse
Affiliation(s)
- Xueying Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Shiming Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Wu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Gao
- Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenting Wu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ke Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Baohui Han
- Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- * E-mail: (WL); (DL)
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (WL); (DL)
| |
Collapse
|
127
|
Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, Li Y, Franzoso G, Li S, Guccione E, Tergaonkar V. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 2015; 125:2109-22. [PMID: 25893605 PMCID: PMC4463203 DOI: 10.1172/jci79134] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 12/25/2022] Open
Abstract
Constitutively active MYC and reactivated telomerase often coexist in cancers. While reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with cofactors, confers several growth advantages to cancer cells. It is known that the reactivation of TERT, the catalytic subunit of telomerase, is limiting for reconstituting telomerase activity in tumors. However, while reactivation of TERT has been functionally linked to the acquisition of several "hallmarks of cancer" in tumors, the molecular mechanisms by which this occurs and whether these mechanisms are distinct from the role of telomerase on telomeres is not clear. Here, we demonstrated that first-generation TERT-null mice, unlike Terc-null mice, show delayed onset of MYC-induced lymphomagenesis. We further determined that TERT is a regulator of MYC stability in cancer. TERT stabilized MYC levels on chromatin, contributing to either activation or repression of its target genes. TERT regulated MYC ubiquitination and proteasomal degradation, and this effect of TERT was independent of its reverse transcriptase activity and role in telomere elongation. Based on these data, we conclude that reactivation of TERT, a direct transcriptional MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Enzyme Activation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic/genetics
- Genes, myc
- Glycogen Synthase Kinase 3/physiology
- Glycogen Synthase Kinase 3 beta
- Heterografts
- Humans
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Protein Stability
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/physiology
- RNA/genetics
- RNA/physiology
- RNA Interference
- Telomerase/deficiency
- Telomerase/genetics
- Telomerase/physiology
- Telomere Homeostasis/genetics
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- Cheryl M. Koh
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Ekta Khattar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shi Chi Leow
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chia Yi Liu
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Wei Xia Ang
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Guido Franzoso
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
- Department of Physiology and
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
128
|
Design and synthesis of celastrol derivatives as anticancer agents. Eur J Med Chem 2015; 95:166-73. [PMID: 25812966 DOI: 10.1016/j.ejmech.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/18/2023]
Abstract
A series of celastrol derivatives as potential telomerase inhibitors were designed and synthesized. The bioassays demonstrated that title compounds displayed potent anticancer activities against SGC-7901, SMMC-7721, MGC-803 and HepG-2 cell lines, among them, compounds 3c and 3d which containing hydrophilicity moieties exhibited high anti-proliferative activities (IC50 = 0.10-1.22 μM). The preliminary mechanism of antitumor action indicated that title compound 3c could induce significant SMMC-7721 cells apoptosis. A modified TRAP assay showed that compounds 3c and 3d displayed the most potent inhibitory activity with IC50 values at 0.11 and 0.34 μM, respectively. And there was a good correlation between telomerase inhibition and anti-proliferative inhibition of SMMC-7721 cells. Moreover, molecular docking indicated that the active compound 3c was nicely bound into the telomerase hTERT active site, hydrophobic, van der Waals and two hydrogen bond interactions with conserved residues ASP 628 and TYR 949 were found.
Collapse
|
129
|
Akıncılar SC, Low KC, Liu CY, Yan TD, Oji A, Ikawa M, Li S, Tergaonkar V. Quantitative assessment of telomerase components in cancer cell lines. FEBS Lett 2015; 589:974-84. [PMID: 25749370 DOI: 10.1016/j.febslet.2015.02.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Besides its canonical function of catalyzing the formation of telomeric repeats, many groups have recently reported non-canonical functions of hTERT in particular, and telomerase in general. Regulating transcription is the central basis of non-canonical functions of telomerase. However, unlike reverse transcriptase activity of telomerase that requires only a few molecules of enzymatically active hTERT, non-canonical functions of hTERT or other telomerase components theoretically require several hundred copies. Here, we provide the first direct quantification of all the telomerase components in human cancer cell lines. We demonstrate that telomerase components do not exist in a 1:1 stoichiometric ratio, and there are several hundred copies of hTERT in cells. This provides the molecular basis of hTERT to function in other signaling cascades, including transcription.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Chia Yi Liu
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ting Dong Yan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
130
|
Simonicova L, Dudekova H, Ferenc J, Prochazkova K, Nebohacova M, Dusinsky R, Nosek J, Tomaska L. Saccharomyces cerevisiae as a model for the study of extranuclear functions of mammalian telomerase. Curr Genet 2015; 61:517-27. [PMID: 25567623 DOI: 10.1007/s00294-014-0472-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/25/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
The experimental evidence from the last decade made telomerase a prominent member of a family of moonlighting proteins performing different functions at various cellular loci. However, the study of extratelomeric functions of the catalytic subunit of mammalian telomerase (TERT) is often complicated by the fact that it is sometimes difficult to distinguish them from its role(s) at the chromosomal ends. Here, we present an experimental model for studying the extranuclear function(s) of mammalian telomerase in the yeast Saccharomyces cerevisiae. We demonstrate that the catalytic subunit of mammalian telomerase protects the yeast cells against oxidative stress and affects the stability of the mitochondrial genome. The advantage of using S. cerevisiae to study of mammalian telomerase is that (1) mammalian TERT does not interfere with its yeast counterpart in the maintenance of telomeres, (2) yeast telomerase is not localized in mitochondria and (3) it does not seem to be involved in the protection of cells against oxidative stress and stabilization of mtDNA. Thus, yeast cells can be used as a 'test tube' for reconstitution of mammalian TERT extranuclear function(s).
Collapse
Affiliation(s)
- Lucia Simonicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Henrieta Dudekova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Jaroslav Ferenc
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Katarina Prochazkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Martina Nebohacova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina, CH-1, 84215, Bratislava, Slovak Republic
| | - Roman Dusinsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina, CH-1, 84215, Bratislava, Slovak Republic
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, B-1, 84215, Bratislava, Slovak Republic.
| |
Collapse
|
131
|
Telomerase reverse transcriptase regulates microRNAs. Int J Mol Sci 2015; 16:1192-208. [PMID: 25569094 PMCID: PMC4307298 DOI: 10.3390/ijms16011192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/26/2014] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s).
Collapse
|
132
|
Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet 2014; 46:1267-73. [PMID: 25362482 DOI: 10.1038/ng.3126] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 10/03/2014] [Indexed: 11/08/2022]
Abstract
Diverse epidemiological factors are associated with hepatocellular carcinoma (HCC) prevalence in different populations. However, the global landscape of the genetic changes in HCC genomes underpinning different epidemiological and ancestral backgrounds still remains uncharted. Here a collection of data from 503 liver cancer genomes from different populations uncovered 30 candidate driver genes and 11 core pathway modules. Furthermore, a collaboration of two large-scale cancer genome projects comparatively analyzed the trans-ancestry substitution signatures in 608 liver cancer cases and identified unique mutational signatures that predominantly contribute to Asian cases. This work elucidates previously unexplored ancestry-associated mutational processes in HCC development. A combination of hotspot TERT promoter mutation, TERT focal amplification and viral genome integration occurs in more than 68% of cases, implicating TERT as a central and ancestry-independent node of hepatocarcinogenesis. Newly identified alterations in genes encoding metabolic enzymes, chromatin remodelers and a high proportion of mTOR pathway activations offer potential therapeutic and diagnostic opportunities.
Collapse
|
133
|
Verhoeven JE, Révész D, Wolkowitz OM, Penninx BWJH. Cellular aging in depression: Permanent imprint or reversible process?: An overview of the current evidence, mechanistic pathways, and targets for interventions. Bioessays 2014; 36:968-78. [PMID: 25143317 DOI: 10.1002/bies.201400068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depression might be associated with accelerated cellular aging. However, does this result in an irreversible state or is the body able to slow down or recover from such a process? Telomeres are DNA-protein complexes that protect the ends of chromosomes and generally shorten with age; and therefore index cellular aging. The majority of studies indicate that persons with depression have shorter leukocyte telomeres than similarly aged non-depressed persons, which may contribute to the observed unfavorable somatic health outcomes in the depressed population. Some small-scale preliminary studies raise the possibility that behavioral or pharmacological interventions may either slow down or else reverse this accelerated telomere shortening, possibly through increasing the activity of the telomere-lengthening enzyme telomerase. This paper covers the current state of evidence in the relationship between depression and the telomere-telomerase system and debates whether depression-related cellular aging should be considered a reversible process or permanent damage.
Collapse
Affiliation(s)
- Josine E Verhoeven
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|